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Abstract

The Temporal Restricted Boltzmann Machine (TRBM) is a pbilistic model for
sequences that is able to successfully model (i.e., geneieg-looking samples
of) several very high dimensional sequences, such as mcaioture data and the
pixels of low resolution videos of balls bouncing in a box.€Tinajor disadvan-
tage of the TRBM is that exact inference is extremely hartbeseven computing
a Gibbs update for a single variable of the posterior is egptally expensive.
This difficulty has necessitated the use of a heuristic exfee procedure, that
nonetheless was accurate enough for successful learmirtgisipaper we intro-
duce the Recurrent TRBM, which is a very slight modificatidnhe TRBM for
which exact inference is very easy and exact gradient legrisialmost tractable.
We demonstrate that the RTRBM is better than an analogoud\T&Rjenerating
motion capture and videos of bouncing balls.

1 Introduction

Modeling sequences is an important problem since there asaamount of natural data, such as
speech and videos, that is inherently sequential. A goodehfodthese data sources could be useful
for finding an abstract representation that is helpful fdvieg “natural” discrimination tasks (see
[4] for an example of this approach for the non-sequentiaéfaln addition, it could be also used
for predicting the future of a sequence from its past, be ased prior for denoising tasks, and be
used for other applications such as tracking objects inovidéhe Temporal Restricted Boltzmann
Machine [14, 13] is a recently introduced probabilistic rabithat has the ability to accurately model
complex probability distributions over high-dimensiorsgquences. It was shown to be able to
generate realistic motion capture data [14], and low regmiwideos of 2 balls bouncing in a box
[13], as well as complete and denoise such sequences.

As a probabilistic model, the TRBM is a directed graphicaldelcconsisting of a sequence of Re-
stricted Boltzmann Machines (RBMs) [3], where the stater@f or more previous RBMs determines
the biases of the RBM in next timestep. This probabilistierfolation straightforwardly implies a

learning procedure where approximate inference is foltbtwe learning. The learning consists of
learning a conditional RBM at each timestep, which is eaddpe with Contrastive Divergence
(CD) [3]. Exact inference in TRBMSs, on the other hand, is lhygion-trivial, since computing even

a single Gibbs update requires computing the ratio of two Rigvtition functions. The approx-

imate inference procedure used in [13] was heuristic andneagven derived from a variational
principle.

In this paper we introduce the Recurrent TRBM (RTRBM), whista model that is very similar

to the TRBM, and just as expressive. Despite the similagkgctinference is very easy in the
RTRBM and computing the gradient of the log likelihood isdiéde (up to the error introduced
by the use of Contrastive Divergence). We demonstrate lieaRTRBM is able to generate more
realistic samples than an equivalent TRBM for the motiortwagpdata and for the pixels of videos



of bouncing balls. The RTRBM's performance is better thanTRBM mainly because it learns to
convey more information through its hidden-to-hidden @mstions.

2 Restricted Boltzmann Machines

The building block of the TRBM and the RTRBM is the Restricdltzmann Machine [3]. An
RBM defines a probability distribution over pairs of vectarse {0,1}¥v andH € {0,1}"# (a
shorthand for visible and hidden) by the equation

P(w,h) =P(V =v,H="h)=exp(v by +h by +v Wh)/Z 1)
whereby is a vector of biases for the visible vectobg; is a vector of biases for the hidden vectors,
andW is the matrix of connection weights. The quantfy= Z(by, by, W) is the value of the
partition function that ensures that Eg. 1 is a valid prolighdistribution. The RBM's definition
implies that the conditional distributionB(H|v) and P(V'|h) are factorial (i.e., all the compo-
nents ofH in P(H|v) are independent) and are given BYyH ) = 1|v) = s(by + W v)) and
P(V® = 1|n) = s(by + Wh)®, wheres(x)) = (1 + exp(—21)))~1 is the logistic function
andzU) is the jth component of the vectar. In general, we uséto index visible vector$” and;

to index hidden vector&l. * The RBM can be slightly modified to allow the vecfigrto take real
values; one way of achieving this is by the definition

P(v,h) = exp(—||v]|?/2 + v by +h by +v Wh)/Z. (2)

Using this equation does not change the form of the gradientsthe conditional distribution
P(H|v). The only change it introduces is in the conditional disttibn P(V'|h), which is equal
to a multivariate Gaussian with paramet@/$b, + Wh,I). See [18, 14] for more details and
generalizations.

The gradient of the average log probability given a datésdt = 1/|S|>", . log P(v), has the
following simple form:

OL/OW = (V HT) o5y =V H ) pivy )

where P(V) = 1/|S] Y ves 0u(V) (hered, (X) is a distribution over real-valued vectors that is
concentrated at), and(f (X)) p ) is the expectation of (X) under the distributiod*. Computing

the exact values of the expectatio@}sp( HV) is computationally intractable, and much work has
been done on methods for computing approximate values éogxpectations that are good enough

for practical learning and inference tasks (e.g., [16, B, thcluding [15], which works well for
the RBM).

We will approximate the gradients with respect to the RBM&sgmeters using the Contrastive
Divergence [3] learning procedure, GPwhose updates are computed by the following algorithm.

Algorithm 1 (CD,,)
1. Samplev, h) ~ P(H|V)P(V)
2. SetAW tov-h'
3. repeat n times: sample ~ P(V|h), then samplé, ~ P(H |v)
4. Decreasé\W bywv-h'

Models learned by CPare often reasonable generative models of the data [3]f berining is
continued with CBs, the resulting generative models are much better [11]. TBBIRIso plays a
critical role in deep belief networks [4], [5], but we do natauthis connection in this paper.

3 TheTRBM

It is easy to construct the TRBM with RBMs. The TRBM, as desedi in the introduction, is
a sequence of RBMs arranged in such a way that in any giverstapethe RBM's biases de-
pend only on the state of the RBM in the previous timestep tdsimplest form, the TRBM can

"We use uppercase variables (agFi |v)) to denote distributions and lowercase variables (aB(ih|v))
to denote the (real-valued) probabiliB(H = h|v).
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Figure 1: The graphical structure of a TRBM: a directed saqa®f RBMs.

be viewed as a Hidden Markov Model (HMM) [9] with an exponeflji large state space that
has an extremely compact parameterization of the transéimal the emission probabilities. Let
X{® = (X4,,...,X:,) denote a sequence of variables. The TRBM defines a prolyathisitribu-

tion P(VL' = o', H = hT) by the equation

T
P(i,hl) =[] P(ve, hulhu—1)Po(v1, ha) (4)
t=2
which is identical to the defining equation of the HMM. The ditional distributionP (V;, Hy|hi—1)
is that of an RBM, whose biases féF; are a function of;_;. Specifically,

P(ve, hi|he—1) = exp (v by +v) Why + b (by + W'hi_1)) /Z(he—1) (5)

whereby, by andW are as in Eq. 1, whilé/’ is the weight matrix of the connections frofy_;

to H,;, makingby + W'h;_; be the bias of RBM at time. In this equation)’ € {0,1}"v and

H € {0,1}"#; itis easy to modify this definition to allow to take real values as was done in Eq. 2.
The RBM’s partition function depends @n_1, because the parameters (i.e., the biases) of the RBM
at timet depend on the value of the random variablg ;. Finally, the distribution?, is defined

by an equation very similar to Eq. 5, except that the (unddjierm W’h, is replaced by the
termb;,;;, SO the hidden units receive a special initial bia®gatwe will often write P(V7, H1|hy)

for Py(V1, Hy) andW'hg for b,y It follows from these equations that the TRBM is a directed
graphical model that has an (undirected) RBM at each tipe&erelated directed sequence of
Boltzmann Machines has been considered in [7]).

As in most probabilistic models, the weight update is coreduiy solving the inference problem
and computing the weight update as if the inferred variablese observed. fully-visible case. If
the hidden variables are observed, equation 4 implies ligagtadient of the log likelihood with
respect to the TRBM's parametersttT:1 Vlog P(vq, ht|h:—1), and each term, being the gradient
of the log likelihood of an RBM, can be approximated using,COThus the main computational
diffiCL%ItyTof learning TRBMs is in obtaining samples from atlibution approximating the posterior
P(H{ [vy).

Inferencein a TRBM

Unfortunately, the TRBM's inference problem is harder thiaat of a typical undirected graphical

model, because even computing the probabﬂmHt(” = 1| everything elsginvolves evaluating
the exact ratio of two RBM partition functions, which can leeis from Eq. 5. This difficulty ne-
cessitated the use of a heuristic inference procedure\j#8th is based on the observation that the
distribution P(H,|hi™* vt) = P(H;|hs_1,v;) is factorial by definition. This inference procedure
does not do any kind of smoothing from the future and only dggsoximate filtering from the past
by sampling from the di:stributihoLfT:1 P(H;/H!{™, vt) instead of the true posterior distribution

1, P(H,|H!™ vT), which is easy because(H;|hi ™, v!) is factorial.2

4 Recurrent TRBMs

Let us start with notation. Consider an arbitrary factod@stribution P’(H). The statement ~
P'(H) means thab, is sampled from the factorial distributia®’ (H), so eacthY) is set tol with

2This is a slightly simplified description of the inference procedure in [13].
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Figure 2: The graphical structure of the RTRBE, The variablesH; are real valued while the
variables H] are binary. The conditional distributioQ(V;, H;|h:—1) is given by the equation
Q(ve, hyhi—1) = exp (v Wh} 4+ v by + hj(bg + W'hy_1)) /Z(hs—1), Which is essentially the
same as the TRBM's conditional distributidhfrom equation 5. We will always integrate ot/
and will work directly with the distributio (V;|h:—1). Notice that wher; is observedH; cannot
affect H;.

probability P/(H) = 1), and 0 otherwise. In contrast, the statemiert P’(H) means that each
hU) is set to the real valu®’ (H) = 1), so this is a “mean-field” update [8, 17]. The symiol
stands for the distribution of some TRBM, while the sym@adtands for the distribution defined by
an RTRBM. Note that the outcome of the operatier P(Hy|vi, hy—1)iss(Wuvi+W'hy_1 +bp).

An RTRBM, Q(V{I', HT), is defined by the equation

T

Qi hl) =[] Quilhi-1)Q(helve, he—1) - Qo(v1). Qo(ha|v1) (6)

t=2
The terms appearing in this equation will be defined shortly.

Let us contrast the generative process of the two models.affple from a TRBMP, we need
to perform a directed pass, sampling from each RBM on evergdtep. One way of doing this is
described by the following algorithm.

Algorithm 2 (for sampling from the TRBM):
for1 <t<T:

1. sampley; ~ P(Vi|hi—1)

2. Samplellt ~ P(I{t|’l}t7 ht—l) 3

where step 1 requires sampling from the marginals of a BatemMachine (by integrating out;),
which involves running a Markov chain.

By definition, RTRBMs and TRBMs are parameterized in the sam@g so from now on we will
assume thaP and@ have identical parameters, which 3t W', by, by, andb;,,;;. The following
algorithm samples from the RTRBE) under this assumption.

Algorithm 3 (for sampling from the RTRBM)
for1 <t<T:

1. samplev; ~ P(V;|hi—1)
2. Setht — P(Ht\vt, ht—l)

We can infer that)(V;|h.—1) = P(V;|h:—1) because of step 1 in Algorithm 3, which is also con-
sistent with the equation given in figure 2 whéfi¢ is integrated out. The only difference between
Algorithm 2 and Algorithm 3 is in step 2. The difference magmsesmall, since the operations
ht ~ P(H|vg, he—1) andh, — P(H|vs, hy—1) appear similar. However, this difference signifi-
cantly alters the inference and learning procedures of #BM; in particular, it can already be
seen thafd, are real-valued for the RTRBM.

*Whent = 1, P(H;|v, ht—1) stands forPy (H, |v1 ), and similarly for other conditional distributions. The
same convention is used in all algorithms.



4.1 Inferencein RTRBMs

Inference in RTRBMs given? is very easy, which might be surprising in light of its simitg to

the TRBM. The reason inference is easy is similar to the reagerence in square ICAs is easy [1]:
There is auniqueand areasily computablgalue of the hidden variables that has a nonzero posterior
probability. Suppose, for example, that the valué’pis v;, which means that; was produced at
the end of step 1 in Algorithm 3. Since step 2, the determiperationh; — Py(H|v1), has
been executed, the only vallig can take is the value assigned by the operatienPy (Hy |v1). Any
other value forh; is never produced by a generative process that outpuasid thus has posterior
probability 0. In addition, by executing this operation, wen recoverh,. Thus,Qo(H1|v1) =
Ss(Wur+b+bimse) (H1). Note thatH,'s value is completely independent of .

Onceh; is known, we can consider the generative process that pedduc As before, since
was produced at the end of step 1, then the fact that step Zleasdxecuted implies that can be
computed byhy « P(Hz|va, h1) (recall that at this poink; is known with absolute certainty). If
the same reasoning is repeatdiines, then all of! is uniquely determined and is easily computed
whenV} is known. There is no need for smoothing becausand H;_; influenceH; with such
strength that the knowledge &f%, cannot alter the model’s belief aboff;,. This is because
Q(H¢|ve, hi—1) = Ss(Woy+bm+wih,_ 1) (Hi

The resulting inference algorithm is simple:

Algorithm 4 (inference in RTRBM )

for1 <t<T:

1. ht — P(Ht|’l)t,h,t_1)

Let h(v)T denote the output of the inference algorithm on inp{it in which case the posterior is
described by

Q(HIT‘U{) = 6h,(’u)? (HlT) (7)
4.2 Learningin RTRBMs

Learning in RTRBMs may seem easy once inference is solvede she main difficulty in learning
TRBMs is the inference problem. However, the RTRBM does HotvaEM-like learning because
the equationVlog Q(v{) = (Vlog Q(v{, hT)>hT~Q(HT| r) is not meaningful. To be precise,

the gradientVlog Q(v?, hT) is undefined becausg -y, 1+bH+WTUf)(h,‘) is not, in general, a
continuous function ofV’. Thus, the gradient has to be computed differently.

Notice that the RTRBM'’s log probability satisfigéss Q(v{) = EtT:l log Q(v¢|vi™"), so we could

try computing the sunv Zthl log Q(v¢|vi™1). The key observation that makes the computation
feasible is the equation

Q(Vilvi™") = Q(Velh(v)e—1) 8)
whereh(v);—_ is the value computed by the RTRBM inference algorithm witbuitso? . This equa-
tion holds becaus@ (v;|vi™* fh, Q(ve|hy_ QM1 |0t~ HYdh,_, = Q(vi|h(v)¢_1), as the

posterior dlstr|but|orQ(Ht,1|u1 Y = On(w),_, (He—1) is a point-mass alt(v),_1, which follows
from Eq. 7.

The equalityQ(V;|vi™) = Q(V;|h(v);_1) allows us to define a recurrent neural network (RNN)
[10] whose parameters are identical to those of the RTRBM vetmose cost function is equal to the
log likelihood of the RTRBM. This is useful because it is esgompute gradients with respect to
the RNN's parameters using the backpropagation through aiigorithm [10]. The RNN has a pair
of variables at each timestef(v;, r;)}._,, wherev, are the input variables and are the RNN’s
hidden variables (all of which are deterministic). The ids-! are computed by the equation

re = s(Wuoy + by +W'ry_q) 9)

whereW'r;_ is replaced with;,,;; whent = 1. This definition was chosen so that the equation
rI' = h(v)T would hold. The RNN attempts to probabilistically predice tnext timestep from its
history using the marginal distribution of the RBM(V;1|r:), SO its objective function at timeis
defined to béog Q(v:+1]7:), where@) depends on the RNN's parameters in the same way it depends



on the RTRBM'’s parameters (the two sets of parameters bdamgical). This is a valid definition
of an RNN whose cumulative objective for the sequenicés

T
0= logQvslr:_1) (10)

t=1
whereQ (v |r9) = Qo(v1). But sincer; as computed in equation 9 on inpift is identical toh(v);,
the equalitylog Q(v¢|r;—1) = log Q(v¢|vi™") holds. Substituting this identity into Eq. 10 yields

T T
0= Zlog Q(ve|ri—1) = Zlog Q(vevi™t) =log Q(v) (11)
t=1

t=1
which is the log probability of the corresponding RTRBM.

This means tha’ O = V log Q(v¥) can be computed with the backpropagation through time algo-
rithm [10], where the contribution of the gradient from eaichestep is computed with Contrastive
Divergence.

4.3 Details of the backpropagation through time algorithm

The backpropagation through time algorithm is identicathte usual backpropagation algorithm
where the feedforward neural network is turned “on its sidgjecifically, the algorithm maintains
a termoO/dr, which is computed fron®O/0r; 1 andd log Q(vi41|re)/Or: using the chain rule,
by the equation

00/0ry = W' (ri11.(1 — 1041).00/0r41) + W' T dlog Q(vy|r—1) /by (12)
wherea.b denotes component-wise multiplication, the ternfl — r;) arises from the derivative of
the logistic functions’(z) = s(z).(1 — s(x)), anddlog Q(v¢+1]|r+) /Oby is computed by CD. Once

00 /0r, is computed for alt, the gradients of the parameters can be computed usingltbeifty
equations

870/ = XT:rt_l(’/‘t.(l — rt).BO/(‘Brt)T (13)
ow =

00 — T T v

Fi = Z on (W’ (reeq-(1— Tt+1)-60/67‘t+1)) + Zalog Q(velre—1)/0W (14)

t=1 t=1
The first summation in Eqg. 14 arises from the us&oés weights for inference for computingand
the second summation arises from the usB’ods RBM parameters for computitgg Q (v¢|r:—1).
Each term of the ford log Q(vi41]r¢)/OW is also computed with CD. Computidy)/Or; is done
most conveniently with a single backward pass through theegce. As alwaydog Q(v1|ro) =
Qo(v1). Itis also seen that the gradient would be computed exgof¥Diwere to return the exact
gradient of the RBM'’s log probability.

5 Experiments

We report the results of experiments comparing an RTRBM tRBNI. The results in [14, 13] were
obtained using TRBMs that had several delay-taps, whiclseat each hidden unit could directly
observe several previous timesteps. To demonstrate thRtRBM learns to use the hidden units to
store information, we did not use delay-taps for the RTRBMthe TRBM, which causes the results
to be worse (but not much) than in [14, 13]. If delay-taps dl@aed, then the results of [14, 13]
show that there is little benefit from the hidden-to-hiddenmections (which ar&’’), making the
comparison between the RTRBM and the TRBM uninteresting.

In all experiments, the RTRBM and the TRBM had the same nurabkidden units, their param-
eters were initialized in the same manner, and they wernedafor the same number of weight
updates. When sampling from the TRBM, we would use the sagpincedure of the RTRBM

using the TRBM’s parameters to eliminate the additionasediom its hidden units. If this is not
done, the samples produced by the TRBM are significantly evokénfortunately, the evaluation
metric is entirely qualitative since computing the log pabliity on a test set is infeasible for both
the TRBM and the RTRBM. We provide the code for our experirmém{URL].



Figure 3: This figure shows the receptive fields of the first B&lén units of the RTRBM on the
left, and the corresponding hidden-to-hidden weights betwthese units on the right: tftl row on
the right corresponds to thiéh receptive field on the left, when counted left-to-righidéen units
18 and 19 exhibit unusually strong hidden-to-hidden cotioes; they are also the ones with the
weakest visible-hidden connections, which effectiveljkasathem belong to another hidden layer.

5.1 Videosof bouncing balls

We used a dataset consisting of videos of 3 balls bouncingomxa The videos are of length 100
and of resolution 3R30. Each training example is synthetically generated, smaioing sequence
is seen twice by the model which means that overfitting is Iighlikely. The task is to learn to
generate videos at the pixel level. This problem is higheatisional, having 900 dimensions per
frame, and the RTRBM and the TRBM are given no prior knowledieut the nature of the task
(e.g., by convolutional weight matrices).

Both the RTRBM and the TRBM had 400 hidden units. Samples ftmse models are provided as
videos 1,2 (RTRBM) and videos 3,4 (TRBM). A sample trainiegjgence is given in video 5. All
the samples can be found in [URL]. The real-values in theogdere the conditional probabilities
of the pixels [13]. The RTRBM's samples are noticeably lretitan the TRBM’'s samples; a key
difference between these samples is that the balls prodycte TRBM moved in a random walk,
while those produced by the RTRBM moved in a more persistieatiion. An examination of the
visible to hidden connection weights of the RTRBM revealsimber of hidden units that are not
connected to visible units. These units have the most ahtd@en to hidden connections, which
must be used to propagate information through time. Inqaletr, these units are the only units that
do not have a strong self connection (il&’; ; is not large; see figure 3). No such separation of units
is found in the TRBM and all its hidden units have large visitd hidden connections.

5.2 Motion capturedata

We used a dataset that represents human motion captureydsggirences of joint angle, transla-
tions, and rotations of the base of the spine [14]. The tatailver of frames in the dataset set was
3000, from which the model learned on subsequences of I&fgtEach frame has 49 dimensions,
and both models have 200 hidden units. The data is real-dakethe TRBM and the RTRBM
were adapted to have Gaussian visible variables usingiequat The samples produced by the
RTRBM exhibit less sticking and foot-skate than those poediby the TRBM; samples from these
models are provided as videos 6,7 (RTRBM) and videos 8,9 (RBideo 10 is a sample training
sequence. Part of the Gaussian noise was removed in a magsoeibed in [14] in both models.

5.3 Detailsof thelearning procedures

Each problem was trained for 100,000 weight updates, wittomemtum of 0.9, where the gradi-
ent was normalized by the length of the sequence for eachegitacbmputation. The weights are
updated after computing the gradient on a single sequerite.l€Brning starts with C[3 for the
first 1000 weight updates, which is then switched to,&:r'he visible to hidden weight$)’, were
initialized with static C3 (without using the (R)TRBM learning rules) on 30 sequenaesich
resulted in 30 weight updates) with learning rate of 0.01 mednentum 0.9. These weights were
then given to the (R)TRBM learning procedure, where theniear rate was linearly reduced to-
wards 0. The weight®’’ and the biases were initialized with a sample from sphefalssian of
standard-deviation 0.005. For the bouncing balls problegriritial learning rate was 0.01, and for
the motion capture data it was 0.005.



6 Conclusions

In this paper we introduced the RTRBM, which is a probahdistodel as powerful as the intractable
TRBM that has an exact inference and an almost exact leapnmowedure. The common disadvan-
tage of the RTRBM is that it is a recurrent neural network jeetgf model known to have difficulties
learning to use its hidden units to their full potential [Blowever, this disadvantage is common to
many other probabilistic models, and it can be partiallg\aiited using techniques such as the long
short term memory RNN [6].
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