
On Deep Generative Models with Applications to Recognition

Marc’Aurelio Ranzato∗ Joshua Susskind†
∗ Department of Computer Science

University of Toronto
ranzato,vmnih,hinton@cs.toronto.edu

Volodymyr Mnih∗ Geoffrey Hinton∗
† Institute for Neural Computation

University of California, San Diego
josh@mplab.ucsd.edu

Abstract

The most popular way to use probabilistic models in
vision is first to extract some descriptors of small image
patches or object parts using well-engineered features, and
then to use statistical learning tools to model the dependen-
cies among these features and eventual labels. Learning
probabilistic models directly on the raw pixel values has
proved to be much more difficult and is typically only used
for regularizing discriminative methods. In this work, we
use one of the best, pixel-level, generative models of natu-
ral images – a gated MRF – as the lowest level of a deep
belief network (DBN) that has several hidden layers. We
show that the resulting DBN is very good at coping with
occlusion when predicting expression categories from face
images, and it can produce features that perform compa-
rably to SIFT descriptors for discriminating different types
of scene. The generative ability of the model also makes it
easy to see what information is captured and what is lost at
each level of representation.

1. Introduction and Previous Work
Over the past few years most of the research on object

and scene recognition has converged towards a particular
paradigm. Most methods [11] start by applying some well-
engineered features, like SIFT [15], HoG [4], SURF [1], or
PHoG [2], to describe patches of the image, and then they
aggregate these features at different spatial resolutions and
on different parts of the image to produce a feature vector
which is subsequently fed into a general purpose classifier
such as a Support Vector Machine (SVM). Although very
successful, these methods rely heavily on human design of
good patch descriptors and ways to aggregate them. Given
the large and growing amount of easily available image data
and continued advances in machine learning, it should be
possible to learn better patch descriptors and better ways of
aggregating them. This will be particularly significant for
data where human expertise is limited such as microscopic,
radiographic or hyper-spectral imagery. A major issue when

Figure 1. Outline of a deep generative model composed of three layers.
The input is a high-resolution image (or a large patch). The first layer
applies filters that tile the image with different offsets (squares of differ-
ent color are filters with different parameters). The filters of this layer are
learned on natural images. Afterwards, a second layer is added. This uses
as input the expectation of the first layer latent variables. This layer is
trained to fit the distribution of its input. The procedure is repeated again
for the third layer (and as many as desired). Because of the tiling, the
spatial resolution is greatly reduced at each layer, while each latent vari-
able increases its receptive field size as we go up in the hierarchy. After
training, inference of the top level representation is well approximated by
propagating the expectation of the latent variables given their input start-
ing from the input image (see dashed arrows), which is efficient since their
distribution is factorial. Generation is performed by first sampling from
the top layer, and then using the conditional over the input at each layer
(starting from the top layer) to back-project the samples in image space
(see continuous line arrows). Except at the first layer, all other latent vari-
ables are binary. Generation can be used to restore images and cope with
occlusion. The latent variables can be used as features for a subsequent
discriminative classifier trained to recognize objects.

learning end-to-end discriminative systems [12] is overfit-
ting, since there are millions of parameters that need to be
optimized and the amount of labeled data is seldom suffi-
cient to constrain so many parameters. Replicating local
filters is one very effective method of reducing the num-
ber of independent parameters and this has recently been
combined with the use of generative models to impose ad-
ditional constraints on the parameters by forcing them to be
good for generation (or reconstruction) as well as for recog-
nition [13, 9]. From a purely discriminative viewpoint, it
is a waste of capacity to model aspects of the image that
are not directly relevant to the discriminative goal. In prac-

2857

ranzato,vmnih,hinton@cs.toronto.edu
josh@mplab.ucsd.edu

tice, however, this waste is more than outweighed by the
fact that a subset of the high level features that are good for
generating images are also much more directly useful than
raw pixels for defining the boundaries between the classes
of interest. Learning features that constitute a good gen-
erative model is therefore a much better regularizer than
domain-independent terms such as L2 or L1 penalties on
the parameters or latent variable values. A computationally
efficient way to use generative modeling to regularize a dis-
criminative system is to start by learning a good, multi-layer
generative model of images. This creates layers of feature
detectors that capture the higher-order statistical structure
of the input domain. These features can then be discrim-
inatively fine-tuned to adjust the class boundaries without
requiring the discriminative learning to design good fea-
tures from scratch. The generative “pre-training” is particu-
larly efficient for DBNs and stacked auto-encoders because
it is possible to learn one layer of features at a time [7] and
the fact that this does not require labeled data is an added
bonus. For DBNs, there is also a guarantee that adding a
new layer, if done correctly, creates a model that has a better
variational lower bound on the log probability of the train-
ing data than the previous, shallower model [7]. Slightly
better performance can usually be achieved by combining
the generative and discriminative objective functions dur-
ing the fine-tuning stage [10]. We can interpret sparse cod-
ing methods [17], convolutional DBNs [13], many energy-
based models [9] and other related methods [23] as gener-
ative models used for regularization of an ultimately dis-
criminative system. The question we address in this paper
is whether it is a good idea to use a proper probabilistic
model of pixels to regularize a discriminative system, as
opposed to using a simpler algorithm that learns represen-
tations without attempting to fit a proper distribution to the
input images [17, 9]. In fact, learning a proper probabilis-
tic model is not the most popular choice, even among re-
searchers interested in end-to-end adaptive recognition sys-
tems, because learning a really good probabilistic models
of high-resolution images is a well-known open problem in
natural image statistics [20, 19, 18]. Learning a proper gen-
erative model is therefore seen as making an already dif-
ficult recognition problem even harder. In this work, we
show how to use a DBN [7] to improve one of the best
generative models of images, namely a gated Markov Ran-
dom Field (MRF) that uses one set of hidden variables to
create an image-specific model of the covariance structure
of the pixels and another set of hidden variables to model
the intensities of the pixels [18]. The DBN uses several
layers of Bernouilli hidden variables to model the statisti-
cal structure in the hidden activities of the gated MRF. By
replicating features in the lower layers it is possible to learn
a very good generative model of high-resolution images.
Section 2 reviews this model and the learning procedure.

Section 3 demonstrates the advantage of such a probabilis-
tic model over other methods based on engineered features
or learned features using non-probabilistic energy-based (or
loss-based) models. We show that our deep model is more
interpretable because we can easily visualize the state of
its internal representation at any given layer. We can also
use the model to draw samples which give an intuitive in-
terpretation of the learned structure. More quantitatively,
we then use the model to learn features analogous to SIFT
which are used to recognize scene categories. Finally, we
show that we can exploit the generative ability of the model
to predict missing pixels in occluded face images and ulti-
mately improve the recognition of facial expressions. These
experiments aim at demonstrating that the same deep model
performs comparably or even better than the state-of-the-art
on two very different datasets because it can fully adapt to
the input data. The deep model can also be seen as a flexible
framework to learn robust features, with the advantage that
it can naturally cope with ambiguities in the raw sensory in-
puts, like missing pixel values caused by occlusion, which
is per se a very important problem in vision.

2. The Model

The model is an extension of the early work on DBNs
by Hinton et al. [7]. DBNs were originally defined over bi-
nary variables and extensions to real-valued images initially
proved to be problematic. Here, the first layer modeling
continuous pixel values is a variant of the gated MRF called
mPoT [18], which is arguably the best parametric model of
natural images to date. The resulting system is a power-
ful, hierarchical generative model of images that can also
be made convolutional for data that is spatially stationary.

2.1. The First Layer

In this section, we review the mPoT model which is used
as the front-end for the DBNs described in this paper, refer-
ring the reader to our previous work [18] for further details.
We will start the discussion assuming the input is a small
vectorized image patch, denoted by x. The mPoT model is
a higher-order MRF with potentials defined over triplets of
variables: two input pixels and one latent variable, denoted
by hcj . Therefore, we can interpret the mPoT as establishing
a pairwise MRF with affinities that are gated or modulated
by the state of its latent variables hc. Moreover, the mPoT
has another set of latent variables, denoted by hm, whose
role is to bias the mean intensity of pixels. This is achieved
by using potentials defined over pairs of variables: one input
pixel and one latent variable hmk . The probability distribu-
tion of mPoT can be written as a Boltzmann distribution:
p(x,hm,hc) ∝ exp(−E(x,hm,hc)), which is completely

2858

determined once we specify its energy function E:

E(x,hm,hc) =
∑
j

[hcj(1 +
1

2
(CT

j x)2) + (1− γ) log hcj]

+
1

2
xTx−

∑
k

hmk (MT
k x + b1k). (1)

Here, C and M are two matrices of filters, b1 is a vector of
biases, and γ is a scalar. In general, each term in the sums
corresponds to a potential in the log domain. We assume
that hm is a vector of binary variables, while hc is a vector
of real and non-negative variables. Sampling these latent
variables given the input is straightforward since their pos-
terior distribution is factorial (because the energy is a sum
of terms each involving only one latent variable); in partic-
ular, we have:

p(hmk = 1|x) = σ(MT
k x + b1k) (2)

p(hcj |x) = Gamma(γ, 1 +
1

2
(CT

j x)2) (3)

where σ(x) = 1/(1 + exp(−x)). The expectation of the
posterior distribution of a latent variable hmk is equal to the
probability of taking the state equal to 1 as shown in eq. 2,
while the expectation of a latent variable hcj is:

E[hcj |x] =
γ

1 + 1
2 (CT

j x)2
(4)

and, therefore, is bounded in the interval (0, γ]. The condi-
tional distribution over the input pixels can be written as the
product of two Gaussians: one centered at zero with a full
covariance matrix that depends on hc (first line of eq. 1),
and another one that is spherical but with a mean that de-
pends on hm (second line of eq. 1). The resulting distribu-
tion is again a Gaussian with a full covariance matrix and
non-zero mean that depends on the state of both sets of la-
tent variables:

p(x|hm,hc) = N(Σ(Mhm),Σ), with
Σ = (Cdiag(hc)CT + I)−1 (5)

We will call the columns of matrixM the “mean filters” and
the columns of matrix C the “covariance filters”. In previ-
ous work [18] we showed that this model can be extended
to high-resolution images by dividing these filters into sets.
All filters within a set are applied to the same locations in
order to tile the image, akin to a normal convolution with
a stride equal to the filter diameter. Although this would
make the model scale to high-resolution images, it would
also introduce artifacts due to the non-overlapping nature
of the tiling. Therefore, we apply each set of filters using a
different, diagonal offset in order to minimize artifacts that
arise when many different local filters have the same bound-
ary. A schematic illustration is given in fig. 1 where squares

1st
location

2nd
location

channels

latent
variables
(1 channel)

y

same
location

1st
tile

input
channels

x

y

input variables
(2 channels) latent

variables
(2 channels)

input variables
(1 channel)

2nd
tile

1st
offset

2nd
offset

channel 1

channel 2 channel 1

channel 2

x

Figure 2. Toy illustration of how units are combined across layers.
Squares are filters, gray planes are channels and circles are latent vari-
ables. Left: illustration of how input channels are combined into a single
output channel. Input variables at the same spatial location across different
channels contribute to determine the state of the same latent variable. In-
put units falling into different tiles (without overlap) determine the state of
nearby units in the hidden layer (here, we have only two spatial locations).
Right: illustration of how filters that overlap with an offset contribute to
hidden units that are at the same output spatial location but in different
hidden channels. In practice, the deep model combines these two methods
at each layer to map the input channels into the output channels.

represent the locations where filters are applied. Filters that
belong to the same set have the same color in the figure and
we refer to the outputs of such a set as a channel. The for-
mulation of the model shown in eq. 1 remains unchanged,
except for an outer sum over spatial locations and a param-
eter sharing constraint between locations that differ by an
integer number of tile widths.

2.2. The Higher Layers

Let us consider the i-th layer of the deep model in isola-
tion. Let us assume that the input to that layer consists of a
binary vector denoted by hi−1. This is modeled by a binary
RBM which is also defined in terms of an energy function:

E(hi−1,hi) = −
∑
k

hik(W i
k

T
hi−1 + bik) (6)

where W i is the i-th layer parameter matrix and bi is the
i-th layer vector of biases. In a RBM, all input variables
are conditionally independent given the latent variables and
vice versa; so:

p(hik = 1|hi−1) = σ(W i
k

T
hi−1 + bik) (7)

p(hi−1
j = 1|hi) = σ(W i

jh
i) (8)

Therefore, in the higher layers both computing the poste-
rior distribution over the latent variables and computing the
conditional distribution over the input variables is very sim-
ple and it can be done in parallel. It will be useful for the
subsequent discussion to consider the case where the input
has multiple “channels” or feature maps. This case can be
treated as before by simply concatenating all channels into a
single long vector. It amounts to having filters in matrixW i

that are applied to all the different channels and that sum
their responses into the same latent variable. Finally, we
extend this multi-channel RBM model to high-resolution

2859

inputs in the same way we did in sec. 2.1. Filters (across
all channels) tile the input and they are divided into sets that
have different spatial offsets, see fig. 2 for a more detailed
illustration.

2.3. Learning and Inference

In their work, Hinton et al. [7] trained DBNs using a
greedy layer-wise procedure, proving that this method is
guaranteed to improve a lower bound on the log-likelihood
of the data. Here, we follow a similar procedure. First, we
train mPoT to fit the distribution of the input. Then, we use
mPoT to compute the expectation of the first layer latent
variables conditioned on the input training images. Second,
we use these expected values as input to train the second
layer of latent variables. Once the second layer is trained,
we use it to compute expectations of the second layer latent
variables conditioned on the second layer input to provide
inputs to the third layer, and so on. The goal of learning
is to find the parameters in the first layer (namely, C, M ,
γ and b1) and in the higher layers (namely, W i, bi for
i = 2, 3, . . .) that maximize the likelihood of the training
images. Training consists of:
1) Learning the first layer parameters by training mPoT us-
ing stochastic gradient ascent in the log likelihood [18];
here, we use Fast Persistent Contrastive Divergence
(FPCD) [22] to approximate the gradient of the log parti-
tion function w.r.t. the parameters.
2) Using eq. 2 and 4 we compute the conditional expecta-
tions of the first layer latent variables; since the second layer
expects binary units in the range [0, 1] we divide (the con-
ditional expectation of) hc by γ1 and we lay out all latent
variables as shown in fig. 2.
3) Training the parameters of the multi-channel, tiled, bi-
nary RBM at the second layer by stochastic gradient ascent
in the log-likelihood, approximating the gradient of the log
partition function with FPCD.
4) Using the conditional expectations of the second layer
latent variables, as before, to produce the input for the third
layer, etc.

Once the model has been trained it can be used to gen-
erate samples. The correct sampling procedure [7] consists
of generating a sample from the topmost layer, followed by
back-projection in image space through the chain of condi-
tional distributions at each layer. For instance, in the model
shown in fig. 1 one generates from the top third layer by run-
ning a Gibbs sampler that alternates between sampling h2

and h3. In order to draw from the deep model, we map these
third layer samples in image space through p(hm,hc|h2)
and then p(x|hm,hc). Finally, it turns out that a good ap-
proximation [7] to inference of the posterior distribution of

1The marginal histogram of the conditional expectation of hc turns out
to be well fitted by a Bernoulli distribution, with values that tend to be at
the extreme of the interval, i.e. fairly binary.

Figure 3. Top row: Representative samples generated by the gated MRF
after training on an unconstrained distribution of high-resolution natural
images. Samples have approximate resolution of 300x300 pixels. Bottom
row: Samples generated by a DBN with three hidden layers, whose first
hidden layer is the gated MRF used for the top row.

the latent variables in the deep model consists of propagat-
ing the input through the chain of posterior distributions
at each layer. Always referring to the model of fig. 1, we
need to compute p(hm,hc|x), followed by p(h2|hm,hc),
followed by p(h3|h2). Notice that all these distributions
are factorial and can be computed without any iteration (see
eq. 2, 4 and 7).

3. Experiments

There are three aspects of the deep generative model that
we want to demonstrate with our experiments. First, we
want to show that we can visualize what the model knows
about images by drawing samples from it and we can also
visualize what information about an image is preserved in
each hidden layer by reconstructing the image using the
chain of conditional distributions (that are Bernoulli at the
higher layers and Gaussian at the first layer, see eq. 8 and 5).
Second, we want to show that the deep model can be used
as a feature learning method by interpreting the latent vari-
ables as features that represent the image. These features
are efficiently computed through the chain of posterior dis-
tributions that are all factorial (see eq. 4 and 7). Third, we
want to show that the generative ability of the model can
be used to fill in occluded pixels in images before recogni-
tion. This is important for DBNs because if those pixels are
not filled in, the underlying assumptions that lead to an ap-
proximately factorial posterior in the first hidden layer are
seriously violated.

3.1. Generation

The most intuitive way to test a generative model is to
draw samples from it [25]. In previous work [18], we
showed that mPoT (which is the first layer in our deep

2860

generative model) was capable of generating more realistic
high-resolution images than other MRF models, see top row
of fig. 3. Samples drawn from mPoT exhibit strong struc-
ture with smooth regions separated by sharp edges while
other MRF models produce samples that lack any sort of
long range structure. Yet, these samples still look rather
artificial because the structure is fairly primitive and repeti-
tive, with little variation of gray-scale intensity. We expect
a deeper generative model to capture more interesting and
longer range correlations that should further improve gen-
eration.

In our first experiment, we trained a deep generative
model with two additional layers. The mPoT at the first
layer was trained using the set up described in [18]: 8x8
filters divided into four sets with each set tiling the image
with a diagonal offset of two pixels. Each set consists of
64 covariance filters and 16 mean filters. After training the
mPoT, we used the expected values of its latent variables
to train the next layer. The second hidden layer has filters
of size 3x3 that also tile the image with a diagonal offset
of one. There are 512 filters in each set. Finally, the third
layer has filters of size 2x2 and it uses a diagonal offset of
one; there are 2048 filters in each set. Every layer performs
spatial subsampling by a factor equal to the size of the fil-
ters used. This is compensated by an increase in the number
of channels which take contributions from the filters that are
applied with a different offset, see fig. 2. This implies that at
the top hidden layer each latent variable receives input from
a very large patch in the input image. With this choice of
filter sizes and strides, each unit at the topmost layer affects
a patch of size 70x70 pixels. Nearby units in the top layer
represent very large (overlapping) spatial neighborhoods in
the input image.

We trained the model on large patches (of size 238x238
pixels) picked at random locations from the training im-
ages. These images are representative of an unconstrained
distribution of 16,000 natural images and were taken from
ImageNet [5] 2. Each layer is trained for about 250,000
weight updates using mini-batches of size 32. All layers are
trained by using FPCD but, as training proceeds, the number
of Markov chain steps between weight updates is increased
from 1 to 100 at the topmost layer in order to obtain a better
approximation to the maximum likelihood gradient.

After training, we generate from the model by perform-
ing 100,000 steps of blocked Gibbs sampling in the topmost
RBM (using eq. 7 and 8) and then projecting the samples
down to image space as described in sec. 2.3. Representa-
tive samples are shown in bottom row of fig. 3. The extra
hidden layers do indeed make the samples look more “nat-
ural”: not only are there smooth regions and fairly sharp
boundaries, but also there is a generally increased variety

2Categories are: tree, dog, cat, vessel, office furniture, floor lamp, desk,
room, building, tower, bridge, fabric, shore, beach and crater.

Figure 4. Samples generated by a five-layer deep model trained on faces.
The top layer has only 128 binary latent variables and images have size
48x48 pixels.

of structures that can cover a large extent of the image. To
the best of our knowledge, these are the most realistic sam-
ples drawn from a model trained on generic high-resolution
natural images.

3.2. Feature Learning

In this experiment, we consider the 15 scene dataset [11]
that has 15 natural scene categories. The method of refer-
ence on this dataset was proposed by Lazebnik et al. [11]
and it can be summarized as follows: 1) densely compute
SIFT descriptors every 8 pixels on a regular grid, 2) per-
form K-Means clustering on the SIFT descriptors and re-
place each descriptor by the identity of its cluster. 3) com-
pute histograms of these identities over regions of the image
at different locations and spatial scales, and 4) use an SVM
with an intersection kernel for classification. Here, we make
use of a DBN to mimic this pipeline. We treat the expected
value of the latent variables as features to describe the in-
put image. We extract first and second layer features from
a regular grid with a stride equal to 8 pixels. We apply K-
Means to learn a dictionary with 1024 prototypes and then
assign each feature to its closest prototype. We compute
a spatial pyramid with 2 levels for the first layer features
and a spatial pyramid with 3 levels for the second layer fea-
tures. Finally, we concatenate the resulting representations
and train an SVM with intersection kernel for classification.
Lazebnik et al. [11] reported an accuracy of 81.4% using
SIFT while we report an accuracy of 81.2%, which is not
significantly different.

3.3. Recognition of Facial Expressions

In these experiments we study the recognition of facial
expressions under occlusion. We consider two datasets:
the Cohn-Kanade (CK) dataset [8] and the Toronto Face
Database (TFD) [21]. The CK dataset is a standard dataset
used for facial expression recognition. It contains 327 im-
ages of 127 subjects with 7 different facial expressions,
namely: anger, disgust, fear, happiness, sadness, surprise
and neutral. Although widely used, this dataset is too

2861

small for training our generative model. Therefore, we also
performed comparisons with the TFD, the largest publicly
available dataset of faces to date, created by merging to-
gether 30 pre-existing datasets [21]. The TFD has about
100,000 images that are unlabeled and more than 4,000 im-
ages that are labeled with the same 7 facial expressions as
CK. In both datasets, faces were preprocessed by: detec-
tion and alignment of faces using the Machine Perception
Toolbox [6], followed by down-sampling to a common res-
olution of 48x48 pixels. We choose to use these datasets
and to predict facial expressions under occlusion because
this is a particularly difficult problem: The expression is a
subtle property of faces that requires good representations
of detailed local features, which are easily disrupted by oc-
clusion.

Since the input images have fairly low resolution and the
statistics across the images are strongly non-stationary (be-
cause the faces have been aligned), we trained a deep model
without weight sharing. Specifically, the first layer uses fil-
ters of size 16x16. These are centered at grid-points that are
four pixels apart with 32 covariance filters and 16 mean fil-
ters at each grid-point. At the second layer we learn a fully-
connected RBM with 4096 latent variables each of which is
connected to all of the first layer features. Similarly, at the
third and fourth layer we learn fully connected RBMs with
1024 latent variables, and at the fifth layer we have an RBM
with 128 hidden units. The deep model was trained gener-
atively on the unlabeled images from the TFD dataset and
was not tuned to the particular labeled training instances
used for the discrimination task [17]. The discriminative
training consisted of training a linear multi-class logistic re-
gression classifier on the top level representation without
using back-propagation to jointly optimize the parameters
across all layers.

Fig. 4 shows samples randomly drawn from the genera-
tive model. Most samples resemble plausible faces of dif-
ferent individuals with a nice variety of facial expressions,
poses, and lighting conditions. Nearest neighbor analysis
reveals that these samples actually do not match any partic-
ular training data case, but are a blend of different instances.

In the first experiment, we train a linear classifier on the
features produced by each layer and we predict the facial
expression of the images in the labeled set. Each input im-
age is processed by subtracting from each pixel the mean
intensity in that image then dividing by the standard de-
viation of the pixels in that image. On the TFD dataset,
the features at successive hidden layers give accuracies of
81.6%, 82.1%, 82.5%, and 82.4%. Each higher layer is a
RBM with 4096 hidden units. These accuracies should be
compared to: 71.5% achieved by a linear classifier on the
raw pixels, 76.2% achieved by a Gaussian SVM on the raw
pixels, 74.6% achieved by a sparse coding method [24], and

Figure 5. Example of conditional generation performed by a four-layer
deep model trained on faces. Each column is a different example (not
used in the unsupervised training phase). The topmost row shows some
example images from the TFD dataset. The other rows show the same
images occluded by a synthetic mask (on the top) and their restoration
performed by the deep generative model (on the bottom). We consider
seven types of occlusion. Afterwards, we use the restored image to predict
the facial expression of test identities.

2862

Figure 6. An example of restoration of unseen images performed by prop-
agating the input up to first, second, third, fourth layer, and again through
the four layers and re-circulating the input through the same model for ten
times.

80.2% achieved by the method proposed by Dailey et al. [3]
which employs a large Gabor filter bank followed by PCA
and a linear classifier, using cross-validation to select the
number of principal components. The latter method and its
variants [14] are considered a strong baseline in the liter-
ature. Similarly, on the CK dataset the best performance
was achieved at the third layer, but using only 1024 fea-
tures (since there are many fewer training samples in the CK
dataset less hidden units were used to reduce overfitting).
We reach an accuracy of 90.1% while a linear classifier on
the raw pixels achieves 83.8%, a Gaussian SVM 85.1%,
the sparse coding model 89.3%, and the Gabor-based ap-
proach [3] 88.3%. The performance of the sparse coding
model slightly decreases to 88.9% by using the deep model
features. These are average accuracies over 5 random train-
ing/test splits of the data with 80% of the images used for
training and the rest for test.

In the next experiment, we apply synthetic occlusions
only to the labeled images. The occlusions are shown in
fig. 5, they block: 1) eyes, 2) mouth, 3) right half, 4) bot-
tom half, 5) top half, 6) nose and 7) 70% of the pixels at
random. Before extracting the features, we use the model to
fill-in the missing pixels, assuming knowledge of where the
corruption occurs. In order to fill-in we initialize the miss-
ing pixels at zero and propagate the occluded image through
the four layers using the sequence of posterior distributions.
Then we reconstruct from the top layer representation using
the sequence of conditional distributions in the generative
direction. The last step of the reconstruction consists of
filling in only the missing pixels by conditioning on both
the known pixels and the first-layer hidden variables which
gives a Gaussian distribution for the missing pixels [19].
This whole up and down process is repeated a few times
with the number of times being determined by the filling-
in performance on a validation set of unlabeled images.
Fig. 6 shows the filling process. The latent representation
in the higher layers is able to capture longer range structure
and it does a better job at filling-in the missing pixels3. Af-
ter missing pixels are imputed, the model is used to extract
features from the restored images as before.

The results reported on the top of fig. 7 and 8 show that
the deep model is generally more robust to these occlusions,
even compared to other methods that try to compensate for

3A similar experiment using a similar DBN was also reported by Lee
et al. [13] in fig. 6 of their paper. Our generation is more realistic partly
due to the better first layer modeling of mPoT.

Figure 7. Top: facial recognition accuracy on the TFD dataset when only
the test images are subject to 7 types of occlusion. Bottom: accuracy on
the TFD dataset when both training and test labeled images are occluded.

Figure 8. Top: facial recognition accuracy on the CK dataset when only
the test images are subject to occlusion. Bottom: accuracy on the CK
dataset when both training and test labeled images are occluded.

occlusion. In these figures, we compare to a Gaussian SVM
on the raw images, a Gaussian SVM on linearly interpolated
images and a Gabor-based approach [3] on linearly interpo-
lated images.

In the last experiment, we apply occlusions to both train-
ing and test images of the labeled set. After imputing the
pixels, we use the model to extract features from the re-

2863

stored images. As before, we use the features of the (re-
stored) training images to learn the parameters of a linear
classifier which is used for recognition. Results are reported
on the bottom of fig. 7 and 8. Since both training and test
features now come from the same distribution, the accuracy
improves for all models, with the deep model always yield-
ing the best overall performance. Here, in addition to the
previous methods we also compare against a sparse coding
approach on raw images [24], which is considered a robust
baseline method for face representation in the literature. In
order to make a fair comparison, we let the sparse coding
model know where the occlusions occur by removing the
missing pixels from the estimation problem. Since these
values are removed from both training and test images, we
compare to this method only when experimenting with oc-
clusions on both (the labeled) training and test sets.

4. Conclusions
We have shown how to learn a deep generative model

of images that uses a gated MRF as the front-end of a
DBN. This model is better than previous models at gener-
ating high-resolution natural images and the features that it
learns are good for discriminating facial expressions or dif-
ferent types of scene. By exploiting the generative ability
of the model, it is possible to deal with occluded regions
by filling them in. Training such a model is computation-
ally expensive, but as more data and computational power
become available the advantages of a fully adaptive end-to-
end probabilistic model of images over a hand-engineered
recognition system will only increase.

Acknowledgements
The authors would like to thank Ilya Sutskever for kindly pro-
viding data and for useful discussions. They also ackowledge
the use of the CUDAMat library [16] to expedite training by us-
ing GPUs. The research was funded by grants from NSERC,
CFI and CIFAR and by gifts from Google and Microsoft.

References
[1] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Surf:

Speeded up robust features. In Computer Vision and Image
Understanding, 2008. 2857

[2] A. Bosch, A. Zisserman, and X. Munoz. Representing shape
with a spatial pyramid kernel. In CIVR, 2007. 2857

[3] M. Dailey, G. Cottrell, R. Adolphs, and C. Padgett. Empath:
A neural network that categorizes facial expressions. Journal
of Cognitive Neuroscience, 14:1158–1173, 2002. 2863

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005. 2857

[5] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Im-
agenet: a large-scale hierarchical image database. In CVPR,
2009. 2861

[6] B. Fasel, I. Fortenberry and J. Movellan. A generative frame-
work for real-time object detection and classification. In CV
Image Understanding, 2005. 2862

[7] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learning al-
gorithm for deep belief nets. Neural Comp., 18:1527–1554,
2006. 2858, 2860

[8] T. Kanade, J. Cohn, and Y. Tian. Comprehensive database
for facial expression analysis. In Int. Conf. on Automatic
Face and Gesture Recognition, pages 46–53, 2000. 2861

[9] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun.
Learning invariant features through topographic filter maps.
In CVPR, 2009. 2857, 2858

[10] H. Larochelle and Y. Bengio. Classification using discrimi-
native restricted boltzmann machines. In ICML, 2008. 2858

[11] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, June 2006. 2857, 2861

[12] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 2857

[13] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolu-
tional deep belief networks for scalable unsupervised learn-
ing of hierarchical representations. In Proc. ICML, 2009.
2857, 2858, 2863

[14] G. Littlewort, M. Bartlett, I. Fasel, J. Susskind, and J. Movel-
lan. Dynamics of facial expression extracted automatically
from video. Computer Vision and Pattern Recognition Work-
shop, 5:80, 2004. 2863

[15] D. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 2004. 2857

[16] V. Mnih. Cudamat: a CUDA-based matrix class for python.
Technical Report UTML TR 2009-004, Dept. Computer Sci-
ence, Univ. of Toronto, 2009. 2864

[17] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. Self-
taught learning: Transfer learning from unlabeled data. In
ICML, 2007. 2858, 2862

[18] M. Ranzato, V. Mnih, and G. Hinton. Generating more real-
istic images using gated mrf’s. In NIPS, 2010. 2858, 2859,
2860, 2861

[19] U. Schmidt, Q. Gao, and S. Roth. A generative perspective
on mrfs in low-level vision. In CVPR, 2010. 2858, 2863

[20] E. Simoncelli. Statistical modeling of photographic images.
Handbook of Image and Video Processing, pages 431–441,
2005. 2858

[21] J. M. Susskind, A. K. Anderson, and G. E. Hinton. The
Toronto face database. Technical report, Toronto, ON,
Canada, 2010. 2861, 2862

[22] T. Tieleman and G. Hinton. Using fast weights to improve
persistent contrastive divergence. In ICML, 2009. 2860

[23] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol. Ex-
tracting and composing robust features with denoising au-
toencoders. In ICML, 2008. 2858

[24] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust
face recognition via sparse representation. In IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI,
2008. 2862, 2864

[25] S. Zhu and D. Mumford. Prior learning and gibbs reaction
diffusion. PAMI, pages 1236–1250, 1997. 2860

2864

