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Abstract

Learning a generative model of natural images is a use-
ful way of extracting features that capture interesting regu-
larities. Previous work on learning such models has focused
on methods in which the latent features are used to deter-
mine the mean and variance of each pixel independently, or
on methods in which the hidden units determine the covari-
ance matrix of a zero-mean Gaussian distribution. In this
work, we propose a probabilistic model that combines these
two approaches into a single framework. We represent each
image using one set of binary latent features that model the
image-specific covariance and a separate set that model the
mean. We show that this approach provides a probabilis-
tic framework for the widely used simple-cell complex-cell
architecture, it produces very realistic samples of natural
images and it extracts features that yield state-of-the-art
recognition accuracy on the challenging CIFAR 10 dataset.

1. Introduction

Many computer vision algorithms are based on proba-
bilistic models of natural images that are used to provide
sensible priors for tasks such as denoising, inpainting [28]
and segmentation [5]. Models of natural images are also
used to produce representations capturing features that can
be employed in higher level tasks such as object recogni-
tion [10, 32, 14]. Learning good representations of images,
as opposed to using engineered descriptors [21, 18, 3], is a
crucial step towards building general systems that can easily
adapt to different domains.

Devising models of natural images is challenging be-
cause images are continuous, high-dimensional and highly
structured. Recent models have tried to capture high-
order dependencies by using hierarchical models that ex-
tract highly non-linear representations of the input [13, 15].
In particular, deep learning methods construct hierarchies

composed of multiple layers by greedily training each layer
separately using unsupervised algorithms [10, 32, 17, 12].
These methods are very appealing because 1) they adapt
to the data, 2) they recursively build hierarchies using un-
supervised algorithms breaking up the difficult problem of
learning hierarchical non-linear systems into a sequence of
simpler learning tasks that use only unlabeled data, and 3)
they have demonstrated good performance on a variety of
domains, from handwritten character recognition to generic
object recognition [10, 17, 12]. In this paper we propose a
new module for deep learning that is specifically designed
to represent natural images well. We start by giving some
background and motivation for this approach.

1.1. Image Representations

The probabilistic model we are interested in has two sets
of random variables, those that are observed and those that
are latent and must be inferred. The former set consists of
the pixels of an image patch, also called visible units; an ex-
ample is given in fig. 1-A. The latter set consists of latent or
hidden units that we would like to infer efficiently from the
observation. The most efficient inference is achieved when
the posterior distribution over the latent variables is facto-
rial and simple to compute for each hidden unit, requiring
no iterative time-consuming approximation. In order to un-
derstand how well the model captures the structure of the
observed image, we can look at how well it reconstructs the
image using the conditional distribution over the pixel val-
ues specified by its latent representation.

There are two main approaches. The most popular ap-
proach uses the hidden units to predict the mean intensity
of each pixel independently from all the others. The con-
ditional distribution is typically Gaussian with a mean de-
pending on the configuration of the hiddens and a fixed
diagonal covariance matrix. Methods such as sparse cod-
ing [22], probabilistic PCA [2], Factor Analysis [8] and the
Gaussian RBM [4, 10, 1, 17, 16] use this approach. It is
conceptually simple but it does not model the strong depen-
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Figure 1. A) Input image patch. B) Reconstruction performed us-
ing only mean hiddens (top) and both mean and covariance hid-
dens (bottom) (that is multiplying the patch on the top by the
image-specific covariance determined by the covariance hiddens
that are inferred from the input image). C) Reconstructions pro-
duced by combining the correct image-specific covariance with
the incorrect, hand-specified pixel intensities shown in the top row.
Knowledge about pair-wise dependencies allows a blob of high or
low intensity to be spread out over the appropriate region.

dencies that occur between neighboring pixels, and there-
fore, it fails to capture one of the most important properties
of natural images.

The other approach employs hierarchical models [24, 13,
27] to capture these smoothness constraints. Pair-wise de-
pendencies between pixels are modeled by using a zero-
mean Gaussian distribution with an image-specific covari-
ance that depends on the configuration of the hidden units.
While able to capture smoothness between nearby pixels,
these models lack information about the mean intensity and
it is not obvious how to integrate that information and keep
inference efficient at the same time.

The different nature of these two approaches suggests
they might work well together providing a better representa-
tion of images. In this paper we propose a new probabilistic
model that combines these approaches into a single frame-
work. The model, dubbed mcRBM, has two sets of hidden
units, one that represents the pixel intensities and another
one that represents pair-wise dependencies between pixel
intensities. The model is defined in terms of a joint Boltz-
mann distribution over the visibles and the hiddens with no
connections between the hiddens, making inference very ef-
ficient since the hiddens are all independent given the visi-
bles. Also, the hidden units are binary and they can be used
as input to a standard binary Deep Belief Network (DBN)
yielding a simple method to build a hierarchical model of
natural images with many layers of non-linear features.

The intuition behind the proposed method is the follow-
ing. Suppose the model knows about pair-wise correlations
in the image. For instance, it knows that the pixels in the
lower part of the image in fig. 1-A are strongly correlated.
The model knows these pixels are likely to take the same
value, but it does not know which one. Then, very noisy
information about the values of the individual pixels in the
lower part of the image would be sufficient to reconstruct
the whole region quite well, since the model knows which

values can be smoothed. We can repeat the same argument
for the pixels in the top right corner and for those in the mid-
dle part of the image as well. Fig. 1-C illustrates this con-
cept. Images on the top show mean intensities as provided
to the model and the bottom row shows the corresponding
reconstructions. Information about intensity is propagated
over each region thanks to the pair-wise dependencies cap-
tured by the hidden units modeling the covariance. Fig. 1-B
shows the same using the actual mean intensity produced by
the mean hidden units (top). The reconstruction produced
by the model using the whole set of hidden units is very
close to the input image, as it can be seen in bottom part of
fig. 1-B.

In sec. 2 we describe the model and its properties. Sec. 3
explains how the parameters of the model are learned. Fi-
nally, sec. 4 will demonstrate the performance of the model
by learning features on natural image patches and using
these features to recognize object categories in the CIFAR
10 dataset [16].

2. Model
First we describe how we can map real-valued images

into binary features that capture only pair-wise dependen-
cies between the pixels. Then, we augment the model by
taking into account the predicted means of the pixel inten-
sities.

2.1. Modeling the Covariance

The probabilistic model is defined in terms of an energy
function E. We can derive the probability density function
from E as p(v) ∝ exp(−E(v)), where v ∈ RD is the
vectorized input image with D pixels. In order to capture
pair-wise interactions between pixel values we only need to
define E as a weighted sum of products between pairs of
visible units. The easiest way to achieve this and to guaran-
tee that the distribution is normalizable, is to define E as a
positive linear combination of squared filter outputs because
that makes the distribution Gaussian over the visibles. Let
us denote with C ∈ RD×F the matrix collecting F filters in
its columns, then E(v) = −0.5

∑
f Pff (

∑
i Cifvi)

2 with
P being a diagonal matrix with non-positive entries, de-
fines a zero-mean Gaussian distribution over v. We can also
modulate or gate each term in the sum by multiplying it by
a hidden unit state hck. The more general form of the energy
function becomes:

Ec(v,hc) = −1
2

F∑
f=1

N∑
k=1

Pfkh
c
k(

D∑
i=1

Cifvi)2 −
N∑
k=1

bckh
c
k (1)

where P ∈ RF×N is a matrix with non-positive entries,
N is the number of hidden units and bc is a vector of bi-
ases. Each term in the first sum consists of a triplet of vari-



Figure 2. Toy illustration of the model. Factors (the triangles) com-
pute the projection of the input image (whose pixels are denoted
by vi) with a set of filters (columns of matrix C). Their output is
squared because each factor is connected twice to the same image
with the same set of filters. The square outputs are sent to binary
hidden units after projection with a second layer matrix (matrix P )
that pools similar filters. Because the second layer matrix is non-
positive the binary hidden units use their “off” states to represent
abnormalities in the covariance structure of the data.

ables that are multiplied together: two visibles and one hid-
den. This is an example of a third-order Boltzmann Ma-
chine [29]. A given configuration of the hidden units hc,
that we call covariance hiddens, specifies the interaction be-
tween pairs of visibles. The number of covariance matrices
that the model can generate is exponential in the number
of hidden units since the representation is binary and dis-
tributed. Unlike general higher-order Boltzmann Machines,
the interaction between the visibles and the hiddens is fac-
torized to reduce the number of parameters. The system can
be represented as in fig. 2 where there are deterministic fac-
tors that are connected twice to the image with the same set
of filters and once to the hidden units. We call this model
cRBM because it is a Restricted Boltzmann Machine [4] that
models the covariance structure of images.

Since the energy adds terms that have only one hidden
unit the conditional distribution over the hiddens is factorial.
The conditional distribution over the k-th hidden unit is:

p(hck = 1 | v) = σ(
1
2

F∑
f=1

Pfk(
D∑
i=1

Cifvi)2 + bck) (2)

where σ(x) = 1/(1 + exp(−x)) is the logistic function.
The computation required for each hidden unit is consistent
with biologically inspired models of low level vision where
a simple-cell projects the input along a filter, and complex-
cells pool many rectified simple cell outputs together to
achieve a more invariant representation. The conditional
distribution over the visibles is a zero-mean Gaussian dis-
tribution with an inverse covariance matrix that depends on
hc:

Σ−1 = Cdiag(Phc)C ′ (3)

2.2. Modeling Mean and Covariance

In order to take into account the predicted mean intensi-
ties of the visible units we add an extra term to the energy
function: E(v,hc,hm) = Ec(v,hc) +Em(v,hm), where
Ec is defined in eq.1, and Em is defined as:

Em(v,hm) = −
M∑
j=1

D∑
i=1

Wijh
m
j vi −

M∑
j=1

bmj h
m
j (4)

where there are M hidden units hmj , dubbed mean hiddens,
with direct connections Wij to the visibles and biases bm.
The conditional distribution over the hiddens is:

p(hmj = 1 | v) = σ(
D∑
i=1

Wijvi + bmj ) (5)

while the conditional distribution over the visibles becomes:

p(v | hc,hm) ∼ N

Σ(
M∑
j=1

Wijh
m
j ), Σ

 (6)

where Σ is given in eq. 3. The mean of the conditional over
the visibles depends on both covariance and mean hidden
units, and the conditional over both sets of hiddens remains
factorial.

We can make the model more robust to large variations
in the contrast of the input image by computing not the inner
product but the cosine of the angle between input image and
filters. We perform this normalization only in the energy
function Ec. The overall energy becomes:

E(v,hc,hm) = −1
2

F∑
f=1

N∑
k=1

Pfkh
c
k(

D∑
i=1

Cif
‖Cf‖

vi
‖v‖

)2

−
N∑
k=1

bckh
c
k +

1
2

D∑
i=1

v2
i −

M∑
j=1

D∑
i=1

Wijh
m
j vi −

M∑
j=1

bmj h
m
j (7)

where Cf is the f -th column (filter) of matrix C. This
slight change makes the model more robust without affect-
ing the efficiency of inference, but it further complicates
the conditional distribution over the visibles, making it non-
Gaussian 1. Notice that we add a quadratic regularization
term to the energy to guarantee normalization of the dis-
tribution over the whole space (since the covariance term
would now be invariant to the norm of the input). We call
this model mcRBM because it is a RBM that models both
the mean and covariance structure of images.

1Indeed, we use the conditional distribution over the visibles only to
produce the demos in fig. 1 and 6. We approximated that by simply rescal-
ing the covariance of the Gaussian by the norm of the input image.



2.3. Analyzing the Model

We now give an intuition of how the model works; for
ease of presentation we consider the formulation of the en-
ergy function without normalization of filters and input.

Since the hidden units are binary, they can be easily in-
tegrated out and we can compute the analytical form of
the free energy F of a visible vector. The free energy is
used to compute the marginal distribution over the visibles,
p(v) ∝ exp(−F (v)). Disregarding the normalization, the
free energy is:

F (v) = −
N∑
k=1

log(1 + e
1
2

P
f Pfk(

P
i Cifvi)

2+bc
k)

−
M∑
j=1

log(1 + e
P

i Wijvi+b
m
j ) (8)

The marginal distribution over the input is a product of
N + M experts. In particular, each (covariance) expert in
the first sum is a mixture of a very broad Gaussian (a uni-
form distribution) and a more concentrated Gaussian (that
depends on C and P ). This is the simplest example of a
Gaussian Scale Mixture [33] that more generally combines
an infinite number of zero mean Gaussian distributions with
different variances. As a result each term in the first sum
corresponds to the energy of a fat-tailed distribution. The
filter output is expected to be zero most of the times, with
occasional large deviations from zero. We therefore expect
the filter outputs to be sparsely distributed and when learn-
ing on natural images we should expect the filters to look
like Gabor band-pass functions, which are well known to
produce such sparse marginal distributions. In other words,
each covariance expert represents a constraint that is almost
always satisfied. When there is a large violation of smooth-
ness in the direction of the corresponding filter then the con-
straint is turned off.

The covariance hidden units hc must also be sparse. As-
suming positive biases bc and recalling that P ≤ 0 and that
the filter outputs are mostly zero, the covariance hiddens
spend most of the time in the “on” state, and only rarely
will they take the “off” state, see eq. 2. The role of the co-
variance hidden units can be better understood by rewriting
the covariance energy function (without biases) as:

Ec(v,hc) = −1
2
v′[

N∑
k=1

hck(
F∑
f=1

PfkCfC
′
f )]v (9)

The strong violation of a constraint (i.e. a non-zero fil-
ter output) causes the corresponding covariance hidden unit
to become zero removing a term from the inverse covari-
ance matrix defined by the energy function. This term is a
weighted sum of rank one matrices and its removal makes
the resulting Gaussian distribution become less compressed

along the direction of the violated constraint. As a result
the model will relax the default smoothness assumption and
allow the pixels on opposite sides of an edge to have very
different values.

The interaction between covariance and mean hiddens
can be understood by analyzing the demo in fig. 1. After
training the model we used eq. 2 and 5 to compute the hid-
dens given the input image patch. At this point, the model
knows the correlation between every pair of pixels; e.g. it
knows that pixels in the upper right corner are strongly cor-
related. In fig. 1-B we show the reconstruction of the mean
hiddens before and after multiplying by the covariance pro-
duced by the covariance hiddens (see eq. 6). The recon-
struction of the mean hiddens is very blurry and blobby, but
when combined with the covariance it becomes very accu-
rate. Fig. 1-C shows the same when the reconstruction of
the mean hiddens is substituted by simple blobs. Knowl-
edge about a single pixel intensity is sufficient to fill out
whole regions thanks to the dependencies extracted by the
covariance hiddens.

3. Learning

Let us denote a generic parameter of the model with θ ∈
{C,P,bc,W,bm}. We learn the parameters by stochastic
gradient ascent in the log likelihood. We can write the like-
lihood in terms of the joint energy E or in terms of the free
energy F , see eq. 8 taking into account also the normaliza-
tion of input and filters in matrix C. Since exact sampling
from the conditional over the visibles is hard, we opt for
using the free energy. The update rule is:

θ ← θ + η
∂L

∂θ
, with

∂L

∂θ
=<

∂F

∂θ
>model − <

∂F

∂θ
>data (10)

where < > denotes expectation. While it is straightforward
to compute the value and the gradient of the free energy
with respect to θ, it is intractable to compute the expecta-
tions over the model distribution. We approximate that with
Contrastive Divergence [7] and Hybrid Monte Carlo [20].
With a similar set up to Hinton et al. [11] we approximate a
sample from the model by running a dynamical simulation
for 20 “leap-frog steps” starting at the current training sam-
ple and adjusting the step size to keep the rejection rate at
10%. To reach equilibrium it would be necessary to repeat-
edly discard the momentum, add a new random momentum,
and then run for more leap-frog steps. For contrastive diver-
gence learning however, we only need to add the random
momentum once at the initial data point.

The learning algorithm loops over batches of training
samples and: (1) it computes ∂F

∂θ at the training samples,
(2) it generates negative samples by running HMC for just
one set of 20 leap-frog steps, (3) it computes ∂F

∂θ at the neg-
ative samples, and (4) it updates the weights using eq. 10.



After training, inference is straightforward. The binary
latent features are all conditionally independent given the
observed visibles. The two sets of hiddens are found by
applying eq. 2 (adding the normalization of the input) and
eq. 5.

Once this model is trained, it can produce features to
train a second stage binary RBM [10], for instance. In this
case, we propagate real-valued probabilities instead of bi-
nary states. The process can be repeated for as many stages
as desired and it will yield abstract representations of data
good at capturing higher-order correlations.

4. Experiments
We first perform feature extraction on a dataset of natu-

ral image patches to gain understanding on how the model
works. Then, we report results on the CIFAR 10 dataset.
We recognized object categories by training a multinomial
logistic classifier on the features produced by the model and
achieved the best performance on this dataset to date.

In all of the experiments, images were pre-processed by
PCA whitening retaining 99% of the variance. The algo-
rithm was optimized by using stochastic gradient ascent
over batches of 128 samples, with a learning rate set to 0.15
for matrix C, to 0.01 for W , and 0.001 for matrix P and the
biases. Learning rates were slowly annealed during train-
ing. HMC was initialized at an observation with a random
momentum followed by 20 leap-frog steps. All parame-
ters were randomly initialized to small values. The columns
of matrix P were normalized to unit L1 norm, similarly to
Osindero et al. [24]. We always initialized P with the nega-
tive identity or by using a topography over the filter outputs
of matrix C. After the filters converged, we started updat-
ing P . After every update of P we set to zero those entries
that were positive in order to satisfy the non-positivity con-
straint.

4.1. Learning from Natural Images

We generated a dataset of 500,000 color images by pick-
ing, at random locations, patches of size 16x16 pixels from
images of the Berkeley segmentation dataset 2. We first
trained a model with 256 factors, 256 covariance hiddens
and 100 mean hiddens. P was initialized to the negative
identity. Fig. 3 shows the learned filters in matrix C. Most
filters learn to be balanced in the R, G, and B channels.
They could be described by localized, orientation-tuned Ga-
bor functions. The colored filters generally have lower spa-
tial frequency. The filters capturing the mean intensities
(columns of matrix W ) are shown in fig. 4. These features
are not localized, showing broad variations of intensity and
color. In order to visualize matrix P , we look at the filters
that are most strongly connected to each hidden unit. Fig. 5

2http://www.cs.berkeley.edu/projects/vision/grouping/segbench/

Figure 3. 256 filters (columns of matrix C) learned on color image
patches of size 16x16 pixels (best viewed in color).

Figure 4. 100 mean filters learned in matrix W (best viewed in
color).

Figure 5. Visualization of the pooling achieved by matrix P . Each
column shows the filters in C that are most strongly connected to a
covariance hidden unit (showing only a random subset of hiddens
and up to 10 filters). Filters are sorted according to the strength
of their connection and the contrast is also set proportional to that
strength.

shows a subset of those and it demonstrates that each hidden
unit pools filters that have patterns in similar location, orien-
tation, scale and with similar color. Each covariance hidden
unit is not only invariant to the sign of the input, because
filter outputs are squared, but also is invariant to more com-



Figure 6. Stochastic reconstructions using the conditional distribu-
tion over the visibles. Samples along the columns share the same
configuration of hidden units (best viewed in color).

plex local distortions since a hidden unit turns off whenever
any filter among those pooled becomes highly active.

The invariance properties of the latent representation can
be investigated also by looking at stochastic reconstructions
from the conditional distribution over the visibles. Given
some training samples, we infer both sets of hidden units.
Then, we generate samples from the conditional distribu-
tion over the visibles clamping the hiddens to the inferred
state. Fig. 6 shows samples generated using this procedure.
Different samples have slightly different color, different po-
sition of edges and different contrast. All samples in a col-
umn are associated to the same configuration of hiddens.
The hidden representation exhibits robustness to small dis-
tortions.

mcRBM is a probabilistic model of images and it can
also be assessed by the quality of its samples. We trained
a larger model with 1024 factors, 1024 covariance hiddens
and 576 mean hiddens. After training, we run HMC for a
very long time starting from a random image. Fig. 7 shows
that mcRBM is actually able to generate samples that look
remarkably similar to natural images, and qualitatively su-
perior to those generated by a Gaussian RBM (modeling
only the mean intensity) and by a cRBM (modeling only
pair-wise dependencies between pixels). Not only are there
noisy texture patches but also uniform patches and patches
with long elongated structures that cover the whole image.

4.2. Object Recognition on CIFAR 10

The CIFAR 10 dataset [16] is a hand-labeled subset of
a much larger dataset of 80 million tiny images [30], see
fig. 8. These images were downloaded from the web and
down-sampled to a very low resolution, just 32x32 pixels.
The CIFAR 10 subset has ten object categories, namely
airplane, car, bird, cat, deer, dog, frog, horse, ship, and

Figure 7. A) Gray-scale patches used during training. B), C) and
D) Samples drawn from mcRBM, GRBM and cRBM, respec-
tively. E) Color patches used during training. F) Samples drawn
from mcRBM trained on color patches.

Figure 8. Example of images in the CIFAR 10 dataset. Each col-
umn shows samples belonging to the same category.

truck. The training set has 5000 samples per class, the test
set has 1000 samples per class. The low resolution and



Method Accuracy %
1) mean (GRBM): 11025 59.7 (72.2)
2) cRBM (225 factors): 11025 63.6 (83.9)
3) cRBM (900 factors): 11025 64.7 (80.2)
4) mcRBM: 11025 68.2 (83.1)
5) mcRBM-DBN (11025-8192) 70.7 (85.4)
6) mcRBM-DBN (11025-8192-8192) 71.0 (83.6)
7) mcRBM-DBN (11025-8192-4096-1024-384) 59.8 (62.0)

Table 1. Test and training (in parenthesis) recognition accuracy
on the CIFAR 10 dataset varying the components in the model
(using only mean, only covariance and both), varying the depth
and feature dimensionality. The numbers in italics are the feature
dimensionality at each stage. The first stage maps the input into a
11025 dimensional representation.

Method Accuracy %
384 dimens. GIST 54.7
10,000 linear random projections 36.0
10K GRBM(*), 1 layer, ZCA’d images 59.6
10K GRBM(*), 1 layer 63.8
10K GRBM(*), 1layer with fine-tuning 64.8
10K GRBM-DBN(*), 2 layers 56.6
11025 mcRBM 1 layer, PCA’d images 68.2
8192 mcRBM-DBN, 3 layers, PCA’d images 71.0
384 mcRBM-DBN, 5 layers, PCA’d images 59.8

Table 2. Test recognition accuracy on the CIFAR 10 dataset pro-
duced by different methods. Features are fed to a multinomial lo-
gistic regression classifier for recognition. Results marked by (*)
are obtained from [16], our model is denoted by mcRBM.

extreme variability make recognition very difficult and a
traditional method based on features extracted at interest-
points is unlikely to work well. Moreover, extracting fea-
tures from such images using carefully engineered descrip-
tors like SIFT [18] or GIST [21] is also likely to be subop-
timal since these descriptors were designed to work well on
higher resolution images. Previous work on this dataset has
used GIST [31] and Gaussian RBM’s [16].

We use the following protocol. We train mcRBM on 8x8
color image patches sampled at random locations, and then
we apply the algorithm to extract features convolutionally
over the whole 32x32 image by extracting features on a
7x7 regularly spaced grid (stepping every 4 pixels). Then,
we use a multinomial logistic regression classifier to rec-
ognize the object category in the image. Since our model
is unsupervised, we train it on a set of two million images
from the TINY dataset that does not overlap with the la-
beled CIFAR 10 subset in order to further improve gener-
alization [9, 26, 25]. In the default set up we learn all pa-
rameters of the model, we use 81 filters in W to encode
the mean, 576 filters in C to encode covariance constraints
and we pool these filters into 144 hidden units through ma-
trix P . P is initialized with a two-dimensional topogra-

phy that takes 3x3 neighborhoods of filters with a stride
equal to 2. In total, at each location we extract 144+81=225
features. Therefore, we represent a 32x32 image with a
225x7x7=11025 dimensional descriptor.

Table 1 shows some interesting comparisons. First, we
assess whether it is best to model just the mean intensity, or
just the covariance or both in 1), 2) and 4). In order to make
a fair comparison we used the same feature dimensionality.
The covariance part of the model produces features that are
more discriminative, but modelling both mean and covari-
ance further improves generalization. In 2) and 3) we show
that increasing the number of filters in C while keeping the
same feature dimensionality (by pooling more with matrix
P ) also improves the performance. We can allow for a large
number of features as long as we pool later into a more com-
pact and invariant representation. Entries 4), 5) and 6) show
that adding an extra layer on the top (by training a binary
RBM on the 11025 dimensional feature) improves general-
ization. Using three stages and 8192 features we achieved
the best performance of 71.0%.

We also compared to the more compact 384 dimensional
representation produced by GIST and found that our fea-
tures are more discriminative, as shown in table 2. Previous
results using GRBM’s [16] reported an accuracy of 59.6%
using whitened data while we achieve 68.2%. Their result
improved to 64.8% by using unprocessed data and by fine-
tuning, but it did not improve by using a deeper model. Our
performance improves by adding other layers showing that
these features are more suitable for use in a DBN.

5. Related Work
Osindero and Hinton [23] use a type of RBM in which

the binary visible units have direct pairwise interactions that
are learned, but these interactions are not modulated by
the activities of hidden units: The hidden units only deter-
mine the effective biases of the visible units. The Product
of Student’s t (PoT) model [24] is also closely related to
ours because it describes and modulates pair-wise interac-
tions between real-valued pixels with hidden units. How-
ever, PoT does not model mean intensity and it maps real
valued images into Gamma distributed hidden units that are
more difficult to use in deep learning algorithms. Heess
et al. [6] proposed an extension of PoT to make the en-
ergy function more flexible and, in particular, to include
the mean intensity of pixels. However, in their model the
mean does not depend on hidden units but is a fixed pa-
rameter subject to learning. Our preliminary version of this
work [27] did not take into account the mean intensity of
the image and did not include the normalization of the in-
put in the energy function. Finally, factored higher-order
Boltzmann Machines were first introduced by Memisevic
and Hinton [19] to represent conditional distributions not
joint distributions as in this work.



6. Conclusions
Motivated by the need to capture both the intensities and

the relationships between the intensities in an image patch,
we proposed a new model, mcRBM, which maps real-
valued images into binary representations. Our experiments
demonstrate that these binary features achieve the best re-
ported accuracy on the challenging CIFAR 10 dataset. Un-
like other models, mcRBM can also generate very realistic
samples that have coherent and elongated structures.

In the future, we plan to extend mcRBM to large images
by using a Field of mcRBMs in which the tied weights are
all trained together. We also plan to use mcRBM for other
tasks, such as segmentation and denoising.
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