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Abstract

We view perceptual tasks such as vision and speech recognition
as inference problems where the goal is to estimate the posterior dis-
tribution over latent variables (e.g., depth in stereo vision) given the
sensory input. The recent flurry of research in independent compo-
nent analysis exemplifies the importance of inferring the continuous-
valued latent variables of input data. The latent variables found by
this method are linearly related to the input, but perception requires
nonlinear inferences such as classification and depth estimation. In
this paper, we present a unifying framework for stochastic neural net-
works with nonlinear latent variables. Nonlinear units are obtained
by passing the outputs of linear Gaussian units through various non-
linearities. We present a general variational method that maximizes a
lower bound on the likelihood of a training set and give results on two
visual feature extraction problems. We also show how the variational
method can be used for pattern classification and compare the perfor-
mance of these nonlinear networks with other methods on the problem
of handwritten digit recognition.

1 Introduction

There have been many proposals for unsupervised, multilayer neural
networks that contain a stochastic generative model and learn by adjust-
ing their parameters to maximize the likelihood of generating the observed
data. Two of the most tractable models of this kind are factor analysis
(Everitt 1984) and independent component analysis (Comon, Jutten and
Herault 1991; Bell and Sejnowski 1995; Amari, Cichocki and Yang 1996;
MacKay 1997).



1.1 Linear generative models

In factor analysis there is one hidden layer that contains fewer units than the
visible layer. In the generative model, the hidden units are driven by zero-
mean, unit-variance, independent Gaussian noise. The hidden units pro-
vide top-down input to the linear visible units via the generative weights
and each visible unit has its own level of added Gaussian noise. Given the
generative weights and the noise levels of the visible units, it is tractable to
compute the posterior distribution of the hidden activities that is induced
by an observed vector of visible activities. This posterior distribution is
a full covariance Gaussian whose mean depends on the visible activities.
Once this distribution has been computed it is straightforward to adjust the
generative weights to maximize the likelihood of the observed data using
either a gradient method or the expectation maximization (EM) algorithm
(Rubin and Thayer 1982). Unfortunately, factor analysis ignores all the sta-
tistical structure in the data that is not contained in the covariance matrix
and its hidden representations are linearly related to the data, so it is unable
to extract many of the hidden causes of the data that are important in tasks
such as vision and speech recognition.

In independent component analysis the generative model is still linear,
but the independent noise levels for the hidden units are non-Gaussian.
This makes it difficult to compute the full posterior distribution across the
hidden units given a visible vector. However, by using the same number
of hidden and visible units and by setting the noise levels of the visible
units to zero, it is possible to collapse the posterior distribution across the
hidden units to a point which is found by multiplying the visible activi-
ties by the inverse of the matrix of hidden-to-visible generative weights. To
maximize the likelihood of the data, the weights are adjusted to make the
posterior points have high log probability under the noise models of the
hidden units, whilst also keeping the determinant of the generative weight
matrix small so that probability density in the space of hidden activities gets
concentrated when it is mapped into the visible space. Unfortunately, inde-
pendent component analysis extracts components that are a linear function
of the data and it assumes the data is noise-free, so it too is unable to ex-
tract hidden causes that are nonlinearly related to observed, noisy data.
Recently, attempts have been made to enhance the representational capa-
bilities of independent component analysis by adding noise to the visible
units (Olshausen and Field 1996; Lewicki and Sejnowski 1998).

1.2 Very nonlinear generative models

An appealing approach to understanding how the cortex constructs models
of sensory data is to assume that it uses maximum likelihood to learn a hier-
archical generative model. For tasks such as vision and speech recognition,



the cortex probably requires distributed representations that are a nonlin-
ear function of the data and that allow noise at every level of the hierarchy.
Attempts at developing learning algorithms capable of constructing such
generative models have been less successful in practice than the simpler lin-
ear models. This is because it is hard to compute (or even to represent) the
posterior probability distribution across the hidden representations when
given a visible vector and a set of weights and noise variances.

The unsupervised version of the Boltzmann machine (Hinton and Se-
jnowski 1986) is a multilayer generative model which learns distributed
representations that are a nonlinear function of the data. It uses symmetri-
cally connected stochastic binary units and has a relatively simple learning
rule which follows the gradient of the log likelihood of the data under the
generative model. Unfortunately, to get this gradient it is necessary to per-
form Gibbs sampling in the hidden activities until they reach thermal equi-
librium with a data vector clamped on the visible units. This is very time
consuming and the problem is made even worse by the need to compute
derivatives of the partition function which requires the network to reach
thermal equilibrium with the visible units unclamped. The sampling noise
and the difficulty in reaching equilibrium in networks with large weights
make the learning algorithm painfully slow.

When binary stochastic units are connected in a directed acyclic graph
we get a “binary sigmoidal belief network” (Pearl 1988; Neal 1992). (Here,
“acyclic” means that there aren’t any closed paths when following edge di-
rections. There may be closed paths when the edge directions are ignored.)
The net input to each unit is given by a weighted sum of the activities of
the unit’s parents. Learning is easier in this network than in a Boltzmann
machine because there is no need to compute the derivative of a partition
function and the gradient of the log likelihood does not involve a difference
in sampled statistics. Most importantly, it is no longer necessary for the
Gibbs sampling to converge to thermal equilibrium before the weights are
adjusted. Using the analysis of EM provided by Neal and Hinton (1993), it
can be shown that on average the learning algorithm improves a bound on
the log probability of the data even when the Gibbs sampling is too brief to
get close to equilibrium (Hinton, Sallans and Ghahramani 1998).

There have been several attempts to avoid Gibbs sampling altogether
when fitting a sigmoidal belief network to data. (See (Frey 1998) for a re-
view of these methods.) They all rely on the idea that learning can still
improve a bound on the log likelihood of the data even when the poste-
rior distribution over hidden states is computed incorrectly. The stochastic
Helmholtz machine (Hinton et al. 1995) uses a separate, stochastic recog-
nition network to compute a quick and dirty approximation to a sample
from the posterior distribution over the hidden units when given a visible
vector. There is a very simple rule for learning both the generative weights
and the recognition weights, but the approximation produced by the recog-



nition network is often poor and the method of learning the recognition
weights is not guaranteed to improve it. The deterministic Helmholtz Ma-
chine (Dayan et al. 1995) makes even more restrictive assumptions than
the stochastic version about the probability distribution that is used to ap-
proximate the full posterior distribution over the binary hidden states when
given a data vector. It assumes that the approximating distribution can be
written as a product of separate probabilities for each hidden unit. It also
assumes that the approximating product distribution can be computed by
a deterministic recognition network in a single bottom-up pass. This latter
assumption is relaxed in variational approaches (Saul, Jaakkola and Jordan
1996; Jaakkola, Saul and Jordan 1996) which eliminate the separate recogni-
tion model and use the generative weights and numerical optimization to
find the set of probabilities that minimizes the asymmetric divergence from
the true posterior distribution.

1.3 Continuous sigmoidal belief networks

For real-valued data that comes from real physical processes, binary units
are often an inappropriate model because they fail to capture the approx-
imately linear structure of the data over small ranges. For example, very
small changes in the position, orientation, or scale of an object lead to linear
changes in the pixel intensities. One way to endow the linear Gaussian net-
works described above with representations that are nonlinear functions
of the data is to apply a smooth sigmoidal squashing function to the out-
put of each Gaussian before passing the activity down the network. The
nonlinear squashing function allows each unit to take on a variety of be-
haviors, ranging from nearly Gaussian to nearly binary. In (Frey 1997a) and
(Frey 1997b), it was shown that Markov chain Monte Carlo and a variational
method could be used to train small networks of these units. However, the
smoothness of the squashing function prevents units from placing proba-
bility mass on a single point, and so these units are not able to produce
activities exactly equal to zero. The ability of a network to set activities ex-
actly equal to zero is important for sparse representations where many units
do not participate in explaining an input pattern.

1.4 Piecewise linear belief networks

In an attempt to produce sparse distributed representations of real-valued
data, Hinton and Ghahramani (1997) investigated generative models com-
posed of multiple layers of rectified linear units. In the generative model,
each unit receives top-down input that is a linear function of the rectified
states in the layer above and it adds Gaussian noise to get its own real-



valued unrectified state,

T = wip + Z w;; f(x;) + noise, where f(z;) = {0 ',f 2 <0, (1)
ey zj ifz; >0,
and A; is the set of indices for the parents of unit ;. The output that a unit
sends to the layer below is equal to its unrectified state if it is positive but is
equal to 0 if it is negative.

Networks of these units can set the activities of some units exactly equal
to zero so that they do not participate in explaining the current input pat-
tern. Hinton and Ghahramani (1997) showed that Gibbs sampling was fea-
sible in such networks and that multilayer networks of rectified linear units
could learn to extract sparse hidden representations that were nonlinearly
related to images.

1.5 Nonlinear Gaussian belief networks

Linear generative models, binary sigmoidal belief networks, continuous
sigmoidal belief networks, and piecewise linear belief networks can all be
viewed as networks of Gaussian units that apply various nonlinearities
to their Gaussian states. The probability density function over the pre-
nonlinearity variables x = (z;,... ,xy) in such a nonlinear Gaussian belief
network (NLGBN) is
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where A; is the set of indices for the parents of unit: and ¢(-) is the standard
normal density function:
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v? is the variance of the Gaussian noise for unit 7 and f;(-) is the nonlin-
ear function for unit j. For example, some units may use a step function
(making them binary sigmoidal units with a cumulative Gaussian activa-
tion function), whereas other units may use the rectification function (mak-
ing them real-valued units that encourage sparse representations). We de-
fine fy(zo) = 1 so that w;, represents a constant bias for unit i in (2).

In this paper we generalize the variational method developed by Jaakkola
et al. (1996) for networks of binary units and show that it can be success-
fully applied to performing approximate inference and learning in nonlin-
ear Gaussian belief networks. The variational method can still be applied
when different types of nonlinearity are used in the same network, such
as networks of the kind described in (1998), where binary and linear units
come in pairs and the output of each linear unit is gated by its associated
binary unit.



2 Variational Expectation Maximization

A surprisingly simple variational technique can be used for inference and
learning in NLGBNSs. In this method, once some variables have been ob-
served, we postulate a simple parametric variational distribution ¢(-) over
the remaining unobserved variables. (The variational distribution ¢(-) is
separate from the generative distribution p(:).) A numerical optimization
method (e.g., conjugate gradients) is then used to adjust the variational pa-
rameters to bring ¢(-) as “close” to the true posterior as possible. We use
a cost function that not only measures “closeness” in the Kullback-Leibler
sense, but also bounds from below the log-likelihood of the input pattern.
This choice of cost function leads to an efficient generalized expectation
maximization learning algorithm, as described below.

2.1 A cost function that bounds the log-probability

Let V' be the set of indices of the observed variables for the current input
pattern, and let H be the set of indices of the unobserved variables for the
current input pattern, so that VU H = {1,..., N}. The variational bound
(Neal and Hinton 1993) is

F = (logp(x)) — (log ¢({zi}icn)) < logp({zi}tiev), (4)
where (-) indicates an expectation over the unobserved variables with re-
spect to ¢(-). It is easily shown that for unconstrained ¢(-), F' is maximized
by setting q({z;}ic) = p({x; }ien|{x:}icv) in Which case the bound in (4) is
tight. This gives exact probabilistic inference, whereas using a constrained
form for ¢(-) gives approximate probabilistic inference.

The variational distribution we consider here is a product of Gaussians:
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where yu; and o;, i € H are the variational parameters. By adjusting these
parameters, we can obtain an axis-aligned Gaussian approximation to the
true posterior distribution over the hidden unit inputs.

For this variational distribution, it turns out that F' can be expressed in
terms of the mean and variance at the output of each unit. Let M;(u, o) be
the mean output of unit i when the input is Gaussian noise with mean p

and variance o?:
Milp,o) = [ Zo(* 1) ). 6)

Let V;(u, o) be the variance at the output of unit i when the input is Gaussian
noise with mean ; and variance o?:

Vilno) = [ 2o(*

M) {f,(x) — M;(u, 0)}2dx. (7



We assume that these can be easily computed, closely approximated, or in
the case of V;(,-), bounded from above (the latter will give a new lower
bound on F). See App. C for these functions in the case of linear units,
binary units, rectified units, and sigmoidal units.

The variational bound (4) simplifies to!
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To make this formula concise, we have introduced dummy variational pa-
rameters for the observed variables: if z; is observed to have the value z},
we fix u; = xf and o; = 0.

For unit 7 in (8), the term in curly braces measures the mean squared
error under ¢(-) between y; and the input to unit i as given by its parents:
([ = D2 e a, wiifi(x5)]?). It is down-weighted by the model noise variance
vZ, since for larger noise variances, a particular mean squared prediction
error is less important.

2.2 Probabilistic inference

Variational inference consists of first fixing 1, = zf and 0; = 0,7 € V in (8)
and then maximizing F' with respect to ;; and logo?, i € H. (The optimiza-
tion for the variances is performed in the log-domain, since log o? is allowed
to go negative.) We use the conjugate gradient method to perform this op-
timization, although other techniques could be used (e.g., steepest descent
or possibly a covariant method (Amari 1985)). The derivatives of F' with
respect to ;; and logo?, i € H are given in App. A. After optimization, the
means and variances of the variational distribution represent the inference
statistics.

2.3 Learning

We bound the log-probability of an entire training set by F, which is equal
to the sum of the bounds for the individual training patterns. The varia-
tional expectation maximization algorithm based on F consists of iterating
the following two steps:

1To see how (logp(x)) simplifies, add and subtract both ;; and > jea; i Mj(pj,05)
in the numerator of the argument of ¢(:) in (2), so that (logp(x)) = -3, log(2nv?)/2 —
Sl = ] + (i = 2 e, wig Mj(pg, o)) + 3054, wig[Mj(pj,05) — fi(z;)])?)/2v;. The
cross-terms produced by the square vanish under the expectation.



e E-Step: Perform variational inference, by maximizing F with respect
to the sets of variational parameters corresponding to the different in-
put patterns.

e M-Step: Maximize F with respect to the model parameters (w.’s and
v.’s).

Notice that by maintaining sufficient statistics while scanning through the
training set in the E-Step, it is not necessary to store the sets of variational
parameters. These sufficient statistics are described in App. B. However, to
speed up the current E-Step, we initialize the set of variational parameters
to the set found at the end of the last E-Step for the same pattern.

It turns out that the M-Step can be performed very efficiently (see App. B
for details). Since the values of the model variances do not affect the values
of the weights that maximize F in (8), we first maximize F' with respect to
the weights. As pointed out by Jaakkola et al. for their binary Gaussian
belief networks, F' is quadratic in the weights, so we can use singular value
decomposition to solve for the weights exactly. Next, the optimal model
variances are computed directly.

2.4 Software

A set of UNIX programs that implement variational learning in NLGBNs
is available at http://www.cs.utoronto.ca/ ~frey . The software in-
cludes linear units, binary units, rectified units and sigmoidal units. New
types of unit can be added easily by providing the nonlinear function and
its derivatives.

3 Visual Feature Extraction

Approximate maximum likelihood estimation in latent variable models can
be used to learn latent structure that is perceptually significant (Hinton et al.
1995). In this section, we consider two unsupervised feature extraction tasks
and for each task we compare the representations learned by the variational
method applied to two types of NLGBN and the representations learned by
Gibbs sampling applied to a piece-wise linear NLGBN. If the hidden units
all use a piece-wise linear activation function, then Gibbs sampling can be
efficiently used for learning, as described in (Hinton and Ghahramani 1997).
One of the NLGBNs used for variational learning contains only binary hid-
den units of the type described in (Jaakkola, Saul and Jordan 1996). So,
in this section we see how the variational technique compares to another
learning method for continuous hidden units, as well as how the general-
ization of the variational method from binary to continuous units compares
to variational learning in binary networks.

8



3.1 The continuous bars problem

An important problem in vision is modeling surface edges in a way that is
consistent with physical constraints. The goal of the much simpler “bars
problem” (Dayan and Zemel 1995) is to learn without supervision to detect
bars of two orthogonal orientations and to model the constraint that each
image consists of bars of the same orientation. In (Hinton and Ghahramani
1997), a continuous form of this problem was presented. Each training im-
age is formed by first choosing between vertical and horizontal orientation
with equal probability. Then, each bar of that orientation is turned on with a
probability of 0.3 with an intensity that is drawn uniformly from [0, 5]. Eight
examples from a training set of 1000 6 x 6 images of this sort are shown in
Fig. 1a, where the area of each tiny white square indicates the pixel intensity.
A noisy version of this data in which unit-variance noise is added to each
pixel is shown in Fig. le (a black square indicates a negative pixel value).

For each of the two data sets we used 100 iterations of variational EM to
train a three-layer NLGBN with 1 binary top-layer unit, 16 rectified middle-
layer units and 36 linear visible bottom-layer units. (Using more units in
the hidden layers had little effect on the features extracted during learning.)
The resulting weights projecting from each of the 16 middle-layer units to
the 6 x 6 image are shown in Fig. 1b and Fig. 1f. Surprisingly, clearer bar fea-
tures were extracted from the noisy data. The weights (not shown) from the
top-layer binary unit to the middle-layer units tend to make the top-layer
unit active for one orientation and inactive for the other. The weights look
similar if a rectified unit is used at the top, but a binary unit properly repre-
sents the discrete choice between horizontal and vertical. Fig. 1c and Fig. 1g
show the weights learned by variational EM in a network where all of the
hidden units are binary. The individual bars are not properly extracted
for either the noise-free or noisy training data. The log-probability bounds
for the trained binary-rectified-linear NLGBNs are 27.4 nats and -60.3 nats,
whereas the bounds for the trained binary-binary-linear NLGBNSs are -48.3
nats and -65.6 nats.

We also trained a three-layer NLGBN with rectified hidden units using
Gibbs sampling. For this method, a learning rate must be chosen and we
used 0.1. 16 sweeps of Gibbs sampling were performed for each pattern
presentation before the parameters were adjusted on-line. The weights ob-
tained after 10 passes through each data set are shown in Fig. 1d and Fig. 1h.
The features for the noise-free data are not as clear as the ones extracted us-
ing the variational method. The features for the noisy data can be cleaned
up if some weight decay is used (Hinton and Ghahramani 1997). We did not
estimate the log-probability of the data in this case, since Gibbs sampling
does not readily provide a straight-forward way to obtain such estimates.
In our experiments, variational EM and the Gibbs sampling method took
roughly the same time. However, an on-line version of variational EM may
be faster.



Figure 1: Learning in NLGBNSs using the variational method and Gibbs sampling,
for noise-free (a) - (d) and noisy (e) - (h) bar patterns. (a) and (e): Training examples.
(b) and (f): Weights learned by the variational method with rectified units. (c) and
(9): Weights learned by the variational method with binary units. (d) and (h):
Weights learned by Gibbs sampling with rectified units.
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3.2 The continuous stereo disparity problem

Another vision problem where the latent variables are nonlinearly related
to the input is the estimation of depth from a stereo pair of sensory images.
In the simplified version of this problem presented in (Becker and Hinton
1992), the goal is to learn that the visual input consists of randomly posi-
tioned dots on a 1-dimensional surface placed at one of two depths.

In our experiments, 4 blurred dots (Gaussian functions) were randomly
positioned uniformly on the continuous interval [0, 12] and the brightness
of each dot (magnitude of the Gaussian) was drawn uniformly from [0, 5].
Next, either a left shift or a right shift was applied with equal probability
to obtain a second activity pattern. Finally, two sensory images containing
12 real values each were obtained by dividing each interval into 12 pixels
and assigning to each pixel the net activity within the pixel. Twelve exam-
ples from a training set of 1000 pairs of images obtained in this manner are
shown in Fig. 2a, where the images are positioned so that the relative shift is
evident. A noisy version of this data in which unit-variance Gaussian noise
is added to each sensor is shown in Fig. 2e.

The stereo disparity problem is much more difficult than the bars prob-
lem, since there is more overlap between the underlying features. To see
this, imagine a “multi-eyed” disparity problem in which there are as many
sensory images as there are 1-dimensional sensors. We expect the depth
inference to be easier in this case, since there is more evidence for each of
the two possible directions of shift. Imagine stacking the sensory images on
top of each other, so that each resulting square image will contain blurred
diagonal bars that are oriented either up and to the right or up and to the
left. Extracting disparity from this data is roughly equivalent to extracting
bar orientation in the data from the previous section.

For each of the noisy and noise-free data sets we used 100 iterations of
variational EM to train a three-layer NLGBN with 1 binary top-layer unit,
20 rectified middle-layer units, and 24 linear visible bottom-layer units. The
resulting weights projecting from each of the 20 middle-layer units to the
two sets of 12 pixels are shown in Fig. 2b and Fig. 2f. In both cases, the algo-
rithm has extracted features that are spatially local and represent each of the
two possible depths. Fig. 2c and Fig. 2g show the weights learned by vari-
ational EM in a network where all of the hidden units are binary. The log-
probability bounds for the trained binary-rectified-linear NLGBNs are 1.0
nats and -43.7 nats, whereas the bounds for the trained binary-binary-linear
NLGBNSs are -37.8 nats and -46.1 nats. The Gibbs sampling method with
rectified hidden units and using the same learning parameters as described
in the previous section produced the weight patterns shown in Fig. 2d and
Fig. 2h. For the noisy data, the features extracted by Gibbs sampling appear
to be slightly cleaner than those extracted by variational EM.

11
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Figure 2: Learning in NLGBNSs using the variational method and Gibbs sampling,
for noise-free (a) - (d) and noisy (e) - (h) stereo disparity patterns. (a) and (e):
Training examples. (b) and (f): Weights learned by the variational method with
rectified units. (c) and (g): Weights learned by the variational method with binary
units. (d) and (h): Weights learned by Gibbs sampling with rectified units.
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4 Handwriting Recognition

Variational inference and learning in NLGBNSs can be used to do real-valued
pattern classification by training one NLGBN on each class of data. If C; is
the event that a pattern comes from class i € {0, 1,... }, then the posterior
class probabilities are given by Bayes’ rule:

_ pl{nherICOP(C)
POl = 5 (rher PO ©

where P(C}) is the prior probability that a pattern comes from class j. The
likelihood p({x }rev|C;) for class j is approximated by the value of the vari-
ational bound obtained from a generalized E-step.

In this section, we report the performances of several completely auto-
mated learning procedures on the problem of recognizing grey-level 8 x 8
images of handwritten digits from the CEDAR CDROM 1 database of ZIP
codes (Hull 1994). The DELVE evaluation platform (Rasmussen et al. 1996)
was used to obtain fair comparisons, including levels of statistical signifi-
cance.

Fig. 3 shows the performances obtained using three different sizes of
training set for the following methods: k-nearest neighbors, with the neigh-
borhood for each class of data determined using leave-one-out cross vali-
dation; mixture of diagonal (axis-aligned) Gaussians, with the number of
Gaussians for each class determined using a validation set; factor analy-
sis, with the number of factors for each class determined using a valida-
tion set; 1- and 2-hidden layer NLGBNSs using rectified hidden units and
linear visible units, with the number of hidden units determined using a
validation set. For each of the latter four methods, the training set was first
split according to class and then 1/3 of the data was set aside for valida-
tion. Models with different complexities (number of Gaussians or number
of hidden units) were trained on the remaining 2/3 of the data using EM
or generalized EM until convergence. The model that gave the highest vali-
dation set log-probability (or log-probability bound) was further trained to
convergence on all of the data for the corresponding class. To prevent de-
generate over-fitting of pixels whose intensities happen to be single-valued
in the training set, the variances for the visible units were not allowed to
fall below 0.01 in the latter four methods. For each method, (9) was used to
classify each test pattern.

To obtain robust estimates of the relative performances of these methods
on the problem of handwritten digit recognition, we trained and tested each
method multiple times using disjoint training set - test set pairs. The origi-
nal data set of 11,000 8 x 8 images was partitioned into a set of 8000 images
used for training and a set of 3000 images used for testing. For training set
sizes of 1000 and 2000 patterns, 4 disjoint training set - test set pairs were
extracted from the two partitions (each test set had 750 images). For the
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Figure 3: Estimated error rates on grey-level handwritten digit recognition us-
ing different sizes of training set (1000, 2000 and 4000 images) for the following
methods: k-nearest neighbor, mixture of diagonal (axis-aligned) Gaussians, factor
analysis, and rectified Gaussian belief networks with one and two hidden layers.
For each size of training set, the error rates for the different methods are given in
the above order. The numbers in the boxes are p-values (in percent) for a paired
t-test on the null hypothesis that the corresponding two methods have identical
performance (a dot indicates the p-value was above 0.09).

training set size of 4000 patterns, 2 disjoint training set - test set pairs were
extracted (each test set had 1500 images).

In Fig. 3, each horizontal bar gives an estimate of the expected error rate
for a particular method using a particular training set size. The methods
are ordered from left to right for each training set size as follows: k-nearest
neighbors, mixture of Gaussians, factor analysis, 1-hidden layer NLGBN
and 2-hidden layer NLGBN. Each vertical bar gives an estimate of the er-
ror (one standard deviation) in the corresponding estimate of the expected
error rate. Integers in the boxes lying beneath the z-axis are p-values (in per-
cent) for a paired ¢-test that compares the performances of the correspond-
ing methods. Select a method from the list in the lower left-hand corner
of the figure and scan from left to right. Whenever you see a number, that
means another method has performed better than the method you selected,
with the given statistical significance. A low p-value indicates the difference in
the misclassification rates is very significant. More precisely, the p-value is
an estimate of the probability of obtaining a difference in performance that
is equal to or greater than the observed difference, given that we assume
the two methods actually perform equally well (the null hypothesis).

On the largest training set size, the 2-hidden layer NLGBN performs
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better than k-nearest neighbors (5% level), mixture of Gaussians (9% level),
factor analysis (5% level) and the 1-hidden layer NLGBN (16% level). The
performance of the NLGBN with 1 hidden layer is fairly indistinguishable
from the performance of factor analysis (p = 25%). However, on average
the NLGBN used only half as many hidden units as were used by factor
analysis, indicating that the NLGBN provides a more compact representa-
tion of the input. It is also interesting that this more compact representa-
tion emerged despite the fact that the posterior distribution over the hid-
den units in the NLGBN was approximated by an axis-aligned Gaussian
distribution, whereas in factor analysis the exact full-covariance posterior
distribution over the hidden units is used.

5 Conclusions

Results on visual feature extraction show that the variational technique can
extract perceptually significant continuous nonlinear latent structure. In
contrast with networks with continuous hidden variables, networks with
binary hidden variables do not extract spatially local features from the data.
Similarly, linear methods like factor analysis and independent component
analysis fail to extract spatially local features (Zoubin Ghahramani, per-
sonal communication). Results also show that the variational method pre-
sented in this paper is a viable alternative to Gibbs sampling in stochastic
neural networks with rectified hidden variables.

Advantages of the variational method over Gibbs sampling include the
absence of a learning rate and the ability to compute the log-probability
bound very efficiently. The latter is particularly useful for pattern classifiers
that train one network on each class of data and then classify a novel pattern
by picking the network that gives the highest estimate of the log-probability
(Frey 1998). Results show that for handwritten digit recogntion, there is a
regime of training set size in which NLGBNs perform better than k-nearest
neighbors, mixture of Gaussians and the linear factor analysis method.

The variational method may be made more powerful by making each
distribution ¢(z;) in (5) a mixture of Gaussians, by making the entire dis-
tribution ¢(-) a mixture of product-form distributions (Jaakkola and Jor-
dan 1998), or by grouping together small numbers of hidden variables over
which full-covariance Gaussians are fit during variational inference.

We considered three types of continuous nonlinear unit in this paper: bi-
nary, rectified, and sigmoidal. However, the variational method can easily
be extended to other types of units (such as “twinned” units (Hinton, Sal-
lans and Ghahramani 1998)) as long as the output mean function M (u, o)
and the output variance function V' (u, o) can be computed. To perform a
gradient-based E-step, the gradients of these functions with respect to their
arguments are also needed.
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Although we have not focussed our attention on implementations of the
variational algorithm that are suited to biology, we believe that with some
modifications they can be made so. The inference algorithm uses the log-
probability bound derivatives given in (12), and these are computed from
simple differences passed locally in the network. A partial M-Step can be
used for on-line learning, in which case the derivative of the bound for just
the current input pattern is followed. This derivative can be followed by
applying a delta-type rule based on locally computed differences.
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A The E-Step

Here, we show how to compute F' and its derivatives with respect to the
variational parameters. For the current set of variational parameters (in-
cluding the ones fixed by the current input pattern), we first compute for
each unit the current values of the mean output m; < M;(u;, 0;), the output
variance v; < V;(u;, 0;), and the mean net input

JEA;

Then, the bound on the log-probability of the input pattern is computed
from

- nl 2+ Z]EA wl]UJ]

N
2 N

+ Z %(1 + log 270} — %) — Z % log 2717, (11)

i€H v i=1

To perform a gradient-based optimization in the E-Step, the derivatives
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of the bound with respect to y; and log 0]2- for j € H are computed as follows:

2

OF  nj—py  OM;(uy05) ™ wij (1 ‘. — i) OVi(py,04) 3 Wi

D 2
O Vj oi i i s 'eCj v,
oF F_avj(ﬂja‘fj)zw_z?j_aM 115, 0;) Z 0_12'4_1
dlog o dlogo? et 2u? dlog s et v? v 2
(12)

where C; is the set of indices for the children of unit j. App. C gives expres-
sions for the derivatives of the nonlinear functions for binary units, rectified
units and sigmoidal units.

An E-Step produces one set of variational parameters Lét), oft), i=1,...,
N and the corresponding m\"”, v\, and n{", i = 1,..., N for each training
pattern, ¢t = 1,...,T. These are used to initialize the next E-Step.

B The M-Step

In the log-probability bound in (8), the model variances do not influence
the optimal weights. So, in the M-Step, we first maximize the total bound
with respect to the weights. Since the bound is quadratic in the weights,
we use singular value decomposition to solve for them exactly. In fact, the
weights associated with the input to each variable are decoupled from the
other weights in the network. That is, the value of w;; does not affect the
optimal value of wy, if i # k. Consequently, solving for the optimal weights
is a matter of solving N linear systems, where system ¢, 7 = 1,... , N, has
dimensionality equal to the number of parents for unit i, and once solved
gives the weights on the incoming connections to unit i.

Consider the input means 4", output means m.”, input variances o.",
output variances vft), and mean net inputs ngt), i =1,...,N, that are com-
puted for training pattern ¢ in the E-Step. It is not necessary to store all of
these sets for all T training patterns. However, they are used to compute

the following sufficient statistics:
1 0,0 3 1N ,0 1 (®),,()
ajkeTij my’, j%TZvj, CZJFTZ/LZ mj,
t
1 ONEN0
dj%fzt:( — ;) 2 e = Zo : (13)

forj=0,... , N,k=0,...,Nyandi=j+1,...,N. These can be accumu-
lated while scanning through the training set during the E-Step.

Once the sufficient statistics have been computed, we first solve for the
weights. The system of equations for the weights associated with the input
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to unit: is
Z ajrwik + bjwi; = ¢, J € A;, (14)
keA;

where i is fixed in this set of equations. We use singular value decomposi-
tion to solve for each set of weights. In fact, the system of equations for unit
i has dimensionality equal to the number of parents for unit ; (including its
bias). Finally, the model variances are computed from

l/]2 — d]' + €; + Z wjzkbk (15)

k)EAj

C M(u,0), V(u, o) and their derivatives for inter-
esting nonlinear functions

In this appendix, we give the output means and variances for some use-
ful types of units, including linear units, binary units, rectified units, and
sigmoidal units.

C.1 Linear units

Although this paper is about how to deal with nonlinear units, it is often
useful to include some units (e.g., visible units) that are linear:

f(z) == (16)

For this unit, the output mean and variance are

M(p,0) =p,  V(p,0)=0" (17)
The derivatives are
o dlogo?
8‘/(#7 0) av(lu’a U) 2
R Uit e/ - — g4, 1
o 0 dlog o2 ? (18)

C.2 Binary units

To obtain a stochastic binary unit, take

f(x):{o ifz <0, (19

1 ifz>0.
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For this unit, the output mean and variance are
wen=o(t). vin-o()i-e(t)]. e

where ®(-) is the cumulative Gaussian function:

Yy
o) = [ o(a)da. 21)
The derivatives are

o

OM (p,0) l(u) mWWJ):_ﬂﬁcg
’ 20 "\g/’

o - EQS 0log o2

S = o))

G TOIRIC)

C.3 Rectified units

A rectified unit is linear if its input exceeds 0, and outputs 0 otherwise:

f@):{o if 2 <0, 23

xz ifx>0.
For this unit, the output mean and variance are
_ K s
M(p, o) = /@(U) +0¢(0>,
(2 2 H AN 2
V() = (1 +0%)0(5) + oo (L) = M(u,0)*. (24)

The derivatives are

o) o) Mne) o (n)
GVé/;, o) _ 2#¢(§> + 20¢(§> - 2M(u,a)@(§),
Mo o) non(d

C.4 Sigmoidal units

The cumulative Gaussian squashing function,

f(z) = ¢(x), (26)



leads to closed-form expressions for the output mean and its derivatives.
We have not found a closed-form expression for the output variance, but it
can be approximately bounded by a new function V' (1, o), giving an upper
bound on the free energy. The output mean and variance bound are

M(u,a)=¢>(#),

V1+ o2
’ _ 1% o o?
The derivatives are
OM (u,o0) _ 1 ( o )
o VI+to2 \V1402/
OM(p,0)  po? ¢( [ )
dlogo? — 2(1+02)32"\ /T + o2/’
oV'(u,0) _ o’ 1 B I
on (02+ﬂ/2)\/1+02¢<\/1+02>[1 2(?(\/1—1—702”’

oV'(u, o o? T
;/lo(gUZ) T o2 +7r/2{02 +/72r/2q)<\/1/_l|_702> [1 a (I)(\/%ﬂ
30 f;z)s/ﬂﬁ( 1’102)[1‘2‘1’@%)]}- (28)
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