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Abstract Techniques for multidimensional scaling visualize objects as points in a low-
dimensional metric map. As a result, the visualizations are subject to the fundamental limi-
tations of metric spaces. These limitations prevent multidimensional scaling from faithfully
representing non-metric similarity data such as word associations or event co-occurrences.
In particular, multidimensional scaling cannot faithfully represent intransitive pairwise sim-
ilarities in a visualization, and it cannot faithfully visualize “central” objects. In this paper,
we present an extension of a recently proposed multidimensional scaling technique called
t-SNE. The extension aims to address the problems of traditional multidimensional scal-
ing techniques when these techniques are used to visualize non-metric similarities. The
new technique, called multiple maps t-SNE, alleviates these problems by constructing a
collection of maps that reveal complementary structure in the similarity data. We apply
multiple maps t-SNE to a large data set of word association data and to a data set of
NIPS co-authorships, demonstrating its ability to successfully visualize non-metric simi-
larities.
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1 Introduction

Classical scaling (Torgerson 1952) and other techniques for multidimensional scaling (e.g.,
Sammon 1969; Kruskal and Wish 1986; Tenenbaum et al. 2000; Belkin and Niyogi 2002;
Schölkopf and Smola 2002; Cayton and Dasgupta 2006; Lafon and Lee 2006) represent
similar objects, for instance, words that exhibit a certain semantic similarity, by nearby
points in a low-dimensional metric map. Over the last decade, research on multidimen-
sional scaling has focused on the development of more sophisticated similarity measure-
ments between objects using, for instance, geodesic or diffusion distances (Tenenbaum et
al. 2000; Lafon and Lee 2006) or kernels (Belkin and Niyogi 2002; Schölkopf et al. 1998;
Schölkopf and Smola 2002). Another line of research has focused on learning similarity
measurements between objects before performing classical scaling (Weinberger et al. 2005;
Globerson and Roweis 2007; Shaw and Jebara 2009; Lawrence 2011). However, these ap-
proaches do not address the fundamental limitations of multidimensional scaling that are due
to the characteristics of metric spaces (Tversky and Hutchinson 1986; Griffiths et al. 2007;
Jäkel et al. 2008). A metric space is a space in which the following four metric axioms hold:
(1) non-negativity of distances, (2) identity of indiscernibles, (3) symmetry of distances,
and (4) the triangle inequality. If we denote the distance between object A and object B by
d(A,B), the four metric axioms may be denoted by

d(A,B) ≥ 0,

d(A,B) = 0 iff A = B,

d(A,B) = d(B,A),

d(A,C) ≤ d(A,B) + d(B,C).

The metric axioms give rise to limitations of metric spaces in terms of the similarities that
can be represented in these spaces. We mention two such limitations: (1) the triangle in-
equality that holds in metric spaces induces transitivity of similarities and (2) the number of
points that can have the same point as their nearest neighbor is limited.1 As a result of these
limitations, multidimensional scaling cannot faithfully visualize similarity data that does
not obey the metric axioms in a low-dimensional visualization. The aim of this paper is to
construct visualizations that are not hampered by the two main limitations of metric spaces.
We first discuss the two limitations in more detail below, using visualization of semantic
similarities as an example.

The first limitation of metric spaces is due to the triangle inequality, which basically
states that if point A is close to point B and B is close to point C, A has to be close to C as
well. In practice, this constraint may well be violated by the implicit structure of similarity
data. Consider, for instance, the word tie, which has a semantic similarity to words such as
suit and tuxedo. In a low-dimensional metric map of the input objects, these three words
need to be close to each other. However, the word tie is ambiguous: it is also semantically
similar to words such as rope and knot, and should therefore be close to these words as well.
As a result, the words suit and rope will be shown close together in a low-dimensional map
of words even though the words exhibit very little similarity other than their association with
tie.

1This is not the only limitation on the neighborhood relations of points in a metric space. For instance, the
maximum number of equidistant points in a metric space is limited as well.
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The second limitation of low-dimensional metric maps is that only a limited number of
points can have the same point as their nearest neighbor. For instance, in a two-dimensional
space, at most five points can have the same point as their nearest neighbor (by arranging
them in a pentagon that is centered on the point). As a result, a low-dimensional metric
map constructed by multidimensional scaling cannot faithfully visualize the large number
of similarities of “central” objects with other objects. Similarity data may well contain such
“central” objects. For instance, word meanings are characterized by a high “centrality”, i.e.,
by the presence of words that are similar to a large portion of the other words (Tversky and
Hutchinson 1986; Steyvers and Tenenbaum 2005). For instance, large numbers of mammals
have a closer semantic similarity with the word mammal than with each other, and as a
result, these mammals would like to have the word mammal as their nearest neighbor in
a visualization. It is impossible to achieve this in a low-dimensional metric map of words
because only a limited number of points can have the same nearest neighbor.

The reader should note that, although we use word similarities as an example of non-
metric similarities throughout the paper, the same problems occur when visualizing many
other types of similarity data. Prominent examples of non-metric similarity data are co-
authorships of scientific researchers (Globerson et al. 2007), co-occurrences of species
(Schmidtlein et al. 2007), connectedness of Enron employees based on their incoming and
outgoing email traffic (Klimt and Yang 2004), similarities between shapes resulting from
shape context matching (Belongie et al. 2001), similarities of nodes in (scale-free) net-
works (Breitkreutz et al. 2003), etc.

In this paper, we present a multidimensional scaling technique that attempts to circum-
vent the two limitations of metric spaces described above when constructing data visual-
izations, i.e., that is capable of faithfully visualizing non-metric similarity data.2 Our tech-
nique is an extension of a recently proposed technique for multidimensional scaling, called
t-Distributed Stochastic Neighbor Embedding (t-SNE; van der Maaten and Hinton 2008).
The extension visualizes similarity data by constructing a collection of maps that together
represent the similarities between the objects (instead of constructing a single metric map).
The new technique, called multiple maps t-SNE, models each object by a point in every map
in the collection, and each of the points has an importance weight that indicates its impor-
tance in each map. The similarity of two objects under the model is given by a sum over
the similarities in all maps, where the similarity in a map depends on both the importance
weights of the two points and on their proximity. If two points are close together in a map
in which both points have a high importance weight, these points are considered to have a
high similarity, even if the points are very far apart in some of the other maps. This “disjunc-
tive” way of working with multiple maps is very different from the standard “conjunctive”
approach of using, say, a four-dimensional map and then treating the first two dimensions as
one map and the last two dimensions as another map (Roweis and Saul 2000). In the con-
junctive approach, a pair of points needs to be close together in all of the two-dimensional
maps in order to represent high similarity between the corresponding objects. In the disjunc-
tive approach, by contrast, high similarity in one map cannot be vetoed by low similarity in
another map.

The visualizations constructed by multiple maps t-SNE can faithfully represent non-
metric similarities between objects. For example, the word tie can be close to tuxedo in a
map in which knot has a low weight, and close to knot in another map in which tuxedo a low

2We note that our technique should not be confused with traditional techniques for non-metric multidimen-
sional scaling. These techniques aim to rank orders of pairwise distances. See, e.g., Borg and Groenen (2005)
for an extensive overview of non-metric multidimensional scaling.
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weight. This captures the similarity of tie to both tuxedo and knot without forcing tuxedo to
be close to knot. Moreover, multiple maps t-SNE can (to some extent) model central objects
in the data by exploiting the additional space that the multiple maps provide.

An earlier variant of multiple maps t-SNE was proposed in a conference paper by Cook
et al. (2007). However, the “aspect maps” model proposed in Cook et al. (2007) did not work
very well in practice. The technique presented in this paper works much better in practice,
as we show in Sect. 4.3. Moreover, the present paper presents an extensive experimental
evaluation of the new technique (the experimental evaluation presented by Cook et al. (2007)
is rather limited).

The outline of the remainder of the paper is follows. In Sect. 2, we briefly review multidi-
mensional scaling using t-SNE. Section 3 presents our extension of t-SNE to multiple maps.
In Sect. 4, we use multiple maps t-SNE to visualize a word association data set that contains
highly non-metric similarity data, and we compare the performance of multiple maps t-SNE
with the earlier “aspect maps” model. Section 5 presents experiments in which we use mul-
tiple maps t-SNE to visualize machine learning researchers based on their co-authorships of
papers published in conference proceedings. Section 7 discusses relations between multiple
maps t-SNE and alternative techniques that are designed to deal with non-metric similarities,
and it presents directions for future work.

2 t-Distributed stochastic neighbor embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a recently introduced technique
for multidimensional scaling (van der Maaten and Hinton 2008) that builds upon earlier
work on Stochastic Neighbor Embedding (SNE; Hinton and Roweis 2003; Cook et al. 2007;
Globerson et al. 2007). Its input typically consists of a collection of N high-dimensional
data vectors X = {x1, . . . ,xN }. In t-SNE, the pairwise distances δ2

ij = ‖xi − xj‖2 between
the high-dimensional data points xi and xj are converted into a joint probability distribution
P over all pairs of non-identical points. The matrix P has entries

pij = exp
(−δ2

ij /σ
)

∑
k

∑
l �=k exp

(−δ2
kl/σ

) , for ∀i∀j : i �= j.

Since we are only interested in pairwise similarities between points, t-SNE sets pii = 0.
Note that for similarity data, such as association or co-occurrence data, the input of t-SNE
already naturally takes the form of δij ’s or pij ’s.

The aim of t-SNE is to model each object by a point yi in a low-dimensional map in
such a way that the pairwise similarities pij are modeled as well as possible in the map. We
denote the map constructed by t-SNE by Y = {y1, . . . ,yN }. In order to evaluate the pairwise
similarities of objects in the map, t-SNE defines joint probabilities qij that measure the
similarity of the points yi and yj in the low-dimensional map, i.e., qij is the low-dimensional
counterpart of pij . The error between the input similarities pij and their counterparts in the
low-dimensional map qij is measured by means of the Kullback-Leibler divergence between
the distributions P and Q

C(Y ) = KL(P ||Q) =
∑

i

∑

j �=i

pij log
pij

qij

. (1)

The asymmetric nature of the Kullback-Leibler divergence leads the cost function to focus
on appropriately modeling the large pairwise similarities pij between the input objects. In
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other words, similar input objects really need to be close together in the low-dimensional
map in order to minimize the cost function C(Y ). As the cost function C(Y ) is gener-
ally non-convex, the minimization of C(Y ) is typically performed using a gradient descent
method.

The remaining question is how to define the joint probabilities qij that measure the simi-
larity between the points yi and yj in the low-dimensional map. A natural choice is to define
the qij ’s to be proportional to a Gaussian density, i.e., to define qij as

qij = exp(−‖yi − yj‖2)
∑

k

∑
l �=k exp(−‖yk − yl‖2)

, for ∀i∀j : i �= j,

and to define qii = 0. This definition of the pairwise similarities in the low-dimensional map
is used in SNE3 (Hinton and Roweis 2003), which typically produces fairly good results
(see Hinton and Roweis 2003 for some example visualizations). However, SNE suffers from
a crowding problem that is the result of the exponential volume difference between high
and low-dimensional spaces (van der Maaten and Hinton 2008). The crowding problem
can be best understood by an example. Suppose that we try to visualize data points that
are uniformly sampled from a ten-dimensional hypercube in a two-dimensional map. Also,
suppose that our cost function C(Y ) is successful in preserving as much of the local structure
as possible in the two-dimensional map. Consequently, pairs of points that are only slightly
similar have to be modeled too far apart in the map. Since there is a relatively large number
of pairs of points that are slightly similar, these points would all like to be closer together
in the map. As a result, these pairs of slightly similar points crush the low-dimensional map
together, which leads to the crowding problem.

The key property of t-SNE is that, in the low-dimensional map, the similarity between
two points is not proportional to a Gaussian density, but to that of a Student-t distribution
with a single degree of freedom (i.e., a Cauchy distribution)

qij = (1 + ‖yi − yj‖2)−1

∑
k

∑
l �=k(1 + ‖yk − yl‖2)−1

, for ∀i∀j : i �= j,

where, again, qii = 0. By using a heavy-tailed distribution to measure similarities in the low-
dimensional map, t-SNE allows points that are only slightly similar to be visualized much
further apart in the map. This typically leads to very good visualizations (see van der Maaten
and Hinton 2008 for example visualizations) compared to alternative techniques for mul-
tidimensional scaling. Since its introduction, t-SNE has been successfully applied to the
visualization of, among others, documents (Lacoste-Julien et al. 2009), optimization pro-
cedures (Erhan et al. 2010), breast cancer CADx data (Jamieson et al. 2010), linguistic
data (Mao et al. 2010), paintings (van der Maaten and Postma 2010), and data on mali-
cious software (Gashi et al. 2009; Thonnard et al. 2009). Various extensions and adap-
tations of t-SNE have been proposed (van der Maaten 2009; Carreira-Perpiñán 2010;
Venna et al. 2010; Villmann and Haase 2010; Yang et al. 2010).

3Indeed, the original work on SNE uses conditional probabilities pj |i and qj |i instead of joint probabilities
pij and qij . In practice, using conditional or joint probabilities leads to qualitatively similar results, but the
optimization of the joint model requires less computation (van der Maaten and Hinton 2008).
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3 Multiple maps t-SNE

The probabilistic nature of t-SNE allows for a natural extension to a multiple maps ver-
sion, which allows us to circumvent the limitations of metric spaces. Multiple maps t-SNE
constructs a collection of M maps, all of which contain N points (one for each of the N

input objects). In each map with index m, a point with index i has a so-called importance
weight π

(m)
i that measures the importance of point i in map m. Because of the probabilistic

interpretation of our model, we constrain4 the importance weights π
(m)
i to make sure that

∀i∀m : π
(m)
i ≥ 0 and ∀i : ∑

m π
(m)
i = 1. We redefine the joint probabilities qij , which rep-

resent the similarities between the objects with index i and j in the visualization, as the
weighted sum of the pairwise similarities between the points corresponding to input objects
i and j over all M maps. Mathematically, we redefine qij in the multiple maps t-SNE model
as

qij =
∑

m π
(m)
i π

(m)
j (1 + ‖y(m)

i − y(m)
j ‖2)−1

∑
k

∑
l �=k

∑
m′ π

(m′)
k π

(m′)
l (1 + ‖y(m′)

k − y(m′)
l ‖2)−1

, for ∀i∀j : i �= j,

where, again, we define qii = 0. The cost function of the multiple maps version of t-SNE is
still given by (1), however, it is now optimized with respect to the N × M low-dimensional
map points y(m)

i and with respect to the N × M importance weights π
(m)
i .

Because we require the importance weights π
(m)
i to be positive and we require the impor-

tance weights π
(m)
i for a single point i to sum up to 1 over all maps, direct optimization of

the cost function w.r.t. the parameters π
(m)
i is tedious. To circumvent this problem, we rep-

resent the importance weights π
(m)
i in terms of unconstrained weights w

(m)
i (using an idea

that is similar to that of softmax units) as follows

π
(m)
i = e−w

(m)
i

∑
m′ e−w

(m′)
i

.

By defining the importance weights in this way, they are guaranteed to be positive and
to sum up to 1. As a result, the minimization of the cost function can be performed with
respect to the unconstrained weights w

(m)
i . This significantly simplifies the optimization

of the cost function using gradient descent. The gradients for multiple maps t-SNE are
given in Appendix. The details of our gradient descent method are given in Sect. 4.1. Code
implementing multiple maps t-SNE is available from http://homepage.tudelft.nl/19j49/
multiplemaps.

In contrast to other multidimensional scaling techniques, multiple maps t-SNE can suc-
cessfully represent (1) intransitive similarities and (2) central objects in two-dimensional
visualizations. Below, we explain how multiple maps t-SNE can achieve this.

(1) Intransitive similarities Multiple maps t-SNE can appropriately model intransitive
similarities as follows. Assume we have three points A, B , and C that are embedded into
two maps (see Fig. 1(a)). Multiple maps t-SNE can give point A an importance weight of
1 in the first map, point B an importance weight of 1 in the second map, and point C an
importance weight of 1

2 in both maps, and it can give all three points nearby spatial loca-
tions in both maps. Then, the pairwise similarity between point A and C is roughly equal to

4We note here that we might just as well constrain the importance weights π
(m)
i

to sum up to 2 or 12:
multiplying the importance weights by a constant scalar value does not change the model in any way.

http://homepage.tudelft.nl/19j49/multiplemaps
http://homepage.tudelft.nl/19j49/multiplemaps
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Fig. 1 Illustration of how multiple maps t-SNE can visualize intransitive similarities and “central” objects

1 × 1
2 = 1

2 , and the pairwise similarity between point B and C is also roughly equal to 1
2 .

However, the pairwise similarity between point A and B is 0, because the points A and B

have no importance weight in each other’s maps. Hence, the visualization constructed by
multiple maps t-SNE does not satisfy the triangle inequality. As a result, it can visualize
intransitive similarities such as those in our introductory example with tie, tuxedo, and knot.

Each time we want to add an object that violates the triangle inequality to an existing map,
we need to put one copy of the object in the existing map and another copy in a different
map. This way of using multiple maps to violate the triangle inequality is not the same as
simply using different maps to visualize different natural clusters in the data. If the triangle
inequality is violated by three objects within the same cluster, it is necessary to put two of
them in at least two different maps. As a result, visualizations constructed by multiple maps
t-SNE typically contain a number of small clusters in each of the maps; clusters within one
map that are not adjacent may have little in common.

(2) High centrality Data with high centrality can be visualized appropriately by multiple
maps t-SNE, essentially, because multiple maps provide much more space than a single
map. We illustrate this by an example. Assume we have six objects that all have the same
“central” object A as their most similar object. In a single map, only five of the objects can
be modeled such that they have object A as their nearest neighbor. In contrast, when two
maps are available, the data can be modeled in such a way that all six objects have object
A as their nearest neighbor. For instance, this can be achieved by giving A an importance
weight of 1

2 in both maps, modeling the first three objects close to A in the first map with
importance weight 1, and modeling the remaining three objects close to A in the second
map with importance weight 1. This example is illustrated in Fig. 1(b). Clearly, the number
of points that can have the same point as their nearest neighbor depends on the number of
maps and on the dimensionality of the maps.

The reader should note that the multiple maps t-SNE model proposed here is not the
same as a mixture of t-SNE maps. Indeed, a mixture of maps would employ a single weight
per map to measure the importance of that map. Multiple maps t-SNE does not represent
the importance of a map,5 but instead, it represents the importance of each of the words
in each of the maps by employing a weight per word per map. Multiple maps t-SNE can
thus be viewed as a model in which the similarity representation of each object is modeled
by a mixture of similarities in each map (note that because the maps are typically low-
dimensional, the similarities within each map are constrained to be low-rank).

5Indeed, one could look at the sum of importance weights within a map
∑N

i=1 π
(m)
i

to obtain a measure of
the importance of map m.
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4 Visualizing word associations

In this section, we present experiments in which we use multiple maps t-SNE to visualize a
large data set of word associations. The setup of these experiments is discussed in Sect. 4.1.
Section 4.2 presents the results of the word association experiments. In Sect. 4.3, we com-
pare the performance of multiple maps t-SNE with that of the earlier “aspect maps” (Cook
et al. 2007).

4.1 Experimental setup

The word association data set we used in our experiments contains association data for
10,617 words, 5,019 of which were used as input stimuli (Nelson et al. 1998). The data set
contains a semantic similarity value for each pair of words that was computed as follows.
A large pool of human subjects were given specific words and asked to name associated
words. From the subjects’ responses, conditional probabilities pj |i are computed that mea-
sure the probability that a human subject produces word j in response to word i. The word
association data set contains numerous examples of intransitive semantic similarities, such
as our introductory example with tie, tuxedo, and rope, and it contains a number of very
“central” words that have semantic similarities with many other words in the data (Steyvers
and Tenenbaum 2005). As a result, the word association data is a suitable candidate to in-
vestigate to what extent multiple maps t-SNE can visualize non-metric similarity data.

In our experiments, we started by symmetrizing and re-normalizing6 the conditional
probabilities pj |i to obtain a joint distribution P that can be used as input into multiple
maps t-SNE, i.e., we set pij ∝ pj |i + pi|j . Subsequently, we used multiple maps t-SNE to
construct 40 maps in which we embed the 5,019 words that were used as input stimuli in
the collection of the data (i.e., the 5,019 words i for which we have both the conditional
probabilities pj |i and the probabilities pi|j ). The dimensionality of each map is set to 2.

We trained the model using 2,000 iterations of gradient descent, in which we employed
an additional momentum term. In other words, the gradient at each iteration is added to an
exponentially decaying sum of the gradients at previous iterations in order to determine the
changes in the parameters at each iteration of the gradient search. The momentum term is
employed in order to speed up the gradient search without creating the oscillations that are
caused by simply increasing the step size. We set the momentum term to 0.5 during the first
250 iterations, and to 0.8 afterwards. For the learning rate, we employed an adaptive learning
rate scheme that aims to speed up the optimization by using a different (variable) learning
rate for each parameter in the model (Jacobs 1988). In our experiments, we set the initial
value of the learning rate to 250 for the map coordinates y(m)

i , and to 100 for the weights
w

(m)
i . Moreover, we employ an approach called “early exaggeration” (van der Maaten and

Hinton 2008): in the first 50 iterations of the optimization, we multiply the joint proba-
bilities pij by 4. As a result, the pij ’s are too large to be appropriately modeled by their
corresponding qij ’s (which still sum up to 1). This encourages the optimization to model
the largest pij ’s by large qij ’s, thereby creating tight widely separated clusters in the maps
that facilitate the identification of an appropriate global organization of the maps. In pre-
liminary experiments, we found the approach to be fairly robust under changes in the opti-
mization parameters. Simpler optimization approaches in which the adaptive learning rate

6We could also have used a variant of multiple maps t-SNE that sums over divergences between N conditional
distributions, but this has no significant advantages and is computationally more expensive.
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and early exaggeration are omitted produce good results as well, but they converge slower.
Code implementing our gradient descent optimizer for multiple maps t-SNE is available
from http://homepage.tudelft.nl/19j49/multiplemaps.

We visualize the 40 word maps by showing them in an annotated scatter plot, in which
the size of a dot represents the importance weight of a word in a specific map. To prevent
the visualization from being too cluttered, words with an importance weight below 0.1 were
removed from the maps. To increase the legibility of the plots, the annotations in the scatter
plots were manually aligned to reduce the overlaps between annotations, while ensuring that
word labels are still near their corresponding point in the map.

4.2 Results

Figure 2 shows 6 of the 40 maps that were constructed by multiple maps t-SNE. The full
collection of 40 maps can be explored using a web-based interactive visualization tool that
implements basic functionalities such as zooming, panning, map search, etc.; this visualiza-
tion tool is described in more detail in Sect. 6. The reader should note that in the maps in
Fig. 2, two words are similar if they are close together in a map in which both words have a
high importance weight.

The results presented in Fig. 2 reveal that multiple maps t-SNE retains the similarity
structure of the association data fairly well. Because the data contains too many topics,
a single map does not generally visualize a single topic. Instead, most maps show two or
three main topics, as well as some very small local structures. For instance, map 4 visualizes
the topics sports and clothing, and it shows some small structures that are related to, for
instance, the Statue of Liberty: monument-statue-liberty-freedom. We note that the maps
have a certain “scale” of similarity that depends on the variance of the Student-t distribution
in the qij ’s. For instance, map 4 does not indicate that clothing is somehow related to the
Statue of Liberty, because the two topics are widely separated in the map.

The results reveal how multiple maps t-SNE circumvents7 the limitations of metric spaces
when constructing a visualization of non-metric similarity data. In particular, the maps re-
veal many of the intransitive similarities of words. For instance, the semantic similarity of
the word tie to words such as rope and knot is modeled in map 2, whereas in map 4, the se-
mantic similarity of the word tie with suit, tuxedo, and prom is modeled. In addition, map 5
reveals the semantic similarity of tie with words such as ribbon and bow. As a second exam-
ple, the semantic similarity of the word cheerleader with various kinds of sports is modeled
in map 4, whereas map 6 reveals the association of cheerleader with words such as gorgeous,
beauty, and sexy. A third example is the word monarchy, which is shown close to words that
are related to royalty such as king, queen, crown, and royal in map 3. In map 6, the word
monarchy is close to other governmental forms such as oligarchy, anarchy, democracy, and
republic.

4.3 Comparison with aspect maps

In earlier work, Cook et al. (2007) proposed a technique called “aspect maps” that is very
similar to multiple maps t-SNE, however, it (1) uses Gaussian instead of Student-t densities
in the definition of qij and (2) uses asymmetric similarities qj |i instead of our symmetric

7We should note that it is hard to find a good example of the visualization of “central” words without closely
studying all 40 maps. Hence, we focus on intransitive similarities in our discussion of the experimental results.

http://homepage.tudelft.nl/19j49/multiplemaps
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Fig. 2 Results of multiple maps t-SNE on the word association data set (a–b). Because of space limitations,
we only show 6 of the original 40 maps

similarities qij . We compare8 the performance of aspect maps and multiple maps t-SNE in
experiments on the 1,000 most frequent words in the association data. In our comparative

8We also performed preliminary experiments with an approach in which we use t-SNE to construct a rep-
resentation of, say, 20 dimensions, and use that representation to make 10 two-dimensional maps. Such an
approach has the problem that words that have no semantic similarity whatsoever can be close together in a
map (as long as these words are apart in some of the other dimensions, the original 20-dimensional represen-
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Fig. 2 Results of multiple maps t-SNE on the word association data set (c–d). Because of space limitations,
we only show 6 of the original 40 maps

experiments, we used exactly the same optimizer for both aspect maps and multiple maps
t-SNE (i.e., we used a gradient descent algorithm with momentum and early exaggeration).
To assess how well the input similarities are modeled by a multiple maps model, we mea-
sure its neighborhood preservation ratio: for each word i, we measure the ratio of the k

most similar words in the association data that are modeled as nearest neighbors under the

tation models the underlying structure correctly). This leads to maps that show completely arbitrary structure,
which is why do not show the results of such an approach here.
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Fig. 2 Results of multiple maps t-SNE on the word association data set (e–f). Because of space limitations,
we only show 6 of the original 40 maps

multiple maps model. In other words, for word i, we measure the ratio of words j with the
k highest qij -values that are among the words j with the k highest pij -values. We average
the neighborhood preservation ratio over all words i. Although it is unlikely that an observer
would go through a calculation similar to the computation of the qij -values, the neighbor-
hood preservation ratio does in some sense correspond to the way in which users may use
multiple maps models. Specifically, a typical observer will go through the maps to identify
the different types of similarities/relations that an object has. In other words, an observer
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Fig. 3 Neighborhood
preservation ratio for aspect maps
and multiple maps t-SNE on the
word association data as a
function of the number of
two-dimensional maps

tends to collect all similarities of an object;9 the neighborhood preservation ratio measures
to what extent these similarities are correct. Indeed, a measure similar to the neighborhood
preservation ratio has previously been proposed by Venna et al. (2010) as an appropriate
measure of how observers perceive single-map visualizations.

In Fig. 3, the neighborhood preservation ratio (measured using k = 1) for aspect maps
and multiple maps t-SNE is plotted as a function of the number of maps. The results reveal
that multiple maps t-SNE outperforms aspect maps by a large margin. Multiple maps t-SNE
gets more than half of all neighborhood relations right using just three two-dimensional
maps, whereas none of the aspect maps solutions achieves an neighborhood preservation
ratio of 0.5 or higher. Moreover, the results in Fig. 3 reveal that multiple maps t-SNE is ca-
pable of exploiting the additional space that becomes available when extra maps are added:
adding maps facilitates better preservation of neighborhood relations under the model. We
also measured neighborhood preservation ratios for k = 3,5, . . . ,17: the results of these
experiments were very similar, which is why we omitted them here.

The strong performance of multiple maps t-SNE in terms of neighborhood preservation
ratio compared to aspect maps can be largely explained by its ability to construct large
separations between different topics within the same map. As a result, multiple topics can
be visualized in a single map without distorting the neighborhood relations. Moreover, the
use of a heavy-tailed distribution to measure similarities in the maps tends to make gradient
descent easier (van der Maaten and Hinton 2008).

An interesting aspect of the neighborhood preservation ratio that is illustrated by the
graph in Fig. 3 is that it allows us to make an informed choice of the number of maps
to be used in the multiple maps visualization. The graph suggests that the neighborhood
preservation ratio has an asymptotic behavior: after the model has a particular number of
maps, adding new maps does not appear to lead to improved performance, suggesting that
(1) the new maps are representing similarity structure that was already modeled in some of
the other maps and/or (2) the new maps simply ’split up’ old maps into two subsets of objects

9To browse through all maps efficiently, the observer may employ interactive visualization tools. We discuss
such tools in more detail in Sect. 6.
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that are mostly unrelated. For the word association data, a collection of approximately 15
maps appears to provide sufficient space to model the main similarity structure in the data.

5 Visualizing NIPS co-authorships

In this section, we present the results of experiments in which we use multiple maps t-SNE
to visualize machine learning researchers based on their co-authorships of papers published
in the proceedings of the annual Neural Information Processing Systems (NIPS) conference.
The setup of the experiments is presented in Sect. 5.1. Section 5.2 presents the results of the
experiments.

5.1 Experimental setup

We collected data on the authors of all papers that appeared in NIPS volume 1 to 22 (i.e.,
between 1988 and 2009) from the NIPS website. Because we are interested in visualiz-
ing co-authorships of machine learning researchers, we preprocessed the data by removing
all single-author papers. We also eliminated relatively “unimportant” researchers from the
data by removing authors that only have a single paper in NIPS. After these preprocessing
steps,10 the data set contains 1,418 authors who together wrote 2,121 papers in NIPS. Each
of the authors has an average of 4.3 papers in the NIPS proceedings, and each of the 2,121
papers has an average of 2.5 authors. The data set is available for download from http://
homepage.tudelft.nl/19j49/multiplemaps. The data set contains a large number of intran-
sitive similarities, because researcher A may have co-authored one or more papers with
researcher B , and researcher B may have co-authored papers with researcher C, whilst re-
searcher A and C have never collaborated on a paper. This happens, in particular, when re-
searchers accept a position at a different institution during their career, or when researchers
change their research interests. The large number of intransitive similarities in the NIPS co-
authorship data set makes it a suitable candidate to investigate the performance of multiple
maps t-SNE.

We computed a co-authorship matrix from the preprocessed data and normalized it to
obtain conditional probabilities pj |i , which indicate the conditional probability that, given
that author i is an author of a NIPS paper, author j is also an author of that same NIPS
paper. As in the experiments with the word association data, we symmetrized the conditional
probabilities (i.e., we set pij ∝ pj |i + pi|j ), and we used the resulting joint probabilities
as input into multiple maps t-SNE. We used multiple maps t-SNE to construct 10 two-
dimensional maps. The parameters of the optimizer (i.e., learning rate, momentum, etc.)
were set to exactly the same values as in the word association experiments.

5.2 Results

We present 4 of the 10 resulting maps in Fig. 4. The font size of an author’s name in the
maps is proportional to the logarithm of his/her total number of papers in NIPS (i.e. the font
size indicates the importance of an author in the NIPS community), whereas the size of a

10We should note here that the parsing of author names is problematic, for instance, because there are some
authors who have the same last name and their first name starts with the same character too, or because the
spelling of authors’ first names may vary.

http://homepage.tudelft.nl/19j49/multiplemaps
http://homepage.tudelft.nl/19j49/multiplemaps
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Fig. 4 Results of multiple maps t-SNE on the NIPS co-authorship data set (map 1 and 2)

dot indicates the importance of the author in the map. The full collection of 10 maps can be
explored using the online visualization tool described in Sect. 6.

Similar to the results on the word association data presented in the previous section, each
of the maps constructed from the NIPS co-authorship data does not visualize a separate clus-
ter, i.e., there are no separate maps for, e.g., “neural networks researchers”, “Bayesians”, or
“manifold learners”. Instead, each map shows a few “cliques” of researchers who intensively
cooperate, as well as smaller structures of researchers who wrote only one or two papers to-
gether in NIPS. The NIPS author maps do successfully capture (part of) the non-metric
structure in the data. Importantly, the maps reveal researchers whose collaborators changed
over time, for instance, researchers who worked for quite some time in a specific research
lab and then moved to another research lab. For example, in map 4, Max Welling is shown
close to his collaborators in Toronto (where he did his post-doc), whereas he is shown close
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Fig. 4 Results of multiple maps t-SNE on the NIPS co-authorship data set (map 3 and 4)

to collaborators from UC Irvine (where he is currently a professor) in map 2. As a second
example, Martin Wainwright has collaborated extensively with both Eero Simoncelli and
Michael Jordan, but on different topics and at different times. He appears with Simoncelli in
map 3 and with Jordan in map 4 thus allowing their representations to remain far apart. As
a third example, Klaus-Robert Müller’s collaborations until 2000 (with, among others, Alex
Smola and Gunnar Rätsch) are visualized in map 3, whereas his collaborations after 2000
(for instance, with Benjamin Blankertz) are shown in map 1.

Figure 5 shows the neighborhood preservation ratio obtained by aspect maps and multi-
ple maps t-SNE for increasing numbers of maps. The results presented in the figure are in
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Fig. 5 Neighborhood
preservation ratio for aspect maps
and multiple maps t-SNE on the
NIPS co-authorship data as a
function of the number of
two-dimensional maps

line with those presented in Sect. 4.3: multiple maps t-SNE consistently outperforms aspect
maps. The results also suggest that appropriately visualizing NIPS authors require signifi-
cantly less maps than visualizing word association; approximately 5 maps appear to suffice
for modeling the co-authorship. Presumably, visualizing co-authorships requires fewer maps
than visualizing word associations because there are far fewer authors than words in the re-
spective data sets.

6 Interpretability

An important issue that arises when constructing a multiple maps t-SNE model with, say,
40 maps is the interpretability of such models. In particular, rapid navigation and interpre-
tation of the maps becomes increasingly problematic as the number of maps increases. To
address this problem, we envision a combination of multiple maps t-SNE with state-of-the-
art techniques for information visualization and visual analytics (Thomas and Cook 2005;
Keim et al. 2010). To illustrate the potential of such a combination, we developed a web-
based visualization that allows users to rapidly navigate large numbers of maps. The visual-
ization was developed using the D3 framework (Bostock et al. 2011); D3 is an information
visualization framework that facilitates binding arbitrary data (such as the multiple maps) to
a Document Object Model (DOM) and subsequently applying data-driven transformations
on the resulting document. The web-based visualizations of both the word associations and
of the NIPS authors are available online at http://homepage.tudelft.nl/19j49/multiplemaps.

The most typical way in which an observer employs multiple maps models is a by query-
ing for all occurrences of an object (such as a word or a NIPS author) in the collection of
maps, in order to discover the different types of relations of that object that are modeled in
the different maps. Interactive visualizations such as the one we developed facilitate such
queries through simple interactions. For instance, an observer may type the word in a search
box (or otherwise specify the object of interest) to display all maps in which that word
occurs (with sufficiently high importance weight) in a single screen; the maps are automat-
ically panned and zoomed in order to reveal the location of the word in that map. Another
interaction allows the observer to click on an object in the currently displayed map(s) in
order to obtain information about in which maps that object is modeled with a sufficiently
high importance weight; a second click shows all these maps in a single screen.

http://homepage.tudelft.nl/19j49/multiplemaps
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The web-based visualization we developed is merely meant as an illustration of how
navigating multiple maps may become practical. Indeed, the visualization may be extended
and improved in various ways. For instance, right-clicking on an object could reveal relevant
information about that object (such as the titles of all published NIPS papers by an author),
parts of the word association or co-authorship graph could be overlaid on the visualizations,
etc. When deploying a multiple maps visualization tool, the usability of that tool should be
investigated through user studies, as is common practice in the information visualization
community (Plaisant 2004).

7 Discussion

In Sects. 4 and 5, we presented the results of experiments that reveal that multiple maps
t-SNE can successfully visualize non-metric similarities, and in particular, intransitive sim-
ilarities. In this section, we discuss the relations of multiple maps t-SNE with other tech-
niques that can deal with non-metric data. Specifically, we discuss the similarities and dif-
ferences of multiple maps t-SNE with (1) techniques that consider the negative part of the
eigenspectrum of the Gram matrix and (2) topic models such as Latent Dirichlet Allocation
(LDA; Blei et al. 2003).

Multiple maps t-SNE has a similar goal to techniques that exploit the structure from the
eigenvectors that correspond to the negative eigenvalues of a (centered) pairwise distance
matrix (the so-called Gram matrix). The eigenvectors corresponding to negative eigenval-
ues contain structural information on the metric violations in the pairwise dissimilarity ma-
trix (Laub and Müller 2004; Laub et al. 2007). However, an approach that exploits the nega-
tive eigenspectrum has two main disadvantages compared to multiple maps t-SNE. First, in
contrast to multiple maps t-SNE, approaches that employ the negative part of the eigenspec-
trum can only construct two metric maps:11 a “positive map” and a “negative map”. Second,
it is hard to interpret the map that corresponds to the negative part of the eigenspectrum: the
map that corresponds to the positive part of the eigenspectrum is a metric approximation to
the similarities, and the negative map is constructed in such a way as to correct the errors in
the positive map. As a result, the negative map generally also contains a lot of noise.

Multiple maps t-SNE has interesting connections to topic models such as Latent Dirichlet
Allocation (LDA; Blei et al. 2003) and others (e.g., McCallum 1999; McCallum et al. 2004;
Rosen-Zvi et al. 2004). LDA is a generative model in which each word x is drawn from a
topic z which is in turn picked from a multinomial distribution over k topics. This distribu-
tion over topics θ is in turn drawn from a Dirichlet distribution. The key characteristic of
LDA is that the k topics are multinomial distributions over words.12 The topics can be used
for visualization of data, for instance, by listing the most probable words under each topic
in a table (see, e.g., Blei et al. 2003).

Under a topic model, two objects can be viewed as similar if they both have a high proba-
bility under at least one of the k topics (Griffiths et al. 2007). This provides topic models with
the same desirable properties that multiple maps t-SNE has (although topic models cannot

11We note it is possible to consider these two maps as a single hyperbolic space in which distance measures
can be defined that do not obey the triangle inequality (Pekalska and Duin 2005), however, this does not lead
to intuitive visualizations.
12The variable k is a parameter that sets the number of topics that is employed in the semantic represen-
tation. It may either be set by the user, or it may be learned from the data using non-parametric Bayesian
techniques (Blei et al. 2004; Teh et al. 2004).
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lay out the input objects in a map). In particular, a topic model is capable of modeling intran-
sitive semantic similarities in different topics. Analogous to our example with tie, tuxedo,
and knot, in topic models, tie and tuxedo could be given a high probability in one topic and
tie and knot could be given high probability in another topic, which would not make tuxedo
similar to knot under the model. In the same way, topic models can model central objects by
giving them a high probability in a large number of topics, which automatically gives rise
to asymmetric similarities. Indeed, the advantages of multiple maps t-SNE over traditional
multidimensional scaling techniques are comparable to the advantages of topic models over
semantic space models such as Latent Semantic Analysis (LSA; Landauer and Dumais 1997;
Hofmann 1999). The advantages of topic models over LSA are described in detail by,
e.g., Griffiths et al. (2007).

The main difference between topic models and multiple map t-SNE is that, in contrast to
topic models, multiple map t-SNE can (1) be trained directly on association or co-occurrence
data and (2) capture subtle semantic structure in the spatial structure of the maps. The first
capability may be relevant depending on the input data that is available.13 The merits of the
second capability are illustrated, for instance, in the ‘sports’ cluster in map 4 of Fig. 2, where
the subtle semantic difference between physical sports such as football, baseball, and volley-
bal, and mental sports such as chess, checkers, and poker is captured in the spatial structure
of the cluster (from left to right). Topic models cannot faithfully visualize such subtle differ-
ences because they only have two options: grouping the words together in a topic or not. In
addition, multiple map SNE has the advantage that it can model small semantic structures
that are not closely related to other semantic structures, such as the Popeye-spinach-cartoon
cluster in Fig. 2(c), without resorting to the construction of a new map or topic.

A minor disadvantage of multiple maps t-SNE is that it is not tailored to clustering the
concepts in the data, i.e., concepts that have a high importance weight in the same map
do not necessarily all correspond to the same cluster or topic. Multiple maps t-SNE can
thus not be viewed as combining techniques for finding overlapping clusters (Banerjee et
al. 2005; Heller and Ghahramani 2007) with techniques for embedding. The reason for this
lies in the structure of the cost function in (1): due to the asymmetry of the Kullback-Leibler
divergence, the cost function does not severely penalize cases in which dissimilar objects
(low pij ) both have a high importance weight in the same map (high qij ). We found in
preliminary experiments that, in cases in which it is desirable that maps only model a single
topic, it is better to minimize the inverse Kullback-Leibler divergence KL(Q||P ) instead of
the “normal” divergence KL(P ||Q). However, one should note that this may have a negative
influence on the spatial layout of the maps, since in terms of spatial layout of the maps, the
inverse Kullback-Leibler divergence will focus on modeling dissimilar objects far apart (i.e.,
focus on global similarity structure) instead of on modeling similar objects close together
(i.e., focus on local similarity structure).

A remaining problem is how to select the number of maps to use in a multiple maps
model. A similar problem occurs in clustering, where the number of clusters needs to
be set. A simple approach to address the model selection problem is by monitoring the
effect of adding maps on the neighborhood preservation ratio, and selecting the num-
ber of maps at which the neighborhood preservation ratio starts to decay. An alterna-
tive approach to the model selection problem, that recently has become popular in clus-
tering, is to monitor the stability of solutions (von Luxburg 2010). Such an approach

13We note that word similarities can be learned in an unsupervised way from text corpora, see, e.g., Lund et
al. (1995), Collobert and Weston (2008), Mnih and Hinton (2009).
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chooses the number of maps in a such way that the corresponding results are most sta-
ble under small perturbations of the input similarities. Indeed, an approach that auto-
matically adds extra maps during the optimization if this is required to model the data,
like in affinity propagation (Frey and Dueck 2007) or non-parametric Bayesian tech-
niques (Blei et al. 2004; Teh et al. 2004), may be more appealing. We have experi-
mented with such approaches, but hitherto, we have not found them to produce good re-
sults.

A possible direction for future work on multiple maps t-SNE is to investigate alternative
combinations of clustering and visualization, which introduce a penalty term that penalizes
“impurity” of the maps. For instance, one could force all points that have high importance
weight in the same map to be slightly similar by introducing a small background similarity
λ in the maps by setting

qij ∝
∑

m

[
π

(m)
i π

(m)
j

(
λ + (1 − λ)

(
1 + ‖y(m)

i − y(m)
j ‖2

)−1)]

with 0 ≤ λ ≤ 1. Other interesting directions for future work include variants of multiple
maps t-SNE in which the importance weights are not required to sum up to 1, but are only
required to be positive and smaller than 1. Using such a definition of the importance weights,
the qij ’s are still probabilities. Dropping the requirement that the importance weights sum
up to 1 may lead to visualizations that are better at modeling “central” objects in the data,
because the central objects can be given a high importance weight in many of the maps. As
we mainly use multiple maps to identify different aspects of the local structure around an
object, future work may also focus on developing objective functions or constraint sets that
explicitly aim at identifying such aspects of local structure (and that do not construct global
maps that contain all input objects).
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Appendix: Gradients of multiple maps t-SNE

Recall that multiple maps t-SNE tries to minimize the cost function

C(Y ) = KL(P ||Q) =
∑

i

∑

j �=i

pij log
pij

qij

,

where the pairwise similarities under the model qij are defined as
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where the importance weights π
(m)
i are expressed in terms of unconstrained weights w
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To simplify the notation of the gradients, we define
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The gradient of the cost function with respect to the low-dimensional map point y(m)
i is given

by
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where the gradient with respect to the squared Euclidean distance between y(m)
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map m is given by
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The gradient of the cost function with respect to the importance weights π
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where the gradient of the cost function with respect to the importance weights π
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