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Abstract

We describe a way of using multiple different types of similarity rela-
tionship to learn a low-dimensional embedding of a dataset. Our method
chooses different, possibly overlapping representations of similarity by
individually reweighting the dimensions of a common underlying latent
space. When applied to a single similarity relation that is based on Eu-
clidean distances between the input data points, the method reduces to
simple dimensionality reduction. If additional information is available
about the dataset or about subsets of it, we can use this information to
clean up or otherwise improve the embedding. We demonstrate the po-
tential usefulness of this form of semi-supervised dimensionality reduc-
tion on some simple examples.

1 Introduction

Finding a representation for data in a low-dimensional Euclidean space is useful both for
visualization and as prelude to other kinds of data analysis. The common goal underly-
ing the many different methods that accomplish this task (such as ISOMAP [1], LLE [2],
stochastic neighbor embedding [3] and others) is to extract the usually small number of
factors that are responsible for the variability in the data. In making the underlying factors
explicit, these methods help to focus on the kind of variability that is important and provide
representations that make it easier to interpret and manipulate the data in reasonable ways.

Most dimensionality reduction methods are unsupervised, so there is no way of guiding
the method towards modes of variability that are of particular interest to the user. There
is also no way of providing hints when the true underlying factors are too subtle to be
discovered by optimizing generic criteria such as maximization of modeled variance in
PCA, or preservation of local geometry in LLE. Both these difficulties can be alleviated by
allowing the user to provide more information than just the raw data points or a single set
of pairwise similarities between data points.

As an example consider images of faces. Nonlinear methods have been shown to find
embeddings that nicely reflect the variability in the data caused by variation in face identity,
pose, position, or lighting effects. However, it is not possible to tell these methods to
extract a particular single factor for the purpose of, say intelligent image manipulation or
pose identification, because the extracted factors are intermingled and may be represented
simultaneously across all latent space dimensions.

Here, we consider the problem of learning a latent representation for data based on knowl-



edge that is provided by a user in the form of several different similarity relations. Our
method, multiple relational embedding (MRE), finds an embedding that uses a single la-
tent data representation, but weights the available latent space dimensions differently to
allow the latent space to model the multiple different similarity relations. By labeling a
subset of the data according to the kind of variability one is interested in, one can en-
courage the model to reserve a subset of the latent dimensions for this kind of variability.
The model, in turn, returns a “handle” to that latent space in the form of a corresponding
learned latent space metric. Like stochastic neighbor embedding, MRE can also be derived
as a simplification of Linear Relational Embedding[4].

1.1 Related work

The problem of supplementing methods for unsupervised learning with “side-information”
in order to influence their solutions is not new and many different approaches have been
suggested. [5], for example, describes a way to inform a PCA model by encouraging it to
preserve a user-defined grouping structure; [6] consider the problem of extracting exactly
two different kinds of factors, which they denote “style” and “content”, by using bilinear
models; more recently, [7] and [8] took a quite different approach to informing a model.
They suggest pre-processing the input data by learning a metric in input space that makes
the data respect user defined grouping constraints.

Our approach differs from these and other methods in two basic ways. First, in all the
methods mentioned above, the side-information has to be defined in terms of equivalence
constraints. That is, a user needs to define a grouping structure for the input data by in-
forming the model which data-points belong together. Here, we consider a rather different
approach, where the side-information can be encoded in the form of similarity relations.
This allows arbitrary continuous degrees of freedom to constrain the low-dimensional em-
beddings. Second, our model can deal with several, possibly conflicting, kinds of side-
information. MRE dynamically “allocates” latent space dimensions to model different
user-provided similarity relations. So inconsistent relations are modeled in disjoint sub-
spaces, and consistent relations can share dimensions. This scheme of sharing the dimen-
sions of a common latent space is reminiscent of the INDSCAL method [9] that has been
popular in the psychometric literature.

A quite different way to extend unsupervised models has recently been introduced by [10]
and [11], where the authors propose ways to extract common factors that underlie two
or more different datasets, with possibly different dimensionalities. While these meth-
ods rely on a supervision signal containing information about correspondences between
data-points in different datasets, MRE can be used to discover correspondences between
different datasets using almost no pre-defined grouping constraints.

2 Multiple Relational Embedding

In the following we derive MRE as an extension to stochastic neighbor embedding (SNE).
Let X denote the matrix of latent space elements arranged column-wise, and let σ2 be some
real-valued neighborhood variance or “kernel bandwidth”. SNE finds a low-dimensional
representation for a set of input data points yi(i = 1, . . . , N) by first constructing a simi-
larity matrix P with entries

Pij :=
exp(− 1

σ2 ‖y
i − yj‖2)

∑

k exp(− 1
σ2 ‖yi − yk‖2)

(1)



and then minimizing (w.r.t. the set of latent space elements xi(i = 1, . . . , N)) the mismatch
between P and the corresponding latent similarity matrix Q(X) defined by

Qij(X) :=
exp(−‖xi − xj‖2)

∑

k exp(−‖xi − xk‖2)
. (2)

The (row-) normalization of both matrices arises from SNE’s probabilistic formulation in
which the (i, j)th entry of P and Q is interpreted as the probability that the ith data-point
will pick the jth point as its neighbor (in observable and latent space, respectively). The
mismatch is defined as the sum of Kullback-Leibler-divergences between the respective
rows [3].

Our goal is to extend SNE so that it learns latent data representations that not only approx-
imate the input space distances well, but also reflect additional characteristics of the input
data that one may be interested in. In order to accommodate these additional characteris-
tics, instead of defining a single similarity-matrix that is based on Euclidean distances in
data space, we define several matrices P c, (c = 1, . . . , C), each of which encodes some
known type of similarity of the data. Proximity in the Euclidean data-space is typically one
of the types of similarity that we use, though it can easily be omitted. The additional types
of similarity may reflect any information that the user has access to about any subsets of
the data provided the information can be expressed as a similarity matrix that is normalized
over the relevant subset of the data.

At first sight, a single latent data representation seems to be unsuitable to accommodate the
different, and possibly incompatible, properties encoded in a set of P c-matrices. Since our
goal, however, is to capture possibly overlapping relations, we do use a single latent space
and in addition we define a linear transformation Rc of the latent space for each of the C
different similarity-types that we provide as input. Note that this is equivalent to measuring
distances in latent space using a different Mahalanobis metric for each c corresponding to
the matrix RcT Rc .

In order to learn the transformations Rc from the data along with the set of latent represen-
tations X we consider the loss function

E(X) =
∑

c

Ec(X), (3)

where we define

Ec(X) :=
1

N

∑

i,j

P c
ij log

(

P c
ij

Qc
ij

)

and Qc
ij := Qij(R

cX). (4)

Note that in the case of C = 1, R1 = I (and fixed) and P 1 defined as in Eq. (1) this
function simplifies to the standard SNE objective function. One might consider weighting
the contribution of each similarity-type using some weighting factor λc. We found that
the solutions are rather robust with regard to different sets of λc and weighted all error
contributions equally in our experiments.

As indicated above, here we consider diagonal R-matrices only, which simply amounts to
using a rescaling factor for each latent space dimension. By allowing each type of similarity
to put a different scaling factor on each dimension the model allows similarity relations
that “overlap” to share dimensions. Completely unrelated or “orthogonal” relations can be
encoded by using disjoint sets of non-zero scaling factors.

The gradient of E(X) w.r.t. a single latent space element xl takes a similar form to the
gradient of the standard SNE objective function and is given by

∂E(X)

∂xl
=

2

N

∑

c

∑

i

(P c
il + P c

li − Qc
li − Qc

il) RcT
Rc(xl − xi), (5)
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Figure 1: Embedding of images of rotated objects. Left: SNE, right: MRE. Latent rep-
resentatives are colored on a gray-scale corresponding to angle of rotation in the original
images. The rightmost plots show entries on the diagonals of latent space transformations
REucl and RClass.

the gradient w.r.t. to a single entry of the diagonal of Rc reads

∂E(X)

∂Rc
ll

=
2

N
Rc

ll





∑

i

∑

j

(

P c
ij − Qc

ij

)

(xi
l − x

j
l )

2



 , (6)

where xi
l denotes the lth component of the ith latent representative.

As an illustrative example we ran MRE on a set of images from the Columbia object images
library (COIL) [12]. The dataset contains (128 × 128)-dimensional gray-scale images of
different objects that vary only by rotation, i.e. by a single degree of freedom. We took
three subsets of images depicting toy-cars, where each subset corresponds to one of three
different kinds of toy-cars, and embedded the first 30 images of each of these subsets in a
three-dimensional space. We used two similarity relations: The first, P Eucl, corresponds
to the standard SNE objective; the second, P Class, is defined as a block diagonal matrix
that contains homogeneous blocks of size 30 × 30 with entries ( 1

30
) and models class

membership, i.e. we informed the model using the information that images depicting the
same object class belong together.

We also ran standard SNE on the same dataset1. The results are depicted in figure 1. While
SNE’s unsupervised objective to preserve Euclidean distances leads to a representation
where class-membership is intermingled with variability caused by object rotation (left-
most plot), in the MRE approximation the contribution of class-membership is factored out
and represented in a separate dimension (next plot). This is also reflected in the entries
on the diagonal of the corresponding R-matrices, depicted in the two right-most plots.
RClass is responsible for representing class membership and can do so using just a single
dimension. REucl on the other hand makes use of all dimensions to some degree, reflecting
the fact that the overall variability in “pixel-space” depends on class-membership, as well
as on other factors (here mainly rotation). Note that with the variability according to class-

1For training we set σ
2 manually to 5 ·10

7 for both SNE and MRE and initialized all entries in X

and the diagonals of all R
c with small normally distributed values. In all experiments we minimized

the loss function defined in Eq. (3) using Carl Rasmussens’ matlab function “minimize” for 200
iterations (simple gradient descent worked equally well, but was much slower).



membership factored out, the remaining two dimensions capture the rotational degree of
freedom very cleanly.

2.1 Partial information

In many real world situations there might be side-information available only for a subset
of the data-points, because labelling a complete dataset could be too expensive or for other
reasons impossible. A partially labelled dataset can in that case still be used to provide
a hint about the kind of variability that one is interested in. In general, since the corre-
sponding transformation Rc provides a way to access the latent space that represents the
desired similarity-type, a partially labelled dataset can be used to perform a form of super-
vised feature extraction in which the labelled data is used to specify a kind of feature “by
example”. It is straightforward to modify the model to deal with partially labelled data.
For each type of similarity c that is known to hold for a subset containing N c examples,
the corresponding P c-matrix references only this subset of the complete dataset and is thus
an N c × N c-matrix. To keep the latent space elements not corresponding to this subset
unaffected by this error contribution, we can define for each c an index set I c containing
just the examples referenced by P c and rewrite the loss for that type of similarity as

Ec(X) :=
1

N c

∑

i,j∈Ic

P c
ij log

(

P c
ij

Qc
ij

)

. (7)

3 Experiments

3.1 Learning correspondences between image sets

In extending the experiment described in section 2 we trained MRE to discover correspon-
dences between sets of images, in this case with different dimensionalities. We picked 20
successive images from one object of the COIL dataset described above and 28 images
(112× 92 pixels) depicting a person under different viewing angles taken from the UMIST
dataset[13]. We chose this data in order to obtain two sets of images that vary in a “similar”
or related way. Note that, because the datasets have different dimensionalities, here it is not
possible to define a single relation describing Euclidean distance between all data-points.
Instead we constructed two relations P Coil and PUmist (for both we used Eq. (1) with σ2

set as in the previous experiment), with corresponding index-sets ICoil and IUmist contain-
ing the indices of the points in each of the two datasets. In addition we constructed one
class-membership relation in the same way as before and two identical relations P 1 and
P 2 that take the form of a 2 × 2-matrix filled with entries 1

2
. Each of the corresponding

index sets I1 and I2 points to two images (one from each dataset) that represent the end
points of the rotational degree of freedom, i.e. to the first and the last points if we sort the
data according to rotation (see figure 2, left plot). These similarity types are used to make
sure that the model properly aligns the representations of the two different datasets. Note
that the end points constitute the only supervision signal; we did not use any additional
information about the alignment of the two datasets.

After training a two-dimensional embedding2, we randomly picked latent representatives
of the COIL images and computed reconstructions of corresponding face images using a
kernel smoother (i.e. as a linear combination of the face images with coefficients based on
latent space distances). In order to factor out variability corresponding to class membership
we first multiplied all latent representatives by the inverse of Rclass. (Note that such a
strategy will in general blow up the latent space dimensions that do not represent class
membership, as the corresponding entries in Rclass may contain very small values. The

2Training was done using 500 iterations with a setup as in the previous experiment.



Figure 2: Face reconstructions by alignment. Left: Side-information in form of two image
pairs in correspondence. Right: Reconstructions of face images from randomly chosen cat
images.

kernel smoother consequently requires a very large kernel bandwidth, with the net effect
that the latent representation effectively collapses in the dimensions that correspond to class
membership – which is exactly what we want.) The reconstructions, depicted in the right
plot of figure 2, show that the model has captured the common mode of variability.

3.2 Supervised feature extraction

To investigate the ability of MRE to perform a form of “supervised feature extraction” we
used a dataset of synthetic face images that originally appeared in [1]. The face images
vary according to pose (two degrees of freedom) and according to the position of a lighting
source (one degree of freedom). The corresponding low-dimensional parameters are avail-
able for each data-point. We computed an embedding with the goal of obtaining features
that explicitly correspond to these different kinds of variability in the data.

We labelled a subset of 100 out of the total of 698 data-points with the three mentioned
degrees of freedom in the following way: After standardizing the pose and lighting param-
eters so that they were centered and had unit variance, we constructed three corresponding
similarity matrices (PPose1, PPose2, PLighting) for a randomly chosen subset of 100 points
using Eq. (1) and the three low-dimensional parameter sets as input data. In addition we
used a fourth similarity relation P Ink, corresponding to overall brightness or “amount of
ink”, by constructing for each image a corresponding feature equal to the sum of its pixel
intensities and then defining the similarity matrix as above. We set the bandwidth parame-
ter σ2 to 1.0 for all of these similarity-types3. In addition we constructed the standard SNE
relation PEucl (defined for all data-points) using Eq. (1) with σ2 set4 to 100.

We initialized the model as before and trained for 1000 iterations of ’minimize’ to find
an embedding in a four-dimensional space. Figure 3 (right plot) shows the learned latent
space metrics corresponding to the five similarity-types. Obviously, MRE devotes one
dimension to each of the four similarity-types, reflecting the fact that each of them describes
a single one-dimensional degree of freedom that is barely correlated with the others. Data-
space similarities in contrast are represented using all dimensions. The plots on the left
of figure 3 show the embedding of the 598 unlabelled data-points. The top plot shows the
embedding in the two dimensions in which the two “pose”-metrics take on their maximal
values, the bottom plot shows the dimensions in which the “lighting”- and “ink”-metric take
on their maximal values. The plots show that MRE generalizes over unlabeled data: In each
dimension the unlabeled data is clearly arranged according to the corresponding similarity
type, and is arranged rather randomly with respect to other similarity types. There are
a few correlations, in particular between the first pose- and the “ink”-parameter, that are
inherent in the dataset, i.e. the data does not vary entirely independently with respect to
these parameters. These correlations are also reflected in the slightly overlapping latent

3This is certainly not an optimal choice, but we found the solutions to be rather robust against
changes in the bandwidth, and this value worked fine.

4See previous footnote.
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Figure 3: Left: Embedding of faces images that were not informed about their low-
dimensional parameters. For a randomly chosen subset of these (marked with a circle),
the original images are shown next to their latent representatives. Right: Entries on the
diagonals of five latent space transformations.



space weight sets. MRE gets the pose-embedding wrong for a few very dark images that
are apparently too far away in the data space to be associated with the correct labeled data-
points.

4 Conclusions

We introduced a way to embed data in a low-dimensional space using a set of similarity
relations. Our experiments indicate that the informed feature extraction that this method fa-
cilitates will be most useful in cases where conventional dimensionality reduction methods
fail because of their completely unsupervised nature. Although we derived our approach
as an extension to SNE, it should be straightforward to apply the same idea to other dimen-
sionality reduction methods.
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