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Abstract

Directed graphical models with one layer of observed random variables
and one or more layers of hidden random variables have been the dom-
inant modelling paradigm in many research fields. Although this ap-
proach has met with considerable success, the causal semantics of these
models can make it difficult to infer the posterior distribution over the
hidden variables. In this paper we propose an alternative two-layer model
based on exponential family distributions and the semantics of undi-
rected models. Inference in these “exponential family harmoniums” is
fast while learning is performed by minimizing contrastive divergence.
A member of this family is then studied as an alternative probabilistic
model for latent semantic indexing. In experiments it is shown that they
perform well on document retrieval tasks and provide an elegant solution
to searching with keywords.

1 Introduction

Graphical models have become the basic framework for generative approaches to proba-
bilistic modelling. In particular models with latent variables have proven to be a powerful
way to capture hidden structure in the data. In this paper we study the important subclass
of models with one layer of observed units and one layer of hidden units.

Two-layer models can be subdivided into various categories depending on a number of
characteristics. An important property in that respect is given by the semantics of the
graphical model: either directed (Bayes net) or undirected (Markov random field). Most
two-layer models fall in the first category or are approximations derived from it: mixtures
of Gaussians (MoG), probabilistic PCA (pPCA), factor analysis (FA), independent compo-
nents analysis (ICA), sigmoid belief networks (SBN), latent trait models, latent Dirichlet
allocation (LDA, otherwise known as multinomial PCA, or mPCA) [1], exponential fam-
ily PCA (ePCA), probabilistic latent semantic indexing (pLSI) [6], non-negative matrix
factorization (NMF), and more recently the multiple multiplicative factor model (MMF)
[8].

Directed models enjoy important advantages such as easy (ancestral) sampling and easy
handling of unobserved attributes under certain conditions. Moreover, the semantics of



directed models dictates marginal independence of the latent variables, which is a suitable
modelling assumption for many datasets. However, it should also be noted that directed
models come with an important disadvantage: inference of the posterior distribution of the
latent variables given the observations (which is, for instance, needed within the context of
the EM algorithm) is typically intractable resulting in approximate or slow iterative proce-
dures. For important applications, such as latent semantic indexing (LSI), this drawback
may have serious consequences since we would like to swiftly search for documents that
are similar in the latent topic space.

A type of two-layer model that has not enjoyed much attention is the undirected analogue
of the above described family of models. It was first introduced in [10] where it was named
“harmonium”. Later papers have studied the harmonium under various names (the “com-
bination machine” in [4] and the “restricted Boltzmann machine” in [5]) and turned it into
a practical method by introducing efficient learning algorithms. Harmoniums have only
been considered in the context of discrete binary variables (in both hidden and observed
layers), and more recently in the Gaussian case [7]. The first contribution of this paper is to
extend harmoniums into the exponential family which will make them much more widely
applicable.

Harmoniums also enjoy a number of important advantages which are rather orthogonal to
the properties of directed models. Firstly, their product structure has the ability to produce
distributions with very sharp boundaries. Unlike mixture models, adding a new expert may
decrease or increase the variance of the distribution, which may be a major advantage in
high dimensions. Secondly, unlike directed models, inference in these models is very fast,
due to the fact that the latent variables are conditionally independent given the observations.
Thirdly, the latent variables of harmoniums produce distributed representations of the input.
This is much more efficient than the “grandmother-cell” representation associated with
mixture models where each observation is generated by a single latent variable. Their most
important disadvantage is the presence of a global normalization factor which complicates
both the evaluation of probabilities of input vectors1 and learning free parameters from
examples. The second objective of this paper is to show that the introduction of contrastive
divergence has greatly improved the efficiency of learning and paved the way for large scale
applications.

Whether a directed two-layer model or a harmonium is more appropriate for a particu-
lar application is an interesting question that will depend on many factors such as prior
(conditional) independence assumptions and/or computational issues such as efficiency of
inference. To expose the fact that harmoniums can be viable alternatives to directed mod-
els we introduce an entirely new probabilistic extension of latent semantic analysis (LSI)
[3] and show its usefulness in various applications. We do not want to claim superiority
of harmoniums over their directed cousins, but rather that harmoniums enjoy rather dif-
ferent advantages that deserve more attention and that may one day be combined with the
advantages of directed models.

2 Extending Harmoniums into the Exponential Family

Let xi, i = 1...Mx be the set of observed random variables andhj , j = 1...Mh be the set
of hidden (latent) variables. Bothx andh can take values in either the continuous or the
discrete domain. In the latter case, each variable has statesa = 1...D.

To construct an exponential family harmonium (EFH) we first chooseMx independent
distributionspi(xi) for the observed variables andMh independent distributionspj(hj)

1However, it is easy to compute these probabilities up to a constant so it is possible tocompare
probabilities of data-points.



for the hidden variables from the exponential family and combine them multiplicatively,

p({xi}) =
Mx∏

i=1

ri(xi) exp [
∑

a

θiafia(xi)−Ai({θia})] (1)

p({hj}) =
Mh∏

j=1

sj(hj) exp [
∑

b

λjbgjb(hj)−Bj({λjb})] (2)

where{fia(xi), gjb(hj)} are the sufficient statistics for the models (otherwise known as
features),{θia, λjb} the canonical parameters of the models and{Ai, Bj} the log-partition
functions (or log-normalization factors). In the following we will considerlog(ri(xi)) and
log(sj(hj)) as additional features multiplied by a constant.

Next, we couple the random variables in the log-domain by the introduction of a quadratic
interaction term,

p({xi, hj}) ∝ exp [
∑

ia

θiafia(xi) +
∑

jb

λjbgjb(hj) +
∑

ijab

W jb
ia fia(xi)gjb(hj)] (3)

Note that we did not write the log-partition function for this joint model in order to indi-
cate our inability to compute it in general. For some combinations of exponential family
distributions it may be necessary to restrict the domain ofW jb

ia in order to maintain nor-
malizability of the joint probability distribution (e.g.W jb

ia ≤ 0 or W jb
ia ≥ 0). Although

we could also have mutually coupled the observed variables (and/or the hidden variables)
using similar interaction terms we refrain from doing so in order to keep the learning and
inference procedures efficient. Consequently, by this construction the conditional probabil-
ity distributions are a product ofindependentdistributions in the exponential family with
shifted parameters,

p({xi}|{hj}) =
Mx∏

i=1

exp [
∑

a

θ̂iafia(xi)−Ai({θ̂ia})] θ̂ia = θia +
∑

jb

W jb
ia gjb(hj) (4)

p({hj}|{xi}) =
Mh∏

j=1

exp [
∑

b

λ̂jbgjb(hj)−Bj({λ̂jb})] λ̂jb = λjb +
∑

ia

W jb
ia fia(xi)(5)

Finally, using the following identity,
∑

y exp
∑

a θafa(y) = exp A({θa}) we can also
compute the marginal distributions of the observed and latent variables,

p({xi}) ∝ exp [
∑

ia

θiafia(xi) +
∑

j

Bj({λjb +
∑

ia

W jb
ia fia(xi)})] (6)

p({hj}) ∝ exp [
∑

jb

λjbgjb(hj) +
∑

i

Ai({θia +
∑

jb

W jb
ia gjb(hj)})] (7)

Note that 1) we can only compute the marginal distributions up to the normalization con-
stant and 2) in accordance with the semantics of undirected models, there is no marginal
independence between the variables (but rather conditional independence).

2.1 Training EF-Harmoniums using Contrastive Divergence

Let p̃({xi}) denote the data distribution (or the empirical distribution in case we observe a
finite dataset), andp the model distribution. Under the maximum likelihood objective the
learning rules for the EFH are conceptually simple2,

δθia ∝ 〈fia(xi)〉p̃ − 〈fia(xi)〉p δλjb ∝ 〈B′
jb(λ̂jb)〉p̃ − 〈B′

jb(λ̂jb)〉p (8)

2These learning rules are derived by taking derivatives of the log-likelihood objective using Eqn.6.



δW ab
ij ∝ 〈fia(xi)B′

jb(λ̂jb)〉p̃ − 〈fia(xi)B′
jb(λ̂jb)〉p (9)

where we have definedB′
jb = ∂Bj(λ̂jb)/∂λ̂jb with λ̂jb defined in Eqn.5. One should note

that these learning rules are changing the parameters in an attempt to match the expected
sufficient statistics of the data distribution and the model distribution (while maximizing
entropy). Their simplicity is somewhat deceptive, however, since the averages〈·〉p are
intractable to compute analytically and Markov chain sampling or mean field calculations
are typically wheeled out to approximate them. Both have difficulties: mean field can only
represent one mode of the distribution and MCMC schemes are slow and suffer from high
variance in their estimates.

In the case of binary harmoniums (restricted BMs) it was shown in [5] that contrastive di-
vergence has the potential to greatly improve on the efficiency and reduce the variance of
the estimates needed in the learning rules. The idea is that instead of running the Gibbs
sampler to its equilibrium distribution we initialize Gibbs samplers on each data-vector
and run them for only one (or a few) steps in parallel. Averages〈·〉p in the learning rules
Eqns.8,9 are now replaced by averages〈·〉pCD

wherepCD is the distribution of samples
that resulted from the truncated Gibbs chains. This idea is readily generalized to EFHs.
Due to space limitations we refer to [5] for more details on contrastive divergence learn-
ing3. Deterministic learning rules can also be derived straightforwardly by generalizing the
results described in [12] to the exponential family.

3 A Harmonium Model for Latent Semantic Indexing

To illustrate the new possibilities that have opened up by extending harmoniums to the
exponential family we will next describe a novel model for latent semantic indexing (LSI).
This will represent the undirected counterpart of pLSI [6] and LDA [1].

One of the major drawbacks of LSI is that inherently discrete data (word counts) are being
modelled with variables in the continuous domain. The power of LSI on the other hand is
that it provides an efficient mapping of the input data into a lower dimensional (continuous)
latent space that has the effect of de-noising the input data and inferring semantic relation-
ships among words. To stay faithful to this idea and to construct a probabilistic model on
the correct (discrete) domain we propose the following EFH with continuous latent topic
variables,hj , and discrete word-count variables,xia,

p({hj}|{xia}) =
Mh∏

j=1

Nhj [
∑

ia

W j
iaxia , 1] (10)

p({xia}|{hj}) =
Mx∏

i=1

S{xia}[αia +
∑

j

hjW
j
ia] (11)

Note that{xia} represent indicator variables satisfying
∑

a xia = 1 ∀i, wherexia = 1
means that word “i” in the vocabulary was observed “a” times.Nh[µ, σ] denotes a normal
distribution with meanµ and std.σ andS{xa}[γa] ∝ exp (

∑D
a=1 γaxa) is the softmax

function defining a probability distribution overx. Using Eqn.6 we can easily deduce the
marginal distribution of the input variables,

p({xia}) ∝ exp [
∑

ia

αiaxia +
1
2

∑

j

(
∑

ia

W j
iaxia)2] (12)

3Non-believers in contrastive divergence are invited to simply run the the Gibbs sampler to equi-
librium before they do an update of the parameters. They will find that due to the special bipartite
structure of EFHs learning is still more efficient than for general Boltzmann machines.



We observe that the role of the componentsW j
ia is that of templates or prototypes: input

vectorsxia with large inner products
∑

ia W j
iaxia ∀j will have high probability under this

model. Just like pLSI and LDA can be considered as natural generalizations of factor
analysis (which underlies LSI) into the class of directed models on the discrete domain, the
above model can be considered as the natural generalization of factor analysis into class
of undirectedmodels on the discrete domain. This idea is supported by the result that the
same model with Gaussian units in both hidden and observed layers is in fact equivalent to
factor analysis [7].

3.1 Identifiability

From the form of the marginal distribution Eqn.12 we can derive a number of transforma-
tions of the parameters that will leave the distribution invariant. First we note that the com-
ponentsW j

ia can be rotated and mirrored arbitrarily in latent space4: W j
ia →

∑
k U jkW k

ia

with UT U = I. Secondly, we note that observed variablesxia satisfy a constraint,∑
a xia = 1 ∀i. This results in a combined shift invariance for the componentsW j

ia and
the offsetsαia. Taken together, this results in the following set of transformations,

W j
ia →

∑

k

U jk(W k
ia + V k

i ) αia → (αia + βi)−
∑

j

(
∑

l

V j
l )(W j

ia) (13)

whereUT U = I. Although these transformations leave the marginal distribution over the
observable variables invariant, they do change the latent representation and as such may
have an impact on retrieval performance (if we use a fixed similarity measure between
topic representations of documents). To fix the spurious degrees of freedom we have cho-
sen to impose conditions on the representations in latent space:hn

j =
∑

ia W j
iaxn

ia. First,
we center the latent representations which has the effect of minimizing the “activity” of
the latent variables and moving as much log-probability as possible to the constant com-
ponentαia. Next we align the axes in latent space with the eigen-directions of the latent
covariance matrix. This has the effect of approximatelydecorrelatingthe marginal latent
activities. This follows because the marginal distribution in latent space can be approx-
imated by:p({hj}) ≈

∑
n

∏
j Nhj [

∑
ia W j

iaxn
ia, 1]/N where we have used Eqn.10 and

replacedp({xia}) by its empirical distribution. Denoting byµ andΣ = UT ΛU the sample
mean and sample covariance of{hn

j }, it is not hard to show that the following transforma-
tion will have the desired effect5:

W j
ia →

∑

k

U jk

(
W k

ia −
1

Mx
µk

)
αia → αia +

∑

j

µjW j
ia (14)

One could go one step further than the de-correlation process described above by introduc-
ing covariancesΣ in the conditional Gaussian distribution of the latent variables Eqn.10.
This would not result in a more general model because the effect of this on the marginal
distribution over the observed variables is given by:W j

ia →
∑

k KjkW k
ia KKT = Σ.

However, the extra freedom can be used to define axes in latent space for which the pro-
jected data become approximatelyindependentand have the same scale in all directions.

4Technically we call this the Euclidean group of transformations.
5Some spurious degrees of freedom remain since shiftsβi and shiftsV j

i that satisfy
P

i V j
i = 0

will not affect the projection into latent space. One could decide to fix the remaining degrees of
freedom by for example requiring that components are as small as possible inL2 norm (subject to
the constraint

P
i V j

i = 0), leading to the further shifts,W j
ia → W j

ia− 1
D

P
a W j

ia+ 1
DMx

P
ia W j

ia

andαia → αia − 1
D

P
a αia.
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Figure 1: Precision-recall curves when the query was (a) entire documents, (b)1 keyword, (c)2
keywords for the EFH with and without10 MF iterations, LSI , TFIDF weighted words and random
guessing. PR curves with more keywords looked very similar to (c). A marker at positionk (counted
from the left along a curve) indicates that2k−1 documents were retrieved.

4 Experiments

Newsgroups:
We have used the reduced version of the “20newsgroups” dataset prepared for MATLAB

by Roweis6. Documents are presented as100 dimensional binary occurrence vectors and
tagged as a member of1 out of 4 domains. Documents contain approximately4% of the
words, averaged across the16242 postings.

An EFH model with10 latent variables was trained on12000 training cases using sto-
chastic gradient descent on mini-batches of1000 randomly chosen documents (training
time approximately1 hour on a 2GHz PC). A momentum term was added to speed up
convergence. To test the quality of the trained model we mapped the remaining4242
query documents into latent space usinghj =

∑
ia W j

iaxia and where{W j
ia, αia} were

“gauged” as in Eqns.14. Precision-recall curves were computed by comparing training
and query documents using the usual “cosine coefficient” (cosine of the angle between
documents) and reporting success when the retrieved document was in the same domain
as the query (results averaged over all queries). In figure 1a we compare the results
with LSI (also10 dimensions) [3] where we preprocessed the data in the standard way
(x → log(1 + x) and entropy weighting of the words) and to similarity in word space
using TF-IDF weighting of the words. In figure 1b,c we show PR curves when only1 or
2 keywords were provided corresponding to randomly observed words in the query docu-
ment. The EFH model allows a principled way to deal with unobserved entries by inferring
them using the model (in all other methods we insert0 for the unobserved entries which
corresponds to ignoring them). We have used a few iterations of mean field to achieve
that: x̂ia → exp [

∑
jb(

∑
k W k

iaW k
jb + αjb)x̂jb]/γi whereγi is a normalization constant

and wherêxia represent probabilities:̂xia ∈ [0, 1],
∑D

a=1 x̂ia = 1 ∀i. We note that this is
still highly efficient and achieves a significant improvement in performance. In all cases we
find that without any preprocessing or weighting EFH still outperforms the other methods
except when large numbers of documents were retrieved.

In the next experiment we compared performance of EFH, LSI and LDA by training mod-
els on a random subset of15430 documents with5 and10 latent dimensions (this was
found to be close to optimal for LDA). The EFH and LSI models were trained as in the
previous experiment while the training and testing details7 for LDA can be found in [9].
For the remaining test documents we clamped a varying number of observed words and

6http://www.cs.toronto.edu/∼roweis/data.html
7The approximate inference procedure was implemented using Gibbs sampling.
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Figure 2:(a) Fraction of observed words that was correctly observed by EFH, LSI and LDA using5
and10 latent variables when we vary the number of keywords (observed words that were “clamped”),
(b) latent 3-D representations of newsgroups data, (c) Fraction of documents retrieved by EFH on the
NIPS dataset which was also retrieved by the TF-IDF method.

asked the models to predict the remaining observed words in the documents by comput-
ing the probabilities for all words in the vocabulary to be present and ranking them (see
previous paragraph for details). By comparing the list of theR remaining observed words
in the document with the top-R ranked inferred words we computed the fraction of cor-
rectly predicted words. The results are shown in figure 2a as a function of the number of
clamped words. To provide anecdotal evidence that EFH can infer semantic relationships
we clamped the words ’drive’ ’driver’ and ’car’ which resulted in: ’car’ ’drive’ ’engine’
’dealer’ ’honda’ ’bmw’ ’driver’ ’oil’ as the most probable words in the documents. Also,
clamping ’pc’ ’driver’ and ’program’ resulted in: ’windows’ ’card’ ’dos’ ’graphics’ ’soft-
ware’ ’pc’ ’program’ ’files’.

NIPS Conference Papers:
Next we trained a model with5 latent dimensions on the NIPS dataset8 which has a large
vocabulary size (13649 words) and contains1740 documents of which1557 were used
for training and183 for testing. Count values were redistributed in12 bins. The array
W contains therefore5 · 13649 · 12 = 818940 parameters. Training was completed in the
order of a few days. Due to the lack of document labels it is hard to assess the quality of the
trained model. We choose to compare performance on document retrieval with the “golden
standard”: cosine similarity in TF-IDF weighted word space. In figure 2c we depict the
fraction of documents retrieved by EFH that was also retrieved by TF-IDF as we vary the
number of retrieved documents. This correlation is indeed very high but note that EFH
computes similarity in a5-D space while TF-IDF computes similarity in a13649-D space.

5 Discussion

The main point of this paper was to show that there is a flexible family of 2-layer probabilis-
tic models that represents a viable alternative to 2-layer causal (directed) models. These
models enjoy very different properties and can be trained efficiently using contrastive di-
vergence. As an example we have studied an EFH alternative for latent semantic indexing
where we have found that the EFH has a number of favorable properties: fast inference al-
lowing fast document retrieval and a principled approach to retrieval with keywords. These
were preliminary investigations and it is likely that domain specific adjustments such as a
more intelligent choice of features or parameterization could further improve performance.

Previous examples of EFH include the original harmonium [10], Gaussian variants thereof
[7], and the PoT model [13] which couples a gamma distribution with the covariance of a

8Obtained from http://www.cs.toronto.edu/∼roweis/data.html.



normal distribution. Some exponential family extensions of general Boltzmann machines
were proposed in [2], [14], but they do not have the bipartite structure that we study here.
While the components of the Gaussian-multinomial EFH act as prototypes or templates
for highly probable input vectors, the components of the PoT act asconstraints(i.e. input
vectors with large inner product have low probability). This can be traced back to the
shape of the non-linearityB in Eqn.6. Although by constructionB must be convex (it
is the log-partition function), for large input values it can both be positive (prototypes,
e.g. B(x) = x2) or negative (constraints, e.g.B(x) = −log(1 + x)). It has proven
difficult to jointly model both prototypes and constraints in the this formalism except for
the fully Gaussian case [11]. A future challenge is therefore to start the modelling process
with the desired non-linearity and to subsequently introduce auxiliary variables to facilitate
inference and learning.
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