
ON RECTIFIED LINEAR UNITS FOR SPEECH PROCESSING

M.D. Zeiler1∗, M. Ranzato2, R. Monga2, M. Mao2, K. Yang2, Q.V. Le2,
P. Nguyen2, A. Senior2, V. Vanhoucke2, J. Dean2, G.E. Hinton3

1New York University, USA 2Google Inc., USA 3University of Toronto, Canada

ABSTRACT
Deep neural networks have recently become the gold standard
for acoustic modeling in speech recognition systems. The key
computational unit of a deep network is a linear projection
followed by a point-wise non-linearity, which is typically a
logistic function. In this work, we show that we can improve
generalization and make training of deep networks faster and
simpler by substituting the logistic units with rectified linear
units. These units are linear when their input is positive and
zero otherwise. In a supervised setting, we can successfully
train very deep nets from random initialization on a large vo-
cabulary speech recognition task achieving lower word er-
ror rates than using a logistic network with the same topol-
ogy. Similarly in an unsupervised setting, we show how we
can learn sparse features that can be useful for discriminative
tasks. All our experiments are executed in a distributed envi-
ronment using several hundred machines and several hundred
hours of speech data.

Index Terms— Rectified Linear units, Deep Learning,
Neural Networks, Unsupervised Learning, Hybrid System

1. INTRODUCTION

Recent years have seen a surge of interest in neural networks
for acoustic modeling in speech recognition systems. Com-
pared to traditional Gaussian Mixture Models (GMMs), neu-
ral networks have two main advantages. They scale better
with the input dimensionality allowing the use of larger con-
text windows and they automatically learn discriminative fea-
tures from data alleviating the problem of manually engineer-
ing and selecting features. Together these two factors have
yielded dramatic improvements in terms of word error rate.

In their seminal work, Mohamed et al. [1] proposed to use
a system composed of many layers of logistic units. In order
to overcome the notoriously difficult problem of optimizing
very deep networks, they proposed to use a layer-wise un-
supervised learning algorithm, called Restricted Boltzmann
Machine (RBM) [2], as a way to provide a sensible initializa-
tion and they demonstrated significant improvements over the
baseline GMM.

One issue with this training procedure is that tracking con-
vergence of RBMs is difficult and the overall layer-wise train

∗This work was done while M.D. Zeiler was an intern at Google.

ing procedure is laborious and time-consuming, even when
using specialized hardware like GPUs. This challenge con-
tinued to motivate researchers to design better unsupervised
algorithms [3, 4] and better optimization methods for training
deep neural nets [5, 6].

Inspired by recent work on deep learning for vision ap-
plications [7, 8, 9], we propose to replace the logistic non-
linearity with a half-rectification non-linearity which is lin-
ear for positive values and zero otherwise. Because of the
shape of this non-linearity, we call the resulting deep network
a “hinge deep neural network” (HDNN), and the units that
compose the HDNN “rectified linear units” (ReLUs) [7].

This small change brings several advantages. First, in our
experience it eliminates the necessity to have a “pretraining”
phase using unsupervised learning [8]. We demonstrate em-
pirically that we can easily and successfully train extremely
deep networks even from random initialization. Second, the
convergence of HDNN is faster than in a regular logistic neu-
ral net with the same topology. Third, HDNN is very simple
to optimize. Even vanilla stochastic gradient descent with
constant learning rate yields very good accuracy. Fourth,
HDNN generalizes better than its logistic counterpart. And
finally, rectified linear units are faster to compute because
they do not require exponentiation and division, with an over-
all speed up of 25% on the 4 hidden layer neural network we
tested on.

We conjecture that the reason why rectified linear units
are so beneficial for efficient learning of deep neural nets is
twofold. First, from the optimization perspective, HDNN is
piece-wise linear. If we restrict our attention to the units that
are non-zero, the whole system reduces to a linear convex
system whose optimization is straightforward even using first
order optimizers. Second, HDNN seems to generalize better
because the internal representation produced by the network
is much more regularized. Unlike logistic units that produce
small positive values when the input is not aligned with the
internal weights, rectified linear units often output exact ze-
ros. For instance, we found that on average about 80% of the
units in a HDNN are zero after training. Improved general-
ization can be seen as the effect of the increased sparsity of
the internal representation or also by interpreting HDNN as
a system with stacked binary linear SVMs (as opposed to lo-
gistic regression classifiers), and it is well known that such

Fig. 1. The proposed non-linearity, ReLU, and the standard
neural network non-linearity, logistic.

classifiers enjoy better generalization properties [9].
Although our work does not reveal any benefit to unsu-

pervised learning for HDNNs, it is still interesting to learn
features without any supervision for the purpose of automatic
discovery of phonetic elements and potentially, for training on
languages with small amounts of labeled data. We propose a
very simple sparse autoencoder method that can learn very
interpretable and discriminative features when using ReLUs.

Overall, we demonstrate a clear advantage of ReLUs over
logistic units both in the supervised and unsupervised set-
ting. Our empirical validation uses a recently introduced dis-
tributed framework [10]. This allows us to train a network
with 43 million parameters on four hundred machines using
1500 cores to process 1.2 billion frames per day, more than 6
times faster than using a single NVIDIA GeForce GTX 580
GPU.

2. SUPERVISED LEARNING

Our supervised learning set up is conventional, except for the
use of the proposed activation function. The network is given
both an input x (typically a few consecutive frames of a spec-
trogram representation) and a label representing the state of
the HMM for that input. The network processes the input
through a sequence of non-linear transformations. In particu-
lar, at the i-th layer the network computes: hi = f(W ihi−1+
bi), where W i ∈ RM×N is a matrix of trainable weights,
bi ∈ RM is a vector of trainable biases, and hi ∈ RN is
the i-th hidden layer (or the input x if i is equal to 0) and
hi+1 ∈ RM is the (i+ 1)-th hidden layer.

In our work, we propose to use as f the following point-
wise non-linear function: f(u) = max(0, u). The resulting
unit in the network is dubbed ReLU [7]. We have also exper-
imented and compared to other functions as well. We tested
the widely used logistic, f(u) = 1/(1 + exp(−u)), and hy-
perbolic tangent, f(u) = tanh(u). Since hyperbolic tangent
performed slightly worse than logistic, we only report the lat-
ter for our baseline comparisons.

In order to predict the label, the topmost layer of the net-
work uses a softmax non-linearity which outputs probability
values. If the network has L layers, then the prediction for the
probability of the k-th class is: p(k|x) = exp((WL)kh

L−1 +

bLk)/
∑C

j=1 exp((WL)jh
L + bLj), where (WL)j is j-th row

of the last layer weight matrix, bLj is the j-th entry in the last

layer vector of biases and C is the number of classes.
Training the parameters of the network (the weight

matrices and biases at all layers) is performed by mini-
mizing the cross entropy loss over the training set. The
contribution of each sample x to the loss is: Lsup(θ) =

−
∑C

j=1 tj log p(j|x; θ), where t is a 1-of-C encoding of
the target class label and θ collectively denotes all parameters
of the neural network, namely {(W i,bi), i = 0, . . . , L}. We
will discuss in sec. 4 how we minimize this loss function.

3. UNSUPERVISED LEARNING

In our unsupervised experiments, we use a method described
in appendix B of [11]. This is a very efficient and effective
sparse feature learning method which can be understood as a
sparse auto-encoder neural network using ReLU units as fea-
tures. Training proceeds layer by layer, from the bottom to
the top in sequence. For each layer, the features (that will
be subsequently used as data to train the layer above) are:
hi = max(0,W ihi−1 + bi). During training we couple
this layer with an auxiliary layer that reconstructs the input
from the features using ĥi−1 = max(0,W i

rh
i + bi

r), where
W i

r ∈ RN×M is a matrix of trainable weights, bi
r ∈ RN is

a vector of trainable biases, and ĥi−1 ∈ RN is the recon-
struction of hi−1. When i is 0 and we reconstruct the input
x, the ReLUs units of the reconstruction layer are replaced
by linear units because x takes also negative values. The
parameters are learned by minimizing a loss function. The
contribution of each sample to the loss at the i-th layer is:
Lunsup(θ) = ||ĥi−1 − hi−1||22 + λ||hi||1, with λ ≥ 0. The
first term measures the squared reconstruction error and it is
useful to guarantee that features preserve information of the
input. The latter term makes the learning algorithm discover
sparse features, that is, features with few non-zero values.
This is important to restrict the capacity of the model (over-
all when there are more features than input dimensions) and
force it to capture the regularities of the input data. Since
the loss can be trivially decreased by scaling down W i while
scaling up W i

r , we re-parameterize Wr as follows: (W i
r)j =

(W̃ i
r)j/||(W̃ i

r)j ||2, where (W i
r)j is the j-th column of W i

r ,
and we learn the parameters of matrix W̃ i

r .
This method can be interpreted as a special case of

PSD [12, 13] and sparse coding [14] when inference of fea-
tures is computed in just one step. Unlike RBM’s objective
function which is intractable, this method can be optimized
very efficiently and it enjoys the use of ReLU units because
they naturally produce sparse features.

4. LEARNING IN A DISTRIBUTED FRAMEWORK

In order to support training on vast amount of data in very
short time, we use our recently proposed distributed frame-
work [10]. The hidden units of the network are partitioned
across several machines and each machine further parallelizes

computation across several cores. Parallel distributed compu-
tation is used across the samples in a mini-batch as well as
across the nodes of the neural network.

In the experiments of sec. 5 we use this framework and
learn the parameters of the system by asynchronous stochastic
gradient descent (SGD) [10]. Training proceeds as follows.
The network is replicated P times. Each replica is an ex-
act copy of the model, with possibly slightly stale parameters
and operating on a random subset of the training data. Be-
sides the P replicas, there is also a sharded parameter server
hosting the most updated version of the parameters. Once
a model replica has finished computing the gradients on its
mini-batch, it sends them to the parameters server which uses
them to update the parameters. Finally, the parameter server
sends back an updated copy of the parameters to that model
replica. This mechanism allows many model replicas to work
concurrently but asynchronously on the same training prob-
lem and to quickly update the parameters, while being toler-
ant to machine failure and high latency.

In this work, we investigated three different ways to up-
date the parameters in the parameter server. Let θti be the i-th
parameter after t − 1 weight updates. In vanilla SGD the pa-
rameters are updated using: θt+1

i = θti−η∂L/∂θti , where η is
the learning rate. In SGD with Adagrad [10, 15], each param-
eter has its own adaptive learning rate; the parameter update

is θt+1
i = θti − ηti∂L/∂θti with ηti = η/

√∑t
s=1(∂L/∂θsi)2.

Finally, in SGD with momentum the parameters are updated
by: θt+1

i = θti − η∆t+1
i , with ∆t+1

i = 0.9∆t
i + ∂L/∂θti .

While Adagrad aims at gently scaling and annealing learn-
ing rates, momentum speeds up learning along those gradient
directions that are persistent during training.

5. EXPERIMENTS

All experiments are performed using several hundred hours of
US English data collected using Voice Search, Voice Typing
and read data. The test set follows the same distribution of
the training set but uses independent sources. The setup for
the hybrid decoding is exactly the same as the one described
in earlier work [16].

In the supervised setting, a baseline GMM-HMM system
is trained and used to generate 7969 context-dependent tied
acoustic states. This system is also used to produce state la-
bels for every input frame using forced alignment. These la-
bels are the target for the supervised network.

In both the supervised and unsupervised settings, the input
to the network consists of 26 consecutive frames, each com-
prising 40 log-energy filter bank outputs representing 25ms of
speech. Consecutive frames are 10ms apart. The overall in-
put dimensionality is 1040, although spectral analysis reveals
that 95% of the variance is concentrated in the first leading
100-dimensional principal components.

All layers of our networks have 2560 hidden units and
training has been performed by partitioning each network

Fig. 2. Frame accuracy as a function of time of a 4 hidden
layer HNN trained with different optimizers.

Fig. 3. Frame accuracy as a function of time for a 4 hidden
layer neural net trained with either logistic or ReLUs and us-
ing as optimizer either SGD or SGD with Adagrad (ADG).

across 4 machines using up to 4 CPUs each. The number of
model replicas P has been set to 100. All parameters in the
weight matrices are intialized at random while the biases are
initialized at zero. Learning rates have been cross-validated.
Typically, HDNN uses a learning which is 10 times smaller
than a logistic DNN.

5.1. Supervised Learning Experiments

The results we report are obtained by training for one week.
In the first experiment shown in fig. 2, we compare the three
different optimization strategies we described in sec. 4, on a
4 hidden layer HNN initialized at random. In terms of wall
clock time to reach a given frame accuracy on the validation
set, Adagrad exhibits the fastest convergence time, although
plain SGD eventually reaches the same overall frame accu-
racy. Momentum instead performs slightly worse.

Similar findings were observed using a network with lo-
gistic units. However, plain SGD does not perform as well as
Adagrad in this case, see fig. 3. Unlike HNN, a logistic net-
work does need accelerated first order methods to yield good
frame accuracy. It seems that optimization is much harder
in logistic networks than HNNs. Fig. 3 shows that a logis-
tic network trained with Adagrad can achieve the same accu-
racy than a HNN trained with either Adagrad or even plain
SGD. However, we found that the performance in terms of

Fig. 4. Validation frame accuracy over time using HNN with
different number of hidden layers and SGD.

Nr. hid. layers 1 2 4 8 10 12

WER % 16.0 12.8 11.4 10.9 11.0 11.1

Table 1. Word error rate of HNN with varying number of
hidden layers.

word error rate is superior when using HNN and SGD. The
word error rate of a logistic network trained with Adagrad is
11.8% (slightly better than when training using SGD), while
the word error rate of HNN is 11.7 and 11.4% when using
Adagrad and SGD, respectively. Since a difference of 0.1% is
statistically significant in our data set, we conclude that HNNs
are not only easier to train but also they generalize better.

Finally, fig. 4 shows that extremely deep HNNs (we tested
up to 12 hidden layers) can be successfully trained from ran-
dom initialization. Since we did not allocate more resources
for the deeper networks, their compute and convergence time
is slower. However, they do not get stuck in the optimiza-
tion and produce among the best results. Table 1 reports the
corresponding word error rates on the test set. The 8 hidden
layer neural network produces the best rate of 10.9%, but this
is closely followed by the 10 and 12 hidden layer HNN.

We also tested very deep logistic networks from random
initialization but did observe that the optimization gets stuck
when using 8 hidden layers and more. After one week, 8
hidden layers logistic network achieves a mere word error rate
of 12.0%.

5.2. Unsupervised Learning Experiments

To validate the use of ReLUs for unsupervised learning, we
trained using the same input data as in the previous section
(but without making use of the labels). After learning, we
first inspected the learned features. Fig. 5 shows a subset of
the 2560 features where each tile corresponds to the weights
connected to a hidden unit. Some features resemble Gabor
functions localized in the time-frequency domain, but others
are more complex and seem to capture the structure and the
temporal dynamics of formants. We also tested the use of
logistic units and linear units, but could not learn any struc-

Fig. 5. Left: Random subset of the 2560 filters learned in
an unsupervised way. The vertical axis is over frequencies
and horizontal axis is over time (26 frames, each 10ms long).
Right: Example of how some filters (left part) match sam-
ples on a validation set (right part with corresponding phone
label).

Phone label Precision % Recall % Accuracy %
er 57.0 2.0 98.5

iy 49.6 11.0 96.7

r 52.5 6.0 97.2

Table 2. Unsupervised discovery of phones: a threshold on a
single feature can be a high accuracy phone detector.

Nr. hid. layers 0 1 2 3
Frame accuracy % 28.5 37.8 38.3 39.2

Table 3. Test frame accuracy using a linear classifier on the
features learned in an unsupervised way.

ture set of features. To better interpret the ReLU features, we
looked for the best matching input sample in the validation
set. Leftmost part of fig. 5 shows how some filters resemble
closely actual inputs, suggesting that some of these features
may have discovered phonetic elements in an unsupervised
way. To validate this hypothesis, we used each single feature
as a threshold classifier and checked whether its output corre-
lates with the phone label of the input. Table 2 shows that this
is indeed the case for some phones. Since the large fraction
of frames has label “silence”, there is a very large number of
negative inputs and achieving a precision of 50% at a recall
greater than 1% is considered remarkable.

The discrimination ability of ReLUs is expected to im-
prove when we consider the whole feature set. We therefore
trained a linear logistic regression classifier on the whole fea-
ture vector. Table 3 reports the frame accuracy as we learn
more layers of features and demonstrates that features do get
more discriminative as we stack them, although with dimin-
ishing returns. Using these features to initialize a deep HNN
did not improve performance, however. We observed faster
initial convergence but not better accuracy after a few hours
of training.

6. CONCLUSION

In this empirical study we advocate the use of ReLU in deep
networks since a) they are easier to optimize, b) they converge
faster, c) they generalize better and d) they are faster to com-
pute. Future work will leverage unsupervised learning and
ReLUs for tasks where labeled data is very scarce.

7. REFERENCES

[1] A.R. Mohamed, G.E. Dahl, and G.E. Hinton, “Deep be-
lief networks for phone recognition,” NIPS 22 workshop
on deep learning for speech recognition, 2009.

[2] G.E. Hinton, “Training products of experts by minimiz-
ing contrastive divergence,” Neural Computation, vol.
14, pp. 1771–1800, 2002.

[3] C. Plahl, T.N. Sainath, B. Ramabhadran, and D. Na-
hamoo, “Improved pre-training of deep belief net-
works using sparse encoding symmetric machines,” in
ICASSP, 2012.

[4] T.N. Sainath, B. Kingsbury, and B. Ramabhadran,
“Auto-encoder bottleneck features using deep belief net-
works,” in ICASSP, 2012.

[5] B. Kingsbury, T.N. Sainath, and H. Soltau, “Scalable
minimum bayes risk training of deep neural network
acoustic models using distributed hessian-free optimiza-
tion,” in Interspeech, 2012.

[6] L. Deng, B. Hutchinson, and D. Yu, “Parallel training
of deep stacking networks,” in Interspeech, 2012.

[7] V. Nair and G.E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in ICML, 2010.

[8] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse recti-
fier neural networks,” Journal of Machine Learning Re-
search - Proceedings Track, vol. 15, pp. 315–323, 2011.

[9] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in NIPS, 2012.

[10] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,
Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Ng, “Large scale distributed deep net-
works,” in NIPS, 2012.

[11] M. Ranzato, “Unsupervised learning of feature hierar-
chies,” Ph.D. thesis, ch. 1, 2009.

[12] K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “Fast in-
ference in sparse coding algorithms with applications to
object recognition,” Tech. Rep., Computational and Bi-
ological Learning Lab, Courant Institute, NYU, 2008,
Tech Report CBLL-TR-2008-12-01.

[13] K. Gregor and Y. LeCun, “Learning fast approximations
of sparse coding,” in ICML, 2010.

[14] C.J. Rozell, D.H. Johnson, Baraniuk R.G., and B.A. Ol-
shausen, “Sparse coding via thresholding and local com-
petition in neural circuits,” Neural Computation, 2008.

[15] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradi-
ent methods for online leaning and stochastic optimiza-
tion,” in COLT, 2010.

[16] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Ap-
plication of pretrained deep neural networks to large vo-
cabulary speech recognition,” in Interspeech, 2012.

