IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992 1

Glove-Talk: A Neural Network Interface Between
a Data-Glove and a Speech Synthesizer

S. Sidney Fels and Geoffrey E. Hinton

Abstract—To illustrate the potential of multilayer neural net-
works for adaptive interfaces, we used a VPL Data-Glove con-
nected to a DECtalk speech synthesizer via five neural networks
to implement a hand-gesture to speech system. Using minor
variations of the standard back-propagation learning procedure,
the complex mapping of hand movements to speech is learned
using data obtained from a single “speaker” in a simple training
phase. With a 203 gesture-to-word vocabulary, the wrong Is
produced less than 1% of the time, and no word Is produced about
5% of the time. Adaptive control of the speaking rate and word
stress is also available. The training times and final performance
speed are improved by using small, separate networks for each

naturally defined subtask. The system demonstrates that neural

networks can be used to develop the complex mappings required
in a high bandwidth interface that adapts to the individual user.

I. INTRODUCTION

DAPTIVE interfaces are natural and important class of

applications for neural networks. When a person must
provide high bandwidth control of a complex physical device,
a compatible mapping between the person’s movements and
the behavior of the device becomes crucial. With many devices
the mapping is fixed and if a poor mapping is used, the
device is difficult to control. Using adaptive neural networks,
it may now be possible to build device interfaces where the
mapping adapts automatically during a training phase. Such
adaptive interfaces would simplify the process of designing
a compatible mapping and would also allow the mapping
to be tailored to each individual user. The key features of
peural networks in the context of adaptive interfaces are the
following:

» Neural networks learn input/output functions from exam-
ples provided by the user who demonstrates the input
that should lead to a specified output. This “extensional”
programming requires no computer expertise.

+ Adapting the interface to the peculiarities of a new user
is simple. The new user has only to create example data
to retrain the network.

+ Once trained, the networks run very quickly, even on
a serial machine. Also, neural networks are inherently
suitable for parallel computation.

Manuscript received July 8, 1991; revised February 14, 1992. This work
was supported by the Instinte for Robotics and Intelligent Systems, the
Canadian Natural Science and Engineering Research Council, and the Ontario
Information Technology Research Centre. The DECtalk speed synthesizer was
provided by Terry Sejnowski and the Xerion neural network simulator used
was written by Drew van Camp and Tony Plate.

The authors are with the Department of Computer Science, University of
Toronto, Toronto, Canada, M5S 1A4.

IEEE Log Number 9201747.

""" OVERVIEW OF THE GLOVE-TALK SYSTEM

To demonstrate the usefulness of neural networks for adap-
tive interfaces, we chose the task of mapping hand-gestures to
speech [1]. The hand-gesture data is sensed by a VPL Data-
Glove [2] that has two sensors for each finger. The sensors are
fiber optic transducers which measure the finger flex angles.
There is also a “polhemus” sensor attached to the back of
the glove which measures the z, y, z, roll, pitch, and yaw
of the hand relative to a fixed source. All 16 parameters are
measured every 1/60th second. The speech synthesizer is a

- DECtalk model DTCOL from Digital Equipment Corporation.

This synthesizer can perform text-to-speech synthesis and
there is also user control of speaking rate and word stress.

The granularity of speech can be used to define a spectrum
of possible methods for mapping from hand-gestures to speech.
At the finest granularity, rapid finger movements could play
the role of movements of the speech articulators, or they could
represent some other parameterization of the speech wave such
as the frequencies and amplitudes of the first four formants
plus the pitch, the degree of voicing, and the amplitude of
the nasal formant. This gives the user an unlimited vocabulary
and analog control over the quality of the speech, but the
finger movements must be extremely fast and they must be
recognized very rapidly to produce real-time speech without a
noticeable lag. In the middle of the spectrum, a brief movement
or hand configuration could represent a diphone or syllable.
At the other end of the spectrum, a complete hand-gesture
could be mapped to a whole word without mapping temporal
constituents of the gesture to temporal constituents of the word.
This gives a fixed vocabulary which, like Chinese ideographs,
makes it very arduous for the user to master a large vocabulary.
However, for a small vocabulary the user can learn the task
quite quickly. For this pilot study we chose to map complete
hand-gestures to whole words.

Once trained, the Glove-Talk system works as follows:
The user forms a hand-shape which represents a root word.
Then s/he makes a movement forward and back in one of six
directions. The direction chosen determines the word ending.
The duration and magnitude of the gesture determine the
speech rate and stress. The precise time at which the word
is spoken is more complex. The user imagines that the end
of the forward movement is like a button press that causes
the word to be produced immediately, much like a conductor
producing music. To avoid delays in producing the word, the
shape of the hand is actually “read” pear the beginning of the
deceleration phase of the forward movement. This moment
is called the “strobe-time” and is detected by the strobe

1045-9227/92303.00 @ 1992 IEEE

2 . . IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL 3, NO. 6, NOVEMBER 1992

Hand in
DanGiove B —
N 3 DECaik
bt i3 T
roll s yaw ——> Haod_shape —> > |
10 fex aagles 7 N R
every 1/60 second ' '
l(N 5 l
H word_ending i
N Ll
1 r—_——-——— !
_91‘ Haod_speed—> .
' W N
! ‘ :
[}
L—5~ Hand_displaczmesrt—> i |
' word,_stress
l-_-----------_-_--.’
Hand_gesture~> Word Nerworks

Fig. 1. Glove-Talk System.

network that continually monitors the directionless speed and
acceleration of the whole hand using preprocessed information
from the polhemus device. A block diagram of the Glove-Talk
system is in Fig. 1.

When the strobe network detects an appropriate strobe-time,
it sends a signal back to the preprocessor. The preprocessor
then sends the appropriate buffered data to each of four neural
networks to do the hand-gesture to word mapping. The root
network determines the correct root word based on the static
hand shape and orientation at the strobe-time. The ending
network determines, form the direction of hand movement,
which of the six possible endings (plural, -ed, -ly, -er, -ing,
and normal) the user intended. The rate and stress networks
determine the speaking rate and whether the word is stressed or
not, based on the speed and maggitude of the hand movement,
respectively. Once the mapping is completed, the appropriate
commands (i.e., the word and the necessary rate and stress)
are sent to the speech synthesizer which then speaks the word.

The current Glove-Talk vocabulary consists of 66 root
words, each with up to six different endings. The total size
of the vocabulary is 203 words. Five examples of the initial
mapping of hand shapes (and orientations) to words are
shown in Table I. Many of the hand shapes are derived from
the American Sign Language (ASL) alphabet [3]. Orientation
differences in the hand shapes are usually reserved for
semantically opposite words; for example, the hand shapes
for “come” and “go” have the same finger angles but are 180°
of roll apart (i.e., “come’ is made with the palm up and “go” is
made with the palm down). The various endings of the words
are formed by different directions of the hand movement. The
mapping is given in Table II

Note that for some root words the endings do not correspond
to the ones shown in Table II. For example, the “-s” ending
of the root word “I” is “me”. When any of the six endings
do not exist for a root word, the normal ending is used.
The 66 root words and six endings were extracted from the
.850 word vocabulary of Basic English [4].

TABLE [
EXaMPLES OF GLOVE-TALK LANGUAGE
root hand
word shape
come @
LES
short g
TABLE II
DIRECTION OF MOVEMENT TO ENDING MAFPING
Ending Direction
1 normal down
2 -8 up
3 -ed towards user
4 -ing away from user
5 -er to user’s right
6 -ly to user’s left

The following sections describe the five neural networks
used. Full details of the complete system, the training data,
and the performance can be found in [5].

III. LEARNING IN A MULTILAYER NEURAL NETWORK

All five neural networks were of the feedforward variety
with one hidden layer. They were trained using backpropaga-
tion [6]. In a feedforward network, each unit has an activity
level that is determined by the input received from units in the:
layer below. The total input, z;, received by unit j is defined
to be

z; = Zyiwji —b; (1)
%
where y; is the state of the ith (which is in a lower layer),
wj; is the weight on the connection from the ith to the jth
unit and b; is the bias of the jth unit. Biases can be viewed
as the weights on extra input lines whose activity level is
always one, so they can be learned in just the same way as
the other weights. The lowest layer contains the input units
and an external input vector is supplied to the network by
clamping the states of these units. The state of any other unit
in the network is determined by its activation function. One

FELS AND HINTON: GLOVE-TALK: INTERFACE BETWEEN DATA-GLOVE AND SYNTHESIZER

example is a monotonic nonlinear function of its total input
(sigmoid unit):

1

T Tren @

Y5
Other activation functions can also be used. For example,
the activity levels of the output units of the root or ending
networks represent probability distributions across mutually
exclusive alternative. To ensure that these activity levels sum
to one, the output value, y;, of each output unit, ¢, is derived
from the total input received by that unit, z;, using the
following nonlocal nonlinearity:

em’
WS T

Many different error functions can be used. The most
common is the sum-squared error which is simply the sum
of the squared difference between actual and desired output
activities. We use this error function for three of our networks,
but for the root and ending networks we use a different error-
function that is appropriate to the special behavior of the output
units in these two networks (see (3)). The error function is:

3

F = —Zdj log(yj)
i=1

~_ 1, forcorrect output unit
where dj = {0, for incorrect output unit @)
which simplifies to:

E = —log y; (5)

where y; is the activation of the correct output unit. The
backpropagation procedure for deriving error-derivatives can
easily be modified to use this new error function and the more
complex behavior of the output units [7], [8]. In this case, the
error derivatives with respect to the total input, z; received
by an output unit are obtained from (4) and (3), which are
simply:

a8 _
Oz; -

where d; is the desired binary output value of unit j and y;
is its actual output.

Given the derivatives of the error function with respect to
the weights, there are many different ways of training the
networks. The weights can be updated “online” afier each
training case or the gradients can be accumulated over all
training cases before doing a “batch” update. With batch
updating, it is possible to significantly speed up the learning by
using a line search and by using a method such as cognjugate

()

gradient to pick a better direction for the-line-search-than- -

the direction of steepest descent. However, since the networks
we used were small, it was generally sufficient to use the
batch version of steepest descent with a momentum term (o
accelerate the learning in ravines. For the somewhat larger root
network we used a cross between batch and online methods
(see the following)

O
!

10 sigmoid hidden units

One sigmoid output unit

Complete connectivity

Ax

Ay

Az

velocity magnitude
acceleration magnitude

- 10 time steps = 167 mse¢ —»

Fig. 22 The Strobe Network.

IV. THE HAND TRAJECTORY TO STROBE TIME NETWORK

The network which we had most difficulty in designing and
training was the strobe network (see Fig. 2) which must decide
when the user intends to utter 2 word. This network segments
the continuous stream of data from the Data-Glove, and, as is’
common in pattern recognition tasks, the segmentation turns
out to be much harder than it appears.

The input data to the strobe network is 2 window of 10 time
steps with five parameter at each time step. The first three
parameters are Az, Ay, Az which are the difference between
the current position and the previous position of the hand. The
fourth parameter is the speed of the hand which is defined as
VAz? + Ay? + Az2. The fifth parameter, which is loosely
called the acceleration, is the current speed minus the previous
speed. The speed and acceleration are the primary sources of
information for detecting the beginning of the deceleration
phase of the forward movement, but the Az, Ay, Az values
are needed to allow the network to discriminate translational
movements of the whole hand from translational movements
of the polhemus caused by hand rotations.

The window size of 10 time steps (167 ms) is a compromise
between ensuring that the network has enough information to
detect a strobe-time and keeping the strobe network small.
Notice that the strobe network must perform a forward prop-
agation every time step to keep up with the Data-Glove. The
50 input units of the strobe network are fully connected to
10 hidden units which are all connected to a single sigmoid-
output unit which represents a binary decision about whether
the most recent time is the right time to strobe (i.e., read) the
hand shape (see Fig. 2). The input units act as a 10 time step
shift register with five data values per time step.

The network was trained on 596 hand movement examples
covering 27907 time steps. The network training minimized
the sum-squared difference between the actual and desired
output values. Two variations of the target function were used
to train the strobe net. In the first variation we hand-labeled
appropriate strobe-times in the training data and required the

-network to give an output of one at these times and an output of

zero at other times. For obvious reasons, this is called the delta
target function. This makes life difficult for the network since
our choice of strobe-time may differ by one time step from the
network’s natural choice, given the other training case it has
to accommodate. In the second variation, each hand-labeled
strobe-time was used to define the center of a Gaussian which

4 .
) IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992

10

0.3

0.6
Target
0.4

0

>
=3

[10 . = 0 -
time steps (1/60" sec) 40 8

Fig. 3. Smooth target function for Strobe Network.

Al

w

speed

: A

0 10 ki & 30ty 90 50
time steps (1/60°* sec)

Fig. 4. Speed of hand versus time during hand movement.

specified the desired activity of the output unit. The Gaussian
had a peak value of one and a standard deviation of one.
This “smooth target function” (illustrated in Fig. 3) allows the
strobe network some temporal latitude when recognizing the
strobe time.

The performance of the strobe network is critical. If the
petwork is to sensitive, extranedus words are produced and
if it is too insensitive, many intended utterances will have to
be retried. If the strobe-time is detected at the wrong time,
the hand shape and direction of movement may be wrong.
Also, the labeled training data for the other networks cannot
be created until the strobe network is working . So it is very
important to bave a reliable, accurate strobe signal.

To illustrate what the strobe network recognizes, consider
the typical time domain waveform of the speed of a user’s
hand movement in Fig. 4. In the first five time steps from rest,
the hand accelerates and reaches its maximum speed. Then
the hand begins to slow down in order to reverse direction.
This takes about four time steps. The hand then accelerates
and decelerates a it returns to its starting position. This takes
another 10 time steps.

The strobe network is trained to recognize the initial ac-
celeration followed by the deceleration. After detecting a
strobe-time, the strobe metwork is not run for the next five
steps. This refractory period eliminates double detections and
frees the processor for simulating the other networks.

The hand-labeling of the training data for the strobe network
is time-consuming. The training set was created in 21 sessions,
where most sessions involved making 25 band movements.
‘The user made exactly the decided upon number of hand

movements in each session, so the correct number of strobe-
times in the continuous stream of measurements was known.
Various hand shapes, hand movement directions, durations,
and displacements were made to capture the variability in hand
moventenis from different word contexts.

There were 27 907 input/output pairs in total and 596 of
them were labeled as positive examples of strobe-times with
the remainder being negative. The data was labeled by a
buman observer viewing the data graphically and marking
the time of the first significant drop in speed of the user’s
hand after its initial acceleration. After the data had been
labeled, it was possible to check the labeling accuracy by
checking that the number of positive labels in each session
was the same as the number of hand movements made. To save
effort, data was labeled in a bootstrap manner. First, a small
number of examples (approximately 60) were labeled by hand.
These were then used to train the network. The remaining
unlabeled training data were then forward propagated through
the network. In most cases, some activity then occurred around.
the locations that would have been Iabeled by hand. Thus the
initial, poorly trained network was used to focus the search for
likely areas in the uniabeled training data where a strobe-time
might occur.

To train the network using the delta target function required
1,325.sweeps through the entire training set with the weights
being updated after each entire sweep. The learning rate was
0.001 and a momentum was 0.9 [6]. With the threshold set to
0.5, the total number of misses was 32 out of 596 and the total
number of false alarms was 29 out of 27 311. Even though the
number of training examples was very large, the time required
to train the network on one processor of a Silicon Graphics
4D/240S was only a few hours due to the small network size.
The strobe network has a 95% (190/200) hit rate on the test
data set.

Using the smooth target function, 919 sweeps through the
training set were necessary. The learning rate was 0.001 and
a momentum of 0.75 was used. Allowing a tolerance of three
time steps on either side of the hand-labeled strobe-time, the
number of misses was 12 and the number of false-alarms was
21. When tested the strobe network achieves a 97% hit rate
(194/200). As expected, this is better than the performance of
the strobe network trained with the delta target function.

V. THE HAND SHAPE TO ROOT WORD NETWORK

The 16 input units of the root network represent the two
flex angles of each finger (linearly scaled to lie between
zero and one) and the sines and cosines of the roll, pitch,
and yaw of the whole hand. Sines and cosines were used
to eliminate the discontinuity that occurs when angles are
represented by degrees. The input units are fully connected
to 80 hidden units which, in turn, are fully connected to
66 output units (see Fig. 5). The network is trained to activate
the appropriate output unit more than the others (see (3)). It
requires 509 sweeps through the entire set of 8912 training
examples to achieve a false alarm rate of 0.58% and a miss
rate of 0.47% on the training data with a threshold of 0.5 (se¢
Table III). The weights are updated every 66 examples (one

FELS AND HINTON: GLOVE-TALK: INTERFACE BETWEEN DATA-GLOVE AND SYNTHESIZER

TABLE I
TRAINING AND TEST PERFORMANCE OF ROOT NETWORK
Data Threshold misses false alarms error (%) disruptive example set
error (%) size
Trair{ing 5 52 42 0.58 0.47 8,912
ng 5 37 28 1.70 1.29 2,178
Testing 6 49 21 225 096 2,178

66 output units using "softmax”

T complete connectivity

80 hidden units

T complete connectivity

6 sines & cosines

10 finger y A
0 finger angles for orientation

Fig. 5. The Root Netwock

per root word) using a learning rate of 0.01 and a momentum
of 0.5. On test examples we tried two different thresholds
to vary the miss/false-alarm trade-off. When the 0.5 threshold
was used the number of false-alarms was 28 while the number
of misses was 37. When we used a threshold of 0.6 the number
of false-alarms decreased to 21 while the number of misses
increased to 49. Considering that false-alarms result in wrong
words being spoken whereas misses result in silence that can
quickly be corrected by repeating the gesture, it is better to
have fewer false-alarms even if this significantly increases
the number of misses. The results for the training and test
performance of the root network are summarized in Table II.
More details of how the training data were collected and the
effects of changing the architecture of the network or the input
and output encodings are described in [5].

Once the strobe network is working it is simple to create
training and test data for the other networks. Targets (combi-
nations of the word root, ending, rate, and stress) are presented
to the user and s/he simply makes the appropriate gesture. The
strobe net recognizes when the gesture is made allowing the
hand shape data to be recorded and labeled appropriately. A
typical target presented to the user looks like this:

shortly — fast (stressed)

The user makes the hand shape representing the word
“short” and quickly moves their hand to the far left and
back again. Notice that each of the neural networks requires
different data to be recorded. This fact was exploited by
training the user on various parts of the target independently.
Thus when getting training data for the root network the user
focussed attention on getting the correct hand shape and paid
less attention to the direction, speed, and displacement of the
hand since those variations were only included to ensure that
the recognition of the hand shape was robust against those
variations. Similarly, when collecting training data for the
other networks, attention was focused on the relevant aspect
of the gesture.

“"The miost difficult part of training for the user was re-
membering which hand shape represented each word. To
ease the learning, training sessions were simple at first and
progressively became harder. At first a fixed order of words
was used and the user repeated each word 10 times in blocks
of 10 words. The size of the blocks was increased as the user’s
accuricy and speed improved. Finally, session lengths of 500
randomly selected words were used. 7822 training examples-
were made using the fixed order scheme and 1090 training
examples were created using the random scheme. In addition,
2178 test examples were created using the random scheme. As
many incorrect hand shapes as possible were deleted before
training and testing.

The training data was used to find the maximum and
minimum values of the flex angles to allow linear scaling of
the data. Note that the test data is scaled using the maximum
and minimum values obtained from the fraining data. The data
for the other networks were not scaled.

VI. ADAPTING TO A NEW USER

Once the strobe network is working, creating training and
test data for the remaining neurai networks is very simpie. Data
for each network can be obtained independently allowing the
user to focus on one aspect of the input at a time. When the
user is creating the training data, the idiosyncracies of his/her
particular hand movements are recorded. When the networks
are trained on this data they automatically adapt to the new
user. We have not experimented with different users, but if
users are fairly similar, learning should be very rapid if the
weights learned from the previous user are used as the starting’
point for training on the data provided by the new user.

We have also considered the possibility of adapting the
interface during normal use so that the way in which a user
produces a word can gradually drift towards the simplest
discriminable gesture. If the user indicated whenever the
system mads an error, the system would know the correct
output for every case. For those cases in which it made an
error or got the correct answer with low certainty, the system
could then adapt appropriately. However, we have not yet
experimented with this type of online adaptation so we do
not know if simultaneous adaptation by the interface and the
user will create difficulties for the user.

VII. THE NETWORKS FOR ENDING, RATE, AND STRESS

The role of the ending network is to translate the direction
of movement of the user’s hand to one of the six possible
endings of the word. The six possible endings are mapped as
shown in Table I

6 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 3, NO. 6, NOVEMBER 1992

We used a 30-10-6 back propagation network. The input is
a 10 time step window of Az, Ay, Az values. The window
includes the data at the strobe time and at the previous nine
times. This size window is used because, occasionally, the
strobe time is incorrectly detected during the backward hand
movement. When this happens, the direction of motion at
strobe time is the opposite of the intended forward direction,
so the wrong ending is generated if only the last few time
samples are used. This happened frequently using a window
size of one. A larger window size retains the beginning motion
of the user’s hand, even when the detection of the strobe time
is late.

There are six output umnits in the ending network, one
per ending, and their activities are normalized using (3).
199 examples were used to train the network and 499 examples
were used to test its performance. The network was trained for
125 sweeps through the training set with the learning rate (¢)
at 0.05 and the momentum (&) equal to 0.5. After training the
negative log error (see (4)) summed over all training cases
was 1.15. There were no errors on the training data and only
error on the test set which was probably caused by the user
making the wrong movement.

The rate at which the word is spoken is determined by a
40-15-8 back propagation network which converts a 20 time-
step window of directionless hand speed and directionless
acceleration values to a real-valued speaking rate for each
word. The window covers the strobe time and the previous
19 times. During training the user is asked to make movements
which are very fast, fast, slow, or very slow to indicate four
different speaking rates. The network adapts to the hand speeds
that the user chooses.

The final output of the rate network is a speaking rate from
130-340 words per minute. The network has eight output
units whose activities are in the range from 0 to 1. To
get a real-valued rate from the output units we use a fixed
post-processing operation. Each output unit is permanenty
associated with a particular speaking rate and the activity in
the whole set of output units is then converted to a scaler (rate)
using the following equation:

Y itkioi

Y i0i

where p; is the speaking rate of unit ¢ and o; is its activity.
The following values of y; were used: 60, 110, 160, 210, 260,
310, and 410 words per minute. The rate was restricted to lie
between 130 and 340 words per minute.

It would be possible to train the rate network by simply
backpropagating the derivative of the squared difference be-
tween desired and actual rates through this postprocessing
function. However, this leads to strong interdependencies
between the different output units, since they are all combined
by the postprocessing. Also, it could lead to peculiar represen-
tations. For example, a slow rate could be represented by high
activity in a very slow unit, slight activity in a very fast unit,
and no activity elsewhere. We therefore used a different error
function which specifies error derivatives for each output unit
independently of the behavior of the other output units. We
-assume that each output unit should have a Gaussian tuning

M

rate =

to speaking rate, so its desired activity is:

0; = e—("d-#i)alz"; (8)
where ryq is the desired speaking rate and o is the same
for all output units (a value of 25 was used). The output
units used the sigmoid nonlinearity and they were trained to
minimize the squared difference from their desired activities.
The postprocessing function in (7) is still a sensible way to
get a single scalar value since it corresponds to picking the
speaking rate most likely to have produced the observed output’
activities under an appropriate Gaussian assumption.

The rate network was trained on 140 examples for
300 epochs. The learning parameters were: learning rate (¢)
= 0.01 and the momentum (o) = 0.9. Since the speaking
rate is a real value, the rate network does not have to be
very accurate or reliable. As long as it provides a reasonable
approximation to the desired rate, the speech will remain:
intelligible and its meaning will typically remain the same.
For this reason we did not measure the performance of the
rate network.

We noticed one major problem with the speaking rate when
the system was running: the natural speed of hand movement
differs greatly for different words. For example, to make a
fast movement for the word “at” is much easier than for
the word “righted.” Given the current input data to the rate
network, it is impossible for the network to know what word
is being produced. So a user’s fastest movement on the word
“righted” and a slow movement of the word “at” may cause the
same speaking rate even though the intended rate is different.
Including context in the input data of the network could greatly
reduce this problem. An obvious method would be to scale
the output of the rate network by a different amount for each
of the 203 words. These coefficients could easily be learned
while training the rate network.

The stress network uses the displacement of the user’s hand
movement to decide whether to stress the word. It is a 40-5-1
back propagation network and receives exactly the same input
as the rate network. It has a single sigmoid output unit whose
value is thresholded at 0.5 to decide whether to stress the word.
100 sweeps through 140 examples were required to train the
stress network using € = 0.01 and a = 0.9. After training, the
sum-squared error over all cases was 2.3 with four errors.

VIII. ACHIEVING REAL-TIME RESPONSES

The Glove-Talk system consists of three Unit processes.
One handles the Data-glove communication and preprocessing,
another runs the strobe network, and the last runs the remaining
neural networks. The processes communicate using shared
memory. When all the processes are running on a shared
Silicon Graphics 4D/240S, the processing usually takes 10-
20 ms. In addition to the computing delays, the response
time is limited by the 33-ms delay in getting outputs from
the Data-Glove. Using shared memory for the interprocess
communication and synchronization provides close to real-
time response.

To ensure a delay of only 20 ms in the four neural networks
that identify the root word, the ending, the speech rate, and

FELS AND HINTON: GLOVE-TALK: INTERFACE BETWEEN DATA-GLOVE AND SYNTHESIZER

the stress, requires about 0.8 million floating point operations
per second because the four networks contain 8036 weights
each of which requires a multiply and an add. The continually
running strobe network is much less demanding because it
is small. The delays in the Data-Glove, neural network, and
speech synthesizer can be effectively eliminated by reading
the hand-shape before the end of the forward movement of
the hand.

IX. CONCLUDING REMARKS

Fairly rapid, intelligible speech is possible with the current
Glove-Talk system. About 1% of the words spoken are incor-
rect, and about 5% of attempts result in no word being spoken
due to failure to detect the gesture or failure to confidently
identify the root word.

Obvious improvements include user control of pitch and
loudness, continued “online” training while the system is in
use, and a method for explicitly spelling out words that are
not in the fixed vocabulary. One major improvement would be
to increase the number of root words to the entire 850 words
of Basic English. This may require substantial restructuring of
the system, since static hand-shapes and orientations may not
be sufficiently reproducible to allow 850 discriminable alterna-
tives. It may therefore be necessary to use hand position or its
temporal derivatives to distinguish between root words, or to
encode root words by time-varying hand shapes. A sequence
of two static hand-shapes, for example, would only require
30 discriminable alternatives to specify 900 root words, and a
neural network should be good at adapting to coarticuiation
effects between the two consecutive hand-shapes.

It may prove necessary to abandon the use of static hand
shapes altogether. We are currently investigating a much
finer-grained mapping in which a neural net transforms the
parameters measured by the data-glove into the frequencies
and amplitudes of the first four formants plus the pitch, the -
degree of voicing, and the amplitude of the nasal formant. If
the network can learn how to represent the rapidly changing
formant parameters with smoothly changing hand parameters,
and if a person can learn to produce the appropriate sequence
of hand configurations, this system will have several advan- —
tages over the whole-word-method described in this paper.
Although the initial learning will be much harder, the user will

then have an unlimited vocabulary and much greater control
of the speech.

REFERENCES

{11 J. Kramer and L. Leifer, “The °“Talking Glove’ A speaking aid for
nonvocal deaf and deaf-blind individuals,” in Proc. RESNA 12th Arn.
Conf,, Louisiana, 1989, pp. 471-472.

(2] VPL Research Inc., Data-Glove Model 2 Operating Manual, CA, 1989.

(3] R.B. Wilbur, American Sign Language and Sign Systems. University
Park Press, BA, 1979.

[4] C.K.Ogden, Basic English: International Second Language, prepared by
E.C. Graham. New York: Harcourt, Brace & World Inc., 1968.

{51 S.S.Fels, Building Adaptive Interfaces with Neural Networks: The Glove-

Talk Pilot Study, Tech. Rep. CRG-RT-90-1, University of Toronto,

Toronto, Canada, 1990.

D.E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal rep-

resentations by back-propagating exrors,” Narure, vol. 323, pp. 533--536,

1986. '

[7]1 1.S. Bridle, “Probabilistic interpretation of feedforward classification

petwark outputs, with relationships to statistical pattern recognition,”

in Neuro-computing: Algorithms, Architectures and Applications, F.

Fougelman-Soulie and J. Herault, Springer-Verlag, 1989.

G.E. Hinton, “Copnectionist learning procedures,” Artificial Intelligence,

vol. 40, pp. 185-234, 1989. -

tel

Sidney Fels received the B.A.Sc. degree in elec-
trical engineering from the University of Waterloo
in 1988 and the M.Sc. degree in computer science
from the University of Toronto, Canada in 1990. He
is currently a Ph.D. candidate in computer science
at the University of Toronto.

His current research interests focus on neural
network architectures for creating gesture to speech

__mappings.

Geoffrey E. Hinton received the B.A. degree in
psychology from the University of Cambridge, UK.,
in 1970 and the PiD. degree in artificial intelligence
from the University of Edinburgh, Scotland, in
1978. .
He is a Professor in the Departments of Com-
puter Science and Psychology at the University of
Toronto, Canada, and a Fellow of the Canadian In-

include methods of using connectionist networks for

learning, memory, perception, symbol processing,
and motor control.

