
Using EM for Reinforcement Learning

Peter Dayan Geoffrey E Hinton

Department of Brain and Cognitive Sciences Department of Computer Science

CBCL University of Toronto

E25-210, MIT 6 King’s College Road

Cambridge, MA 02139 Toronto M5S 1A4, Canada

26th April 1996

Abstract

We discsus Hinton’s (1989) relative payoff procedure (RPP), a static reinforcement

learning algorithm whose foundation is not stochastic gradient ascent. We show cir-

cumstances under which applying the RPP is guaranteed to increase the mean return,

even though it can make large changes in the values of the parameters. The proof

is based on a mapping between the RPP and a form of the expectation-maximisation

procedure of Dempster, Laird & Rubin (1976).

1 Introduction

Consider a stochastic learning automaton (eg Narendra & Thatachar, 1989) whose actions

y are drawn from a set Y . This could, for instance, be the set of 2n choices over n separate

binary decisions. If the automaton maintains a probability distribution p(yj�) over these

possible actions, where � is a set of parameters, then its task is to learn values of the

parameters � that maximize the expected payoff:

�(�) = hE [rjy]ip(yj�) =
X
Y

p(yj�)E [rjy]: (1)

1

Here, E [rjy] is the expected reward for performing action y.

Apart from random search, simulated annealing and genetic algorithms, almost all the

methods with which we are familiar for attempting to choose appropriate � in such do-

mains are local in the sense that they make small steps usually in a direction that bears

some relation to the gradient. Examples include the Keifer-Wolfowitz procedure (Wasan,

1969) the ARP algorithm (Barto & Anandan, 1985) and the REINFORCE framework (Williams,

1992). There are two reasons to make small steps, one is that there is a noisy estimation

problem – typically the automaton will emit single actions y1; y2; : : : according to p(yj�),

will receive single samples of the reward from the distributions p(rjym), and will have to

average the gradient over these noisy values. The other is that � might have a compli-

cated effect on which actions are chosen, or the relationship between actions and rewards

might be obscure. For instance, if Y is the set of 2n choices over n separate binary actions

a1 : : : an, and � = fp1; : : : ; png is the collection of probabilities of choosing ai = 1, so

p(y = fa1::angj�) =
nY
i=1

p
ai

i
(1� pi)

1�ai ; (2)

then the average reward �(�) depends in a complicated manner on the collection of pi.

Gradient ascent in � would seem the only option as taking large steps might lead to de-

creases in the average reward.

The sampling problem is indeed present, and we will evade it by assuming a large batch

size. However, we show that in circumstances such as the n binary action task, it is pos-

sible to make large well-founded changes to the parameters without explicitly estimating

the curvature of the space of expected payoffs, by a mapping onto a maximum likelihood

probability density estimation problem. In effect, we maximize reward by solving a se-

quence of probability matching problems, where � is chosen at each step to match as best

it can a fictitious distribution that is determined by the average rewards experienced on

2

the previous step. Although there can be large changes in � from one step to the next,

we are guaranteed that the average reward is monotonically increasing. The guarantee

comes for exactly the same reason as in the expectation-maximization (EM) algorithm

(Baum, Petrie, Soules & Weiss, 1970; Dempster, Laird & Rubin, 1977) and, as with EM,

there can be local optima. The relative payoff procedure (RPP) (Hinton, 1989) is a partic-

ular reinforcement learning algorithm for the n binary action task with positive r which

makes large moves in the pi. Our proof demonstrates that the RPP is well-founded.

2 Theory

The RPP operates to improve the parameters p1 : : : pn of equation 2 in a synchronous man-

ner based on substantial sampling. It suggests updating the probability of choosing ai = 1

to:

p
0
i
=
haiE [rjy]ip(yj�)

hE [rjy]ip(yj�)
(3)

which is the ratio of the mean reward that accrues when ai = 1 to the net mean reward.

If all the rewards r are positive, then 0 � p
0
i
� 1. This note proves that using the RPP, the

expected reinforcement increases, ie hE [rjy]ip(yj�0) � hE [rjy]ip(yj�) where �0 = fp01; : : : ; p
0
n
g.

The proof rests on the following observation. Given a current value of �, if one could

arrange that:

�E [rjy] =
p(yj�0)

p(yj�)
(4)

for some �, then �
0 would lead to higher average returns than �. We prove this formally

below, but the intuition is that if E [rjy1] > E [rjy2], then p(y1j�0)
p(y2j�0)

>
p(y1j�)
p(y2j�)

, so �
0 will put more

weight on y1 than � does. We therefore pick �
0 so that p(yj�0) matches the distribution

�E [rjy]p(yj�) as well as possible (using a Kullback-Leibler penalty). Note that this target

distribution moves with �. Matching just �E [rjy], something that animals can be observed

3

to do under some circumstances (Gallistel, 1990) does not result in maximizing average

rewards (Sabes & Jordan, 1995).

If the rewards r are stochastic, then our method (and the RPP) does not eliminate the need

for repeated sampling to work out the mean return. We assume knowledge of E [rjy].

Defining the distribution in equation 4 correctly requires E [rjy] > 0. Since maximizing

�(�) and �(�)+! have the same consequences for �, we can add arbitrary constants to the

rewards so that they are all positive. However, this can affect the rate of convergence.

We now show how an improvement in the expected reinforcement can be guaranteed:

log
�(�0)

�(�)
= log

X
y2Y

p(yj�0)
E [rjy]

�(�)

= log
X
y2Y

"
p(yj�)E [rjy]

�(�)

#
p(yj�0)

p(yj�)
(5)

�
X
y2Y

"
p(yj�)E [rjy]

�(�)

#
log

p(yj�0)

p(yj�)
; by Jensen’s inequality

=
1

�(�)
[Q(�; �0)�Q(�; �)] :

(6)

where

Q(�; �0) =
X
y2Y

p(yj�)E [rjy] logp(yj�0)

so if Q(�; �0) � Q(�; �), then �(�0) � �(�). The normalization step in equation 5 creates

the matching distribution from equation 4. Given �, if �0 is chosen to maximize Q(�; �0),

then we are guaranteed that Q(�; �0) � Q(�; �) and therefore that the average reward is

non-decreasing.

4

In the RPP, the new probability p
0
i

for choosing ai = 1 is given by:

p
0
i
=
haiE [rjy]ip(yj�)

hE [rjy]ip(yj�)
; (7)

so it is the fraction of the average reward that arrives when ai = 1. Using equation 2,

@Q(�; �0)

@p
0
i

=
1

p
0
i
(1� p

0
i
)

2
4 X
y2Y:ai=1

p(yj�)E [rjy]� p
0
i

X
y2Y

p(yj�)E [rjy]

3
5

So, if:

p
0
i
=

P
y2Y:ai=1 p(yj�)E [rjy]P

y2Y p(yj�)E [rjy]
; then

@Q(�; �0)

@p
0
i

= 0;

and it is readily seen that Q(�; �0) is maximized. But this condition is just that of equa-

tion 7. Therefore the RPP is monotonic in the average return.

Figure 1 shows the consequence of employing the RPP. The left diagram (a) shows the

case in which n = 2; the two lines and associated points show how p1 and p2 change on

successive steps using the RPP. The terminal value p1 = p2 = 0 reached by the left-hand

line is a local optimum. Note that the RPP always changes the parameters in the direction

of the gradient of the expected amount of reinforcement (this is generally true), but by a

variable amount.

Figure 1b compares the RPP with (a deterministic version of) Williams’ (1992) stochastic

gradient ascent REINFORCE algorithm for a case with n = 12 and rewards E [rjy] drawn

from an exponential distribution. The RPP and REINFORCE were started at the same

point; the graph shows the difference between the maximum possible reward and the

expected reward after given numbers of iterations. To make a fair comparison between

the two algorithms we chose n small enough that the exact averages in equation 3 and

(for REINFORCE) the exact gradients:

p
0
i
= �

@

@pi

hE [rjy]ip(yj�)

5

a) b)

0
0.25

0.5
0.75

1

p1

0
0.25

0.5
0.75

1

p2

0

2

4

E[r]

0
0.25

0.5
0.75

1

p1

0

2

4

0 50 100 150 200
steps

0.0

5.0

10.0

15.0

de
fic

it
in

 e
xp

ec
te

d
re

w
ar

d

Performance

rpp
α=0.1
α=0.2
α=0.3
α=0.7
α=0.8

Figure 1: Performance of the RPP. a) Adaptation of p1 and p2 using the RPP from two different

start points on the given �(p1; p2). The points are succesive values; the lines are joined for graph-

ical convenience. b) Comparison of the RPP with William’s (1992) REINFORCE for a particular

problem with n = 12. See text for comment and details.

could be calculated. Figure 1b shows the (consequently smooth) course of learning for

various values of the learning rate. We observe that for both algorithms, the expected

return never decreases (as guaranteed for the RPP but not REINFORCE), that the course

of learning is not completely smooth – with a large plateau in the middle, and that both

algorithms get stuck in local minima. This is a best case for the RPP – only for a small

learning rate and consequently slow learning does REINFORCE not get stuck in a worse

local minimum. On other cases, there are values of � for which REINFORCE beats the

RPP. However, there are no free parameters in the RPP, and it performs well across a

variety of such problems.

6

3 Discussion

The analogy to EM can be made quite precise. EM is a maximum likelihood method for

probability density estimation for a collection X of observed data where underlying point

x 2 X there can be a hidden variable y 2 Y . The density has the form:

p(xj�) =
X
y2Y

p(yj�)p(xjy; �)

and we seek to choose � to maximize

X
x2X

log [p(xj�)]

The E-phase of EM calculates the posterior responsibilities p(yjx; �) for each y 2 Y for

each x:

p(yjx; �) =
p(yj�)p(xjy; �)P
z2Y p(zj�)p(xjz; �)

In our case, there is no x, but the equivalent of this posterior distribution, which comes

from equation 4, is

Py(�) �
p(yj�)E [rjy]P
z2Y p(zj�)r(z)

:

The M-phase of EM chooses parameters �
0 in the light of this posterior distribution to

maximize X
x2X

X
y2Y

p(yjx; �) log[p(x; yj�0)]:

In our case this is exactly equivalent to minimizing the Kullback-Leibler divergence

KL[Py(�); p(yj�
0)] = �

X
y2Y

Py(�) log

"
p(yj�0)

Py(�)

#

Up to some terms that do not affect �0, this is �Q(�; �0). The Kullback-Leibler divergence

between two distributions is a measure of the distance between them, and therefore min-

imizing it is a form of probability matching.

7

Our result is weak – the requirement for sampling from the distribution is rather restric-

tive, and we have not proved anything about the actual rate of convergence. The al-

gorithm performs best (Sutton, personal communication) if the differences between the

rewards are of the same order of magnitude as the rewards themselves (as a result of the

normalization in equation 5) – it uses multiplicative comparison rather than the subtrac-

tive comparison of Sutton (1984; Williams, 1992; Dayan, 1990).

The link to the EM algorithm suggests that there may be reinforcement learning algo-

rithms other than the RPP which make large changes to the values of the parameters for

which similar guarantees about non-decreasing average rewards can be given. The most

interesting extension would be to dynamic programming (Bellman, 1957) whose tech-

niques for choosing (single-component) actions to optimize return in sequential decision

tasks include two algorithms that make large changes on each step: value and policy it-

eration (Howard, 1960). As various people have noted, the latter explicitly involves both

estimation (of the value of a policy) and maximization (choosing a new policy in the light

of the value of each state under the old one), although its theory is not at all described in

terms of density modeling.

Acknowledgements

Support came from NSERC and the Canadian Institute for Advanced Research (CIAR).

GEH is the Noranda fellow of the CIAR. We are grateful to Philip Sabes and Mike Jordan

for the spur and to Mike Jordan and the referees for comments on an earlier version of

this paper.

8

References

Barto, A.G. & Anandan, P. (1985). Pattern recognizing stochastic learning automata. IEEE

Transactions on Systems, Man and Cybernetics, 15, 360-374.

Baum, L.E., Petrie, E., Soules, G. & Weiss, N. (1970). A maximization technique occurring

in the statistical analysis of probabilistic functions of Markov Chains. Ann. Math. Stat. 41,

1, pp 164-171.

Bellman, R.E. (1957). Dynamic Programming. Princeton, NJ: Princeton University Press.

Dayan, P. (1990). Reinforcement comparison. In D.S. Touretzky, J.L. Elman, T.J. Sejnowski

& G.E. Hinton, editors, Proceedings of the 1990 Connectionist Models Summer School, San

Mateo, CA: Morgan Kaufmann, 45-51.

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1976). Maximum likelihood from incomplete

data via the EM algorithm. Proceedings of the Royal Statistical Society, 1–38.

Gallistel, C.R. (1990). The Organization of Learning. Cambridge, Mass: MIT Press.

Hinton, G.E. (1989). Connectionist learning procedures. Artificial Intelligence, 40, 185-234.

Howard, R.A. (1960). Dynamic Programming and Markov Processes. Cambridge, MA: MIT

Press.

McLachlan, G.J. & Basford, K.E. (1988). Mixture Models: Inference and Applications to Clus-

tering. New York, NY: Marcel Dekker.

Narendra, KS & Thatachar, MAL (1989). Learning Automata: An Introduction. Englewood

Cliffs, NJ: Prentice-Hall.

Sabes, P.N. & Jordan, M.I. (1995). Reinforcement learning by probability matching. Ad-

9

vances in Neural Information Processing Systems, 8. Cambridge, MA: MIT Press.

Sutton, R.S. (1984). Temporal Credit Assignment in Reinforcement Learning. PhD Thesis,

University of Massachusetts, Amherst, MA.

Wasan, M.T. Stochastic Approximation. Cambridge, England: CUP.

Williams, R.J. (1992). Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 8, 229-256.

10

