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Abstract

In a regression or classi�cation setting where we wish to predict Y from
x1; x2; . . .xp, we suppose that an additional set of \coaching" variables
z1; z2; . . . zm are available in our training sample. These might be variables
that are di�cult to measure, and they will not be available when we
predict Y from x1; x2; . . .xp in the future. We consider two methods of
making use of the coaching variables in order to improve the prediction of
Y from x1; x2; . . .xp. The relative merits of these approaches are discussed
and compared in a number of examples.

Keywords: regression, classi�cation, missing data, mixtures of experts

1 Introduction

We consider the following problem: we have a response variable Y in a regression
or classi�cation setting that we wish to predict from a set of variables x =
(x1; x2; . . .xp). In our training sample we have an additional set of variables
z = (z1; z2; . . .zm). These variables are di�cult to collect| for example an
invasive medical test, or a �nancial indicator that is not obtainable quickly|
and as a result they will not be available in the future for prediction of Y . Hence
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our present dataset consists of N measurements of x, z and Y , but in the future
we will have only x available for prediction of Y .

In this paper we address the following question: can we make use of z in
our training sample, so as to improve future predictions of Y based on x alone?
Breiman and Friedman (1994) have coined this the \coaching" problem, the
idea being that z might be used to \coach" x in the art of predicting Y . We
discuss two approaches to this problem, one called \mixture coaching" and the
other due to Breiman and Friedman (1994) , which we call \response coaching".

A simple example shows that coaching is not always helpful. Suppose that
E(Y jx; z) = � + �1x + �2z, with var(Y ) = �2. Then E(Y jx) = � + �1x +
�2E(zjx). Now if z is independent of x, or even if E(zjx) is a linear function
of x, then E(Y jx) is a linear function of x. It follows by the Gauss-Markov
theorem that the least squares estimate of Y on x cannot be improved upon in
a linear unbiassed sense by use of z.

More specialized models are needed to exploit coaching variables. In section
2 we describe two such models. Section 3 gives some examples with both real
and simulated data. Our focus in this paper is on linear and generalized models:
in section 4 we discuss some possibilities for nonparametric regression models.

2 Two coaching models

2.1 Mixture coaching

Let f(BjA) denote the conditional density of B given A. Insight into the coach-
ing problem can be gleaned from the relationship

f(Y jx) =
Z

f(Y jx; z)f(zjx)dz (1)

From (1) we see that it makes sense to make use of z if f(Y jx; z) varies as a
function of z. That is, we can postulate a mixture model for Y given z, the
mixture components indexed by the value of the coach z. To make use of z in
this setting we also need some information in x about z, that is f(zjx) must
vary with x.

Example 1. Two regression lines
Figure 1 shows a two regression line example. In both top panels f(Y jx; z)

is di�erent for z = 1 and z = 2. In the top left panel, the distribution of
f(zjx) = :5 independent of x so that it doesn't help to make use of z| with or
without z we would estimate the mean of f(yjx) by the regression line midway
between the two lines.1 The coach z tells us which regression line (\strategy")

1In a Bayesian sense, coaching is still helpful in this scenario. That is, the estimate which

reports one regression line or the other with probability .5 is the Bayes estimate under the

mixture model.

2



o

o

ooo

o

oo
oo

o

o
o

o

o

o
o

o
o

o

o
o

o

o

o
o

oo
o

o

o

o

o

o

o o

o

o
o

o

o

o

o

o

o oo
o

o

o

o
o

oo
o

ooo
ooo o
o

o
o

o
o o

o
oo

o

o
o

o o
o

o

o

o

o
o

o
oo

o
o

o

o

o
o

oo

o

o
o

o

x

y

-2 -1 0 1 2 3

-5
0

5
10

15

z=1

z=2

o
oo

o
oo oo

o

o

o

o
o

o o ooo
o

oo
o

o
o

o o
o o

o
o

ooo
o o

ooo
oo

o

o
o

o
o

ooo o
o

oooo
o

oo
o

o

ooo

oo

o

ooo
o

o
o

o
o

o

oo
o o

ooo

oo o
o oo

o
oo

o
o o

oo
oo

o

o

o

x

y
-2 0 2 4 6

-5
0

5
10

15
20

z=1

z=2

o
oo

o
oo oo

o

o

o

o
o

o o ooo
o

oo
o

o
o

o o
o o

o
o

ooo
o o

ooo
oo

o

o
o

o
o

ooo o
o

oooo
o

oo
o

o

ooo

oo

o

ooo
o

o
o

o
o

o

oo
o o

ooo

oo o
o oo

o
oo

o
o o

oo
oo

o

o

o

x

y

-2 0 2 4 6

-5
0

5
10

15
20

z=1

z=2

o
oo

o
oo oo

o

o

o

o
o

o o ooo
o

oo
o

o
o

o o
o o

o
o

ooo
o o

ooo
oo

o

o
o

o
o

ooo o
o

oooo
o

oo
o

o

ooo

oo

o

ooo
o

o
o

o
o

o

oo
o o

ooo

oo o
o oo

o
oo

o
o o

oo
oo

o

o

o

x

y

-2 0 2 4 6

-5
0

5
10

15
20

z=1

z=2

Figure 1: Simulated data for mixture coaching. In the top left panel, coaching
does not work since the distribution of z is independent of x. In the top right
panel, coaching is possible: the bottom left panel shows the predicted values from
mixture coaching using the true probabilities f(zjx); in the bottom right the

estimated values f̂ (zjx) are used.
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to use, but there is no information in x to predict z in its absence. However
in the top right panel f(zjx) is not constant so that we can make use of z
in coaching x. The bottom left panel shows the predictions when we use the
actual probabilities f(zjx); the bottom right shows the predictions when the
probabilities f(zjx) are estimated by the method given in this paper.

According to equation (1) we need to specify models for f(Y jx; z) and f(zjx).
The proposed model for f(Y jx; z) is

Y = xT �(z) + � (2)

where � has mean 0 and is independent of x and z. That is, Y follows a linear
regression in x for each value of z, with the coe�cients varying as a function of
z. A simple model would take �(z) = a + 
z, leading to a product interaction
between x and z. In a di�erent context, Hastie and Tibshirani (1993) investigate
more 
exible models for �(z), calling them \varying coe�cient models".

For present purposes it is convenient to partition the z space into say K
groups A1; A2; . . .K. An attractive method for partitioning is recursive binary
splitting, as used in the classi�cation and regression tree methodology (CART;
Breiman et al., 1984), and that is our approach here.

Recursive binary splitting requires a criterion for choosing a \best" split. In
our problem we would like a split that gives a good �t for the piecewise linear
model (2) and also one that is predictable from x. Let r(y;x;�) = (y � x�)2,
and d(y; p) = �y logp � (1 � y) log(1 � p). Suppose we have a node parent to
be split into two nodes son1 and son2. Let ui = I(i 2 son2). De�ne

rss =
X

i2son1

r(yi;xi; �̂1) +
X

i2son2

r(yi;xi; �̂2)

dev =
X

i2parent

d(ui; p̂i) (3)

Here �̂ is the least squares estimate of y on x in the parent node (and similarly

for �̂1 and �̂2), and

p̂i = p̂(xi) = 1=[1 + exp(��̂Txi)] (4)

where �̂ maximizes
P

i2parent d(ui; pi). Then we choose the split to minimize

cost = �rss + � � dev (5)

where � > 0 is a parameter that balances the two objectives. The best value
for � may be derived from a cross-validation estimate of the error in predicting
Y from x.

The terminal nodes of the tree give a partition A1; A2; . . .AK of the training
data based in values of z. In our implementation, for simplicity we limit the
number of terminal nodes in the tree to some small �xed number, say 2 or 3,
and do not use bottom-up pruning.
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Notice that in this process we have in e�ect estimated two models from the
training data: a model for predicting Y from x in di�erent partitions Aj of the
z space, and a model for predicting the partition membership from x. We call
the �rst model the coaching model for Y , and the second one the strategy model
for z. The coaching model tells us how to predict Y from x for each of the
\strategies" Aj while the strategy model predicts the strategy to use when z

(and hence the partition membership) is unknown.
In our particular construction, the coaching and strategy models are based

on the same binary splitting of the training data. This is natural when recursive
binary splitting is used to form the partition. However this need not be true if
other approaches are used to estimate the partition.

To predict Y from a value x0, we estimate the probabilities �k(x0) =
f(Akjx0) from the strategy model: these are just products of the conditional
probabilities p̂(x) at the splits de�ning each terminal region. Then we compute
the discrete analog of (1):

f̂ (Y jx0) =
KX
k=1

�̂k(x0)f̂ (Y jx0; Ak)

Speci�cally, for the linear regression model we obtain Ê(Y jx0) =
PK

k=1 �̂k(x0)x
T
0 �̂k.

Remark A. To extend the mixture coaching model to generalized regression
models, we take the linear part of the model to be � = xT�(z). Consequently
we �t a generalized regression model to the data in each of the nodes of the
strategy tree.

Remark B. In practice we have found that the procedure is quite insensitive
to the value chosen for �. A value of 0 is often as good as values > 0 and in
fact, zero is the value used in most of our examples. It is possible, however, to
construct examples in which a value � > 0 is optimal (Example 2 below).

Remark C. The mixture coaching technique has some similarity to the
\surrogate variable" facility in the CART procedure. Here we are splitting on
the z variables, and seeking surrogates among the x variables. However rather
than surrogate variables, we actually obtain probabilities of going left or right
at each split. And further, we choose the split based on the �t and predictability
of the split from x.

Remark D. It might be that some of the coaching variables are missing in
some of the training cases, for example if a patient refused an invasive medical
test. This would create no di�culty for the mixture coaching procedure, as we
simply use the cases with complete data at each node. This is analogous to
surrogate variable approach used in CART. Similarly, if some but not all of the
z variables were available for prediction, we would simply use their observed
vales in the strategy tree.

Remark E. Using a coaching variable in this way is analogous to �tting a
mixture density with labelled data. Hence a rough idea of the possible gains in
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e�ciency over the use of unlabeled data can be obtained from results in density
estimation, for example Hosmer and Dick (1974). Their work also suggests that
substantial gains can be achieved even from partially labelled data. Such data
can be handled in the coaching problem by the method described in Remark D.

2.2 A network representation of mixture coaching

The mixture coaching model is closely related to the \mixtures of local experts"
approach of Nowlan (1991), Jacobs et. al. (1991) and Jordan and Jacobs (1994).
The main distinction is that in the coaching problem, the label of the strategy
or expert is known in the training set while in the mixture of experts method,
the label of the expert in the training set is unknown. and is estimated as a
linear function of x from the data.

Following up on this connection, Figures 2 and 3 show a network representa-
tion of the mixture coaching procedure. Details are given in the �gure captions.

2.3 Response coaching

Another form of equation (1) is

f(Y jx) =
Z

f(Y; zjx)dz: (6)

This suggests that we can use Z as a coach by jointly predicting both Y and Z
from x. Suppose that f(Y;Zjx) is indexed by parameters � = (�1; �2) and 
.
The simplest models would specify independence of Y and Z given x:

f�;
 (Y;Zjx) = f�1;
 (Y jx) � f�2;
 (Zjx) (7)

Given estimates �̂1; �̂2; 
̂, equation (6) becomes

f̂ (Y jx) = f�̂1;
̂ (Y jx) (8)

and we would predict Y from x using f
�̂1;
̂ (Y jx). We call (7) and (8) the

response coaching model. In a sense, the response coaching model is a special
case of the mixture coaching procedure. There is only one strategy, and we do
not partition the z space but treat z as is. Finally, we use a common set of
parameters in the coaching and the strategy models.

It is the presence of a common set of parameters 
 in the models for Y and Z
that leads to any potential bene�t from Z. For example if we speci�ed separate
linear regression models for Y and Z, the prediction of Y would be unchanged
by inclusion of Z. However consider a model of the form

Y =
JX

j=1

�1jh(x;
j) + �1
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Figure 2: Fitting of the mixture coaching model. The coaching model uses z to
partition the data into K regions. The binary variables r1; r2; . . . rK are indicator
variables for the K regions. In each of the regions we use a di�erent strategy (or
\expert"), speci�cally a linear model in x. The strategy model estimates probabilities
of partition membership �k, based on x.

x
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Figure 3: Prediction from the mixture coaching model. The strategy model estimates
the probabilities �k with which to combine the outputs of each of the strategies, into
the �tted value ŷ. Alternatively, we can view the �k as mixing proportions in a mixture
of Gaussians model for Y given x.

7



Z =
JX

j=1

�2jh(x;
j) + �2 (9)

where �1 and �2 are independent. Here Y and Z share the basis functions
h(x;
j) and this leads to potential improvements due to the presence of Z.

Consider the simple case where Z is a scalar, J = 1, and h(x;
) = 
Tx. For
identi�ability assume jj�jj = 1 where � = (�1; �2). Assume var(�j) = �2j . Then
the maximum likelihood estimates of � and 
 can be derived from a canonical
correlation analysis of y and x. Here is a convenient form of the solutions. Let
Px denote the projection matrix onto the columns of the observed x values and
let W be the n � 2 matrix of observed y and z values. Then �̂ is the leading
eigenvector ofWTPxW, and 
̂ is the coe�cient of the least squares regression

of �̂
T
W on x.

The variance of 
̂ is complicated since �̂ is a nonlinear function of x. However
if we assume that �̂ = � the true value, it is easy to show that 
̂ = �1
̂

y + �2
̂
z

where 
̂y is the least squares estimate of y on x and similarly for 
̂z. Suppose
�2
2
= c�2

1
. It follows that

var(
̂) = (�21 + c�22)var(
̂
y) (10)

If for example �1 = �2 = 1=
p
2 and c = 1=4, then (�21 + c�22) = :53. Hence

the use of the coach z would reduce the variance of 
̂ by approximately half.
The simulation results in Example 3 below suggest that the actual gains are
somewhat less than this.

Remark F. Another instance of the response coaching model would be
parallel regression trees for Y and Z, each tree being a function of x. The trees
would have the same splits. i.e. basis functions h(x;
j), but di�erent estimated
values in each node (parameters �1j and �2j). In this way, z could coach x in
making useful partitions of the x space for predicting Y .

3 Examples

Example 1 continued.
Example 1 is designed for the mixture coaching procedure. For the data in

the top right panel of Figure 1, the mixture coaching tree simply splits z into
the two groups z = 1 and z = 2. Figure 1 shows the test sample results from
this model. There were 200 training observations and 500 test observations in
each of 20 simulations. The results in the �rst boxplot used the actual value
f(zjx) from the model, while in the second one we estimated f(zjx) from the
strategy model. Both outperform the \no coach" model (simple least squares
regression). The (linear) response coaching model gives identical results to the
no coaching model since the rank of the regression matrix is only one.
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Figure 4: Results for Example 1 (two regression lines)

The rightmost boxplot labelled \mixture" refers to the �tting of a mixture of
2 regression lines, without any coaching. We started with a random allocation
of the points to one of two groups and then used a standard EM algorithm to
estimate the intercepts and slopes of the lines, and the mixing proportion for
each observation. Five di�erent random seeds were used, and the one giving
highest log-likelihood was selected. To predict ŷ for a gvien value x0, we found
the nearest neighbour x in the training set, and used the estimates for x. The
results show that uncoached �tting of mixtures does about as well as simple
least squares regression. The problem is that for very few starting values does
the algorithm converge to the desired two regression line solution. For almost all
starting values both regression lines converge to lines that are very close to the
overall regression line. Of course one could take many more starting values, but
this di�culty would be exacerbated with high dimensional x and many mixture
components.

Example 2: Multiple coaches
In this example we generated 50 observations from the model

zj � Unif(0; 2); j = 1; 2; 3
x = z1 + �1
� = � = z1 + z2 + z3
y = �+ �x+ �2 (11)

where the components of �1 and �2 are independent normal N (0; :25). All three
zj's a�ect the mean of y, but only z1 is predictable from x. Figure 5 shows
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Figure 5: Results for Example 2 (multiple coaches). Median squared error for
no coach model, and mixture coaching with � = 0; 1; . . .10.

the test error (over 10 simulations) from the mixture coaching procedure as
a function of the cost parameter �. For values of � > 0, the criterion takes
account of the predictability of the coach and produces a small improvement.
In this example we limited the number of terminal nodes in the coaching tree
to 2, i.e. one split. When more splits were allowed, the e�ect of non-zero values
of � disappeared.

Example 3: Bivariate reduced rank model
In this example we generated data from the model

y = 2aTx+ �1
z = 2aTx+ 0:25 � �2 (12)

where the components of x; �1 and �2 are independent standard normal and
a = (1;�2; 1). This model might re
ect a situation where z is a \gold standard"
measurement and y is a noisy version of z. The results of 20 simulations from
this model are shown in Figure 6.

This example is of course perfectly suited to the response coach model. How-
ever Figure 6 shows that the gains over the no coach (simple regression) approach
are only modest.

Example 3: NOx data
Cleveland et al. (1991) examine 88 observations on the exhaust from an

engine fueled by ethanol. The response variable, denoted by NOx, is the con-
centration of nitric oxide and nitrogen dioxide, normalized by the work load of
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Figure 6: Results for Example 3 (bivariate normal model)

the engine. The two predictors are equivalence ratio E, a measure of the fuel/air
mixture, and the compression ratio C of the engine.

Figure 7 gives a plot of the data. The broken lines show the �tted linear
regressions of NOx on C in 4 nonoverlapping ranges of E. Within each range of
E, a linear model in C seems to �t well. But as E varies, both the intercept and
slope of the line vary. This suggests that E might act as an e�ective mixture
coach for C. We tried divided the data randomly into training and test sets of
size 44, and applied the coaching model of the previous section. This was done
for 5 random divisions, and a summary of the results is shown in Figure 8.

Mixture coaching by E clearly helps in the prediction of NOx from C. The
(linear) response coaching model gives identical results to the no coaching model
since the rank of the regression matrix is only one.

Example 4: Detection of Muscular Dystrophy Carriers
These data are taken from Andrews and Herzberg (1985). They consist

of the enzyme measurements on 209 female relatives of boys with Duchenne
Muscular Dystrophy (DMD). The females are either DMD carriers or normals.
The overall objective is to predict DMD from the enzyme levels. There are four
enzyme measurements - CK and H, which are inexpensive to collect, and PK
and LD, which are more costly. According to Andrews and Herzberg, one of the
important questions was whether the second two enzymes increase the detection
rate in an important way.

The women's age was also available, and we included it in the analysis.
After deleting incomplete observations there were 194 cases{ 127 normals and
67 carriers. Some women were measured more than once on di�erent days and
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Figure 7: Plots of NOx versus C for low, medium, high and very high values of
E. Included in each panel are least squares regression lines
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Figure 8: Results for Example 3 (NOx data)

Table 1: Linear logistic analysis of DMD data

Variable Estimate Standard Error Z score
age 0.16 0.05 3.53
CK 2.88 0.75 3.82
H 0.09 0.03 3.17
PK 1.88 0.80 2.34
LD 0.01 0.01 1.92

we retained the replicates. Table 1 shows the results of a linear logistic analysis
of these data.

The deviance with and without (PK, LD) was 81.8 and 94.1, suggesting that
PK and LD signi�cantly improve the detection rate. To investigate this , we
randomly divided the data into two halves, trained on one half and predicted
the other half. The results of 20 such random divisions of the data are shown in
Table 2, including linear logistic models (lines 1 and 2) a linear logistic model
coached by PK and LD (line 3), and a linear response coaching model (line 4).
We see that the PK and LD enzymes do not improve upon age, CK and H.
Given this fact, it is not surprising that PK and LD are not e�ective coaches
for CK and H.
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Table 2: Results of 20 validation draws for the DMD data

Model Median deviance (se) Error rate(se)
(1) All variables 0.51 (.02) 0.09 (.01)
(2) Age, CK, H 0.50 (.03) 0.10 (.01)
(3) Mixture coaching by PK, LD 0.54 (.06) 0.10 (.01)
(4) Response coaching by PK, LD 0.56 (.02) 0.10 (.01)

4 Discussion

In this paper we have investigated the e�ectiveness of two di�erent approaches
to the utilization of \coaching" variables. The two approaches- mixture and re-
sponse coaching, seem to complement each other and in some cases can improve
prediction accuracy.

Our focus has been on linear and generalized models: however extensions
to more 
exible nonparametric regression models are possible. For example,
in the mixture coaching procedure one could allow splits on x as well as z,
which would make the procedure more like the CART method. In the response
coaching model, one could use adaptively selected basis functions in the models
for Y and Z: this approach is explored in Breiman and Friedman (1994).

It would be interesting to explore applications of coaching methods to �nan-
cial forecasting and other time series problems.
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