
DEEP BELIEF NETS FOR NATURAL LANGUAGE CALL–ROUTING

Ruhi Sarikaya, Geoffrey E. Hinton, Bhuvana Ramabhadran

IBM T.J. Watson Research Center Department of Computer Science
Yorktown Heights, NY 10598 University of Toronto, Toronto, Canada

{sarikaya,bhuvana}@us.ibm.com hinton@cs.toronto.edu

ABSTRACT

This paper considers application of Deep Belief Nets (DBNs) to nat-
ural language call routing. DBNs have been successfully applied
to a number of tasks, including image, audio and speech classifi-
cation, thanks to the recent discovery of an efficient learning tech-
nique. DBNs learn a multi-layer generative model from unlabeled
data and the features discovered by this model are then used to
initialize a feed-forward neural network which is fine-tuned with
backpropagation. We compare a DBN-initialized neural network
to three widely used text classification algorithms; Support Vector
machines (SVM), Boosting and Maximum Entropy (MaxEnt). The
DBN-based model gives a call–routing classification accuracy that
is equal to the best of the other models even though it currently uses
an impoverished representation of the input.

Index Terms— Call–Routing, Deep Learning, DBN, RBM.

1. INTRODUCTION

Natural language call–routing is a major speech application that has
found widespread use. Almost all customer contact centers for large
companies use such an automated system. The task in call–routing
is to understand the speaker’s request and take the appropriate ac-
tion. Typically, call–routing requires two statistical models. The
first performs speech transcription, which maps what the caller says
to text. The second is the Action Classification (AC) model that
maps the transcription generated by the speech recognizer to the
call-types that are used to determine the appropriate action. Ma-
chine learning techniques are quite successful in text classification
when provided with sufficient labeled data, but as the complexity
of the task increases the amount of training data required for rea-
sonable performance can become large. This increases the cost and
time taken to deploy the natural language understanding system. To
facilitate rapid deployment we explore a new way of learning a mul-
tilayer neural network that discovers good features by fitting a gen-
erative model to unlabeled data and therefore requires much less
labeled data to achieve good performance.

Recently, there has been increasing interest in deep belief net-
works (DBNs) because of the invention of an efficient layer-by-layer
learning technique. The building block of a DBN is a probabilis-
tic model called a Restricted Boltzmann Machine (RBM), which is
used to discover one layer of features at a time. To learn a DBN,
RBMs are applied recursively with the feature activations produced
by one RBM acting as the data for training the next RBM in the
stack. DBNs have been used as generative models of many different
forms of data in such diverse areas as image classification, speech

recognition and information retrieval [8, 11, 9]. Deep networks typ-
ically have higher modeling capacity than shallow networks with
the same number of parameters, but they are harder to train, both as
stochastic top-down generative models and as deterministic bottom-
up discriminative models. For generative training, it is usually very
difficult to infer the posterior distribution over the multiple layers of
latent (hidden) variables, and for discriminitive training using back-
propagation, learning can be very slow with multiple hidden layers
and overfitting can also be a serious problem. The recursive train-
ing method for DBNs solves the inference problem, and the use of
features found by the DBN to initialize a multilayer, feed-forward
neural network significantly decreases both the time taken for dis-
criminitive training and the amount of overfitting [3].

An RBM is a generative model that can learn stochastic binary
features which are good for modeling the higher-order statistical
structure of a dataset. Even though these features are discovered
without considering the discriminative task for which they will be
used, some of them are typically very useful for classification as well
as for generation. A subsequent stage of discriminative fine-tuning
can then slightly change the features to make them even more useful
for discrimination with much less overfitting than occurs with purely
discriminative training. This is particularly helpful when the num-
ber of labeled training examples is relatively small. In this regime,
it has been shown that classifiers based on generative models can
outperform discriminative classifiers, even without making use of
additional unlabeled data [6].

This paper is organized as follows: Section 2 introduces RBMs.
Section 3 describes how to use train a stack of RBMs recursively
and how to use the resulting DBN to initialize a feed-forward neural
network that can be discriminatively fine-tuned to optimize classifi-
cation. Section 4 summarizes the other widely used discriminative
classifiers. Section 5 presents the experimental results and discus-
sion followed by the conclusions and future work in Section 6.

2. RESTRICTED BOLTZMANN MACHINES

A restricted Boltzmann machine [2] is a two-layer undirected bipar-
tite graphical model where the first layer consists of observed data
variables (or visible units), and the second layer consists of latent
variables (or hidden units). The visible and hidden layers are fully
inter-connected via connections with symmetric undirected weights,
but there are no intra-layer connections within either the visible or
the hidden layer. A typical RBM model topology is shown in Fig. 1.

The weights and biases of an RBM determine the energy of a

joint configuration of the hidden and visible units E(v, h),

E(v, h; θ) = −
V∑

i=1

H∑
j=1

vihjwij −
V∑

i=1

bivi −
H∑

j=1

ajhi (1)

with model parameters θ = {W, b, a} and vi, hj ∈ {0, 1}. W are
the symmetric weight parameters with V ×H dimensions, b are the
visible unit bias parameters, a are the hidden unit bias parameters.
The network assigns a probability to every possible visible-hidden
vector pair via the the energy function,

p(v,h) =
1

Z
e−E(v,h) (2)

The normalization term or partition function, Z, is obtained by sum-
ming over all possible pairs of visible and hidden vectors.

Z =
∑
v,h

e−E(v,h) (3)

The probability that the model assigns to a visible vector, v, is ob-
tained by marginalizing over the space of hidden vectors,

p(v) =
1

Z

∑
h

e−E(v,h) (4)

The simplest RBMs use Bernouilli-distributed units (i. e.
stochastic binary units), but they can be generalized to any distribu-
tion in the exponential family [9]. However, some combinations of
distributions for the visible and hidden units are very hard to train
(see [1] for more details). In this paper, we restrict ourselves to
binary units for all of the experiments, but in the final discussion we
describe a type of visible unit that might be more appropriate for
modeling word-count data.

The derivative of the log probability of a visible vector with
respect to the weights is given by:

∂ log p(v)

∂wij
= ⟨vihj⟩data − ⟨vihj⟩model (5)

where the angle bracket denotes the expectation with respect to the
distribution specified in the subscript. Following the gradient of the
log likelihood we obtain the update rule for the weights as,

∆wij = ϵ(⟨vihj⟩data − ⟨vihj⟩model) (6)

where ϵ is the learning rate. The lack of hidden–hidden connec-
tions makes the first expectation easy to compute. Given a visible
vector, v, the hidden units are conditionally independent and the
conditional distribution of hidden unit j is given by:

p(hj = 1 | v) = σ(aj +
∑
i

viwij) (7)

where σ is the logistic sigmoid function σ(x) = 1/(1+exp(x)). It
is therefore easy to get an unbised sample of ⟨vihj⟩data . Similarly,
because there are no visible–visible connections, we can easily get
an unbiased sample of the state of a visible unit, i, given a hidden
vector, h:

p(vi = 1 | h) = σ(bi +
∑
j

hjwij) (8)

Unfortunately, it is exponentially expensive to compute ⟨vihj⟩model,
exactly so the contrastive divergence (CD) approximation to the gra-
dient is used by replacing ⟨vihj⟩model with ⟨vihj⟩recon, which is

HIDDEN LAYER

VISIBLE LAYER

jh

v i

Figure 1: RBM architecture.

a lot easier and faster to compute [10]. ⟨vihj⟩recon is computed by
setting the visible units to a random training vector. Then the binary
states of the hidden units are computed using Eqn. 7, followed by
computing the binary states of the visible units using Eqn. 8. The
computed visible states are a ‘reconstruction‘ of the original visible
vector. The new learning rule is a crude approximation to following
the gradient of the log probability of the training data, but it works
well in practice and is adequate for discovering good features.

3. LEARNING AND USING DEEP BELIEF NETS

After RBM1 has been trained on the data, its learned parameters,
θ1, define p(v,h|θ1), p(v|θ1), p(v|h, θ1), and p(h|v, θ1) via the
Eqns. 7 and 8. The parameters of RBM1 also define a prior distri-
bution over hidden vectors, p(h|θ1), which is obtained by marginal-
izing over the space of visible vectors. This allows p(v|θ1) to be
written as:

p(v|θ1) =
∑
h

p(h|θ1)p(v|h, θ1) (9)

The idea behind training a DBN by training a stack of RBMs is to
keep the p(v|h, θ1) defined by RBM1, but to improve p(v) by re-
placing p(h|θ1) by a better prior over the hidden vectors. To im-
prove p(v), this better prior must have a smaller KL divergence
than p(h|θ1) from the “aggregated posterior” which is the equally
weighted mixture of the posterior distributions over the hidden vec-
tors of RBM1 on all N of the training cases:

1

N

∑
v∈train

p(h|v, θ1) (10)

The analagous statement for Gaussian mixture models is that the up-
dated mixing proportion of a component should be closer to the av-
erage posterior probability of that component over all training cases.

Now consider training RBM2 by using samples from the aggre-
gated posterior of RBM1 as training data. It is easy to ensure that
the distribution which RBM2 defines over its visible units is iden-
tical to p(h|θ1): we simply initialize RBM2 to be an upside-down
version of RBM1 in which the roles of visible and hidden units have
been swapped. So RBM2 has h as a visible vector and h2 as a hid-
den vector. Then we train RBM2 which makes p(h|θ2) be a better
model of the aggregated posterior than p(h|θ1).

After training RBM2, we can combine the two RBMs to cre-
ate a hybrid of a directed and an undirected model. p(h|θ2) is de-
fined by the undirected RBM2, but p(v|h, θ1) is defined by directed
connections from the first hidden layer to the visible units. In this
hybrid model, which we call a deep belief net, exact inference of
p(h|v, θ1, θ2) is no longer easy because the prior over the hidden
vectors is no longer defined by θ1. However, it is proved in [7] that
if we perform approximate inference for the first hidden layer by
using 7, there is a variational lower bound on the log probability of

(INPUT VECTORS)
VISIBLE UNITS

500 HIDDEN UNITS

500 HIDDEN UNITS

500 HIDDEN UNITS

CLASS LABEL UNITS

Figure 2: Stacking RBMs to create a deep network. This ar-
chitecture is used in our experiments.

the training data that is improved every time we add another layer to
the DBN, provided we add it in the appropriate way.

After training a stack of RBMs, the bottom up recognition
weights of the resulting DBN can be used to initialize the weights
of a multi-layer feed-forward neural network, which can then be dis-
criminatively fine-tuned by backpropagating error derivatives. The
feed-forward network is given a final “softmax” layer that computes
a probability distribution over class labels and the derivative of the
log probability of the correct class is backpropagated to train the
incoming weights of the final layer and to discriminatively fine-tune
the weights in all lower layers.

Deep belief networks (DBNs) have yielded impressive classifi-
cation performance on several benchmark classification tasks, beat-
ing the state-of-the-art in several cases [11]. In principal, adding
more layers improves modeling power, unless the DBN already per-
fectly models the data. In practice, however, little is gained by using
more than about 3 hidden layers. We use the architecture shown in
Fig. 2. It has three hidden layers that are pre-trained, one at a time,
as the hidden layers in a stack of three RBMs without making any
use of the class labels.

4. TRADITIONAL CLASSIFIERS

4.1. Maximum Entropy

The MaxEnt method is a flexible statistical modeling framework
that has been used in widely in many areas of natural language pro-
cessing [14]. The MaxEnt allows the combination of multiple over-
lapping information sources [15, 14]. The information sources are
combined as follows:

P (C|W) =
e
∑

i λifi(C,W)∑
C′ e

∑
j λjfj(C′,W)

, (11)

which describes the probability of a particular class C (e.g. action
class) given the word sequence W spoken by the caller. Notice that
the denominator includes a sum over all classes C′, which is essen-
tially a normalization factor for probabilities to sum to 1. The fi
are indicator functions, or features, which are “activated” based on
computable features on the word sequence, for example if a particu-
lar word or word pair appears, or if the parse tree contain a particular
tag, etc. The MaxEnt models are trained using the improved iterative
scaling algorithm [15] with Gaussian prior smoothing [14] using a
single universal variance parameter of 2.0.

4.2. Boosting

Boosting is an iterative method for improving the accuracy of any
given learning algorithm. The premise of Boosting is to produce
a very accurate prediction rule by combining moderately inaccurate
(weak) rules. The algorithm operates by learning a weak rule at each
iteration so as to minimize the training error rate. A specific imple-
mentation of the Boosting is AdaBoost is described in [4]. Boostong
has been applied to a number of natural language processing tasks
in the past.

4.3. Support Vector Machines

SVMs are derived from the theory of structural risk minimiza-
tion [13]. SVMs learn the boundaries between samples of the two
classes by mapping these sample points into a higher dimensional
space. In the high dimensional space a hyperplane separating these
regions is found by maximizing the margin between closest sample
points belonging to competing classes. Much of the flexibility and
classification power of SVM’s resides in the choice of kernel. Some
of the commonly used kernels are linear, polynomial and radial
basis functions. In this work, we chose linear kernels to train the
SVM since computationally it is faster compared to other kernels
yet there is no significant difference in performance for the current
task.

5. EXPERIMENTAL RESULTS AND DISCUSSION

The call–routing task we study in this paper is from a call–center
customer hotline that gives technical assistance for a Fortune–500
company [16]. The call–routing system selects one of the 35 call–
types. The training data has 27K automatically transcribed utter-
ances amounting to 178K words. This data is split into {1K, 2K,
3K, 4K, 5K, 6K, 7K, 8K, 9K, 10K} and 27K sets. The purpose of
this split is to investigate various training data sizes and their ef-
fects on the learning methods. We also have two separate datasets
containing about 3.2K and 5.6K sentences used as development and
test data, respectively. All of these datasets are hand–labeled with
call–types. In all the classification methods employed here we used
vectors of individual word counts as the inputs to the models. For
the DBNs, the counts were clipped at 1 to allow them to be modeled
by binary units.

In our experiments with the development data we found that
hidden layers of 500 → 500 → 500 provided slightly better results
than the other hidden layer sizes that we tried. The model architec-
ture is shown in Fig. 2. The individual RBM models were trained in
an unsupervised fashion using contrastive divergence learning with
100 passes (epochs) through the training dataset. The weights of
each RBM were were initialized with small random values sampled
from a zero-mean normal distribution with standard deviation 0.01
and updated using a learning rate of 0.01/batch-size, momentum of
0.9, and a weight decay of 0.001.

For the discriminative fine-tuning, we use stochastic gradient
descent (SGD) and we also set the number of iterations through the
training data to 100. This number was determined by using early
stopping according to the validation set classification error. To re-
duce computation time, we select the SGD learning rate, momentum
parameter and other parameters by maximizing the AC accuracy on
a separate development set.

In Table 1, we present the results on the test data for SVMs,
MaxEnt, Boosting and DBNs. Various classifier parameters (e.g.

Action Classification Accuracy (%)
Labeled Data MaxEnt SVM Boosting DBN

1K 76.0 77.8 79.6 78.1
2K 80.4 82.2 83.6 82.6
3K 82.2 84.3 85.1 84.4
4K 83.5 85.3 84.6 85.5
5K 84.6 86.2 85.9 86.2
6K 85.5 87.0 86.3 87.0
7K 86.2 87.7 86.3 87.8
8K 86.5 88.0 87.2 88.0
9K 87.2 88.5 87.5 88.7
10K 87.6 88.5 87.7 88.7
27K 89.7 90.3 88.1 90.3

Table 1: PACKAGE SHIPMENT TASK: AC accuracy for vari-
ous classifiers.
smoothing priors for MaxEnt learning, and kernel selection for
SVMs) are tuned on the development data. Each classifier is trained
using the amount of labeled data given in the first column. Looking
first at the traditional classifiers, we notice that the SVM classifier
obtained 77.8% accuracy using 1K labeled data. The corresponding
figures for the MaxEnt classifier and the Boosting based classifier
are 76.0% and 79.6% respectively. Not only for 1K labeled data but
also for 2K and 3K data, Boosting provides the best performance.
However, for larger amounts of training data, the SVM consistently
outperformed both MaxEnt and Boosting. DBNs performed as well
as or slightly better than SVMs for all sizes of training set. When
trained on all of the training data, they had identical performance
achieving 90.3% accuracy.

Our current implementation of the first RBM in the stack uses
as many binary visible units as the number of distinct words in the
training set, and it treats all word counts greater than 1 as if they
were 1. All the other methods make use of word counts greater than
1. Word multiplicity affects about 16% of the training utterances
and 17% of the test utterances.

6. CONCLUSIONS AND FUTURE WORK

We successfully applied Deep Belief Nets (DBNs) to a natural lan-
guage call–routing task. DBNs use unsupervised learning to dis-
cover multiple layers of features that are then used in a feed-forward
neural network and fine-tuned to optimize discrimination. Unsuper-
vised feature discovery makes DBNs far less prone to overfitting
than feedforward neural networks initialized with random weights
and it also makes it easier to train neural networks with many hid-
den layers.

DBNs produce better classification results than several other
widely used learning techniques, outperforming Maximum Entropy
and Boosting based classifiers. Their performance is almost iden-
tical to SVMs which are the best of the other techniques that we
investigated.

There are several extensions to our model that we are currently
pursuing to improve its performance. One of them is to implement
“replicated softmax” visible units in the first RBM [12]. These have
already been shown to give excellent generative models of word-
count data and they have a natural way of dealing with the word
multiplicity issue. Since they capture more information about the
input data, they stand a good chance of improving performance. An-
other possibility is to concatenate the top layer features learned by
the DBN with the original inputs and use an SVM on the concate-
nated vectors. Finally, we plan to investigate how much the DBN

is helped by having additional unlabeled training data that is not
included in the labeled training set.

7. REFERENCES

[1] G. E. Hinton, A Practical Guide Training Restricted Boltz-
mann Machines, University of Toronto Machine Learning
Technical Report, UTML TR 2010–003.

[2] G. E. Hinton, Training products of experts by minimizing con-
trastive divergence, Neural Computation, vol. 14, pp. 1771–
1800, 2002.

[3] D. Erhan, Y. Bengio, A. Courville, P. Manzagol and P. Vincent,
Why Does Unsupervised Pre-training Help Deep Learning?,
Journal of Machine Learning Research, vol. 11, pp. 625–660,
2010.

[4] R. E. Schapire and Y. Singer, Boostexter: A boosting based
system for text categorization, Machine Learning, vol. 39, no.
2/3, pp. 135–168, 2000.

[5] G. E. Hinton, and R. Salakhutdinov,“Reducing the dimension-
ality of data with neural networks,” Science, vol. 313. no.
5786, 2006, pp. 504–507.

[6] A. Y. Ng and M. I. Jordan, On discriminative vs. genera-
tive classifiers: A comparison of logistic regression and naive
bayes, Advances in Neural Information Processing Systems,
vol. 11, 2002.

[7] G. E. Hinton, S. Osindero and Y. W. Teh, A Fast Learning
Algorithm for Deep Belief Nets, Advances in Neural Compu-
tation, vol. 18, no. 7, pp. 1527–1554, 2006.

[8] G. E. Hinton,“Learning multiple layers of representation,”
TRENDS in Cognitive Sciences, vol. 11. no. 10, pp. 428–434.
2007.

[9] M. Welling, M. Rosen-Zvi and G. E. Hinton,“Exponential
fanily harmoniums with an application to information re-
trieval,” In Advances in Neural Information Processing Sys-
tems, pp. 1481–1488. Cambridge, MA. MIT Press. 2005.

[10] G. E. Hinton, “Training product of experts by minimizing con-
strastive divergence,” Neural Computation, vol. 14. no. 18,
2002, pp. 1527–1554.

[11] G. E. Dahl, M. Ranzato, A. Momamed and G. E. Hin-
ton, “Phone Recognition with the Mean-Covariance Restricted
Boltzmann Machines,” Advances in Neural Information Pro-
cessing Systems NIPS, 2010.

[12] R. R. Salakhutdinov and G.E. Hinton, “Replicated softmax:
An undirected topic model,” Advances in Neural Information
Processing Systems, vol. 22, 2007.

[13] V. Vapnik, “The Nature of Statistical Learning Theory”,
Springer–Verlag, NY, USA, 1995.

[14] S. Chen and R. Rosenfeld, “A survey smoothing techniques for
ME models”, IEEE Trans. SAP, 8(1):37–50, 2001.

[15] S. D. Pietra, V. D. Pietra and J. Lafferty, “Inducing features
of random fields”, IEEE Trans. Pattern. Analysis Mach. Int.,
19(4):380–93, 1997.

[16] R. Sarikaya, H-K. J. Kuo V. Goel, and Y. Gao, “Exploiting Un-
labeled Data Using Multiple Classifiers for Improved Natural
Language Call-Routing ”, In Proc. Interspeech, Lisbon Portu-
gal, September 2005.

