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One of the central problems in computational neuroscience is to understand how the object-recog-
nition pathway of the cortex learns a deep hierarchy of nonlinear feature detectors. Recent progress
in machine learning shows that it is possible to learn deep hierarchies without requiring any labelled
data. The feature detectors are learned one layer at a time and the goal of the learning procedure is
to form a good generative model of images, not to predict the class of each image. The learning
procedure only requires the pairwise correlations between the activations of neuron-like processing
units in adjacent layers. The original version of the learning procedure is derived from a quadratic
‘energy’ function but it can be extended to allow third-order, multiplicative interactions in which
neurons gate the pairwise interactions between other neurons. A technique for factoring the
third-order interactions leads to a learning module that again has a simple learning rule based on
pairwise correlations. This module looks remarkably like modules that have been proposed by
both biologists trying to explain the responses of neurons and engineers trying to create systems
that can recognize objects.
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1. INTRODUCTION
The obvious way to falsify a theory of how the human
cortex learns to interpret the visual input is to show
that its predictions disagree with experimental data.
Deciding what the theory predicts, however, can be
difficult. The cortex is an extremely complicated non-
linear system whose behaviour can be changed in
unexpected ways by modifying the strengths of the
synaptic connections. Detailed computer simulations
are therefore required to understand what a synaptic
learning rule predicts and the simulations usually
show that the synaptic learning rule can be rejected
without even considering the experimental data
because it simply does not work well enough to have
any chance of explaining obvious facts about people’s
learning abilities. Falsification by simulation has the
advantage that it is possible to design better learning
rules by analysing how naive learning rules fail. This
paper describes a historical sequence of progressively
more powerful learning rules that have emerged from
computer simulations.

Consider the task of assigning a class label, such as
‘cat’ or ‘dog’, to an image that contains a single salient
object. A good way to perform this computation in a
network of neuron-like processing elements is to use
a hierarchy of progressively more complicated feature
detectors (Selfridge 1958; Fukushima 1980; LeCun
et al. 1998; Serre et al. 2007). At each level in the hier-
archy, a feature detector is activated by bottom-up
input from a particular spatial arrangement of active
cs.toronto.edu
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feature detectors at the level below. Single cell record-
ings in the visual systems of mammals (Felleman &
Van Essen 1991) are consistent with this model and
show that the individual feature detectors become
progressively more tolerant to variations in retinal pos-
ition, orientation and scale as we ascend the hierarchy.
This raises the question of how such a hierarchy could
be learned.
2. LEARNING BY BACK-PROPAGATING
ERROR DERIVATIVES
In the 1980s, the back-propagation algorithm (Werbos
1974; Rumelhart et al. 1986) created much excitement
because it appeared to solve the problem of learning
multiple layers of nonlinear features. Back propagation
is a method for computing how to change the connec-
tion weights in a feed-forward neural network
composed of multiple layers of artificial neurons. An
input vector is presented at the bottom layer and in
the ‘forward’ pass, each neuron computes a weighted
sum of the inputs it receives from the layer below,
puts this sum through a smooth nonlinearity and
sends the result to neurons in the layer above. The
output of each neuron in the final layer is compared
with the desired output vector provided by a supervi-
sor and some measure of the discrepancy is used to
compute the error for that training case. Each
neuron in the final layer, for example, could represent
a class and the supervisor could specify which neuron
should be active. Derivatives of the error are then
propagated backwards through the network using the
same connection weights as on the forward pass.
Once the error derivatives have been computed for
the ‘hidden’ neurons in the intermediate layers, it is
This journal is # 2010 The Royal Society
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straighforward to change their incoming weights in the
direction that reduces the error, thus performing gra-
dient descent in the error function.

Back propagation worked impressively well for
some problems (LeCun et al. 1998), but for many
others it did not succeed in using the multiple layers
of features to significantly improve performance. In
deep nets, the learning was very slow and had a ten-
dency to get stuck in poor local optima. Also, to
learn a large number of weights by back-propagating
error derivatives requires a huge number of accurately
labelled training examples. The idea of learning con-
nection weights by following the gradient of some
objective function is very powerful, but classification
error is not a good objective function for learning a
visual system.
3. UNSUPERVISED LEARNING OF
FEATURE DETECTORS
Back propagation allows the errors in the outputs of a
system to drive the search for an appropriate sequence
of feed-forward transformations from vectors of pixel
intensities to vectors of class probabilities. A very
different approach to the learning task emerges if we
consider how the training data are actually created.
Physical objects give rise to images via a generative
process that involves the intrinsic properties of the
object, deformation, viewpoint, lighting, occlusion
and many other variables (Horn 1977). The generative
process is complicated and highly nonlinear but it is
not particularly noisy, so the particular combinations
of pixel intensities contain a lot of information about
their underlying causes. The class of the object is
only a tiny fraction of this information and the class
is typically much easier to predict from properties
such as the three-dimensional shape of the object
than from the raw pixel intensities.

With very limited computational resources, it may
be sensible to try to perform classification by ignoring
all the information in the image that is not directly
relevant to the class of the object, but with the huge
computational resources of the human visual system
it makes much more sense to first recover the under-
lying causes of the image such as the surface depths,
orientations, reflectances and boundaries (Marr
1982). We know that this is possible because human
visual perception in a familiar, natural setting almost
always returns a good approximation to the true
causes of the visual input. Once the underlying
causes have been recovered by modelling the compli-
cated, high-bandwidth channel between the
underlying causes and the pixel intensities, the class
can be recovered by modelling the simpler, low-
bandwith channel between the underlying causes and
the class label.

There are several advantages to treating the task of
object classification as a post-processing step in a
system whose main goal is to infer all of the underlying
causes that explain how a retinal image was generated.
Given N equiprobable classes, each labelled image
only provides log2 N bits of constraint on the mapping
from images to labels, so to learn a large number of
parameters by optimizing discriminative performance
Phil. Trans. R. Soc. B (2010)
requires a very large number of labelled training
cases. Each unlabelled image, however, provides a lot
of constraint on a generative model, so generative
models with a large number of parameters (e.g. 108)
can be learned using relatively few training images
(e.g. 106) and these training images do not require
labels.

Until recently, the types of generative model that
could be fitted efficiently to unlabelled i.i.d. data
were very restricted. They consisted of mixture
models, which treat each data point as a noisy obser-
vation of one of a limited number of prototypes, or
linear models, such as factor analysis, which treat
each data point as a noisy observation of linearly trans-
formed Gaussian noise. Neither of these model classes
is appropriate for highly structured images that are
generated by multiple latent variables which interact
in nonlinear but very regular ways to produce the
observed data. Much more powerful models had
been suggested (Ackley et al. 1985) but the proposed
methods for fitting them to data were hopelessly
inefficient.

Over the last two decades, the artificial intelligence
and statistics communities have made considerable
progress in the procedures for fitting complicated, sto-
chastic, generative models to data (Lauritzen &
Spiegelhalter 1988; Pearl 1988). These ‘graphical
models’ are expressed as graphs in which the nodes
represent stochastic variables and the lack of a connec-
tion between two nodes represents some type of
statistical independence.

Belief nets are a widely used type of graphical model
in which the connections are all directed and there are
no directed loops (Pearl 1988). Each variable receives
directed connections from its ‘parents’ and its prob-
ability distribution, when the model is generating
data, is determined solely by the combination of
values of its parents using a simple parameterized
function or table. This makes it easy to generate
samples from a belief net using an ‘ancestral pass’.
First, the highest level variables are sampled from
their prior distributions and then each remaining vari-
able is sampled from the distribution created by the
sampled values of its parents.

Assuming that the functions that determine how a
variable depends on its parents are known for all of
the variables, the inference problem is to determine
the joint probability distribution for the remaining
variables when the values of a subset of the variables
are observed. The parameter learning problem is to dis-
cover how the probability distribution of a variable
depends on the values of its parents. This is done by
using a set of training cases each of which consists of
the observed values of a subset of the variables. A
natural way to perform parameter learning is to
search for parameters that maximize the probability
that the observed data would have been generated by
simply running the generative model. This is called
‘maximum-likelihood’ learning.

The generative model underlying factor analysis is a
belief net in which there is only one layer of hidden
variables and all of the variables are linear with Gaus-
sian noise. This makes inference and maximum
likelihood learning fairly straightforward. By removing
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Figure 1. (a) A multi-layer sigmoid belief net. The top-down
connections define the generative model. Bottom-up con-
nections can be used for inferring hidden states that may
have generated the visible data. (b) An illustration of

‘explaining away’ in a very simple sigmoid belief net contain-
ing two independent, rare, hidden causes that become highly
anti-correlated when we observe the house jumping. The
bias of 210 on the earthquake unit means that, in the
absence of any observation, this unit is e10 times more

likely to be off than on. If the earthquake unit is on and
the truck unit is off, the jump unit has a total input of 0
which means that it has an even chance of being on. This
is a much better explanation of the observation that the
house jumped than the odds of e220 which apply if neither

of the hidden causes is active. But it is wasteful to turn on
both hidden causes to explain the observation because the
probability of them both happening is approximately e220.
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all noise from the observed variables and using heavy
tailed, non-Gaussian noise to drive the hidden vari-
ables, we obtain ‘independent components analysis’
(Comon 1994). This generative model is much
better than factor analysis at discovering independent
causes and is still relatively easy to fit to data, but
extending it to models with multiple hidden layers is
difficult.

Sigmoid belief nets (Neal 1992) are generative
models composed of multiple layers of binary stochas-
tic variables (see figure 1). When the model is
generating data, the probability that a variable, hi

L, in
layer L adopts the value 1 is given by the logistic
sigmoid function, sðxÞ ¼ ð1þ expð�xÞÞ�1

pL
i ¼ pðhL

i ¼ 1jhLþ1Þ ¼ s
X

j

wL
ij h

Lþ1
j

 !
; ð3:1Þ

where wij is the weight on the connection to unit i from
unit j in the layer above and bias terms have been
omitted for simplicity. The binary variables, which
will be called ‘units’, can be viewed as crude approxi-
mations to cortical pyramidal cells which, over a time
period of a few milliseconds, emit a single spike with
a probability that depends nonlinearly on the recent
input received from other neurons. The lowest level
units (those with no descendants) can be used to rep-
resent the pre-processed visual input and the higher
layers must learn to ‘explain’ each input vector in
terms of hidden causes. A good explanation consists
of a binary state vector for each layer that is both
likely to cause the binary state vector in the layer
below and likely to be caused by the binary state
vector in the layer above.

Given the parameters of the model, the number of
alternative explanations for any given data vector will
be exponential in the number of hidden variables,
though some explanations will be much better than
others. It is infeasible to infer or even to represent
the full posterior probability distribution over expla-
nations, but fortunately it is possible to learn the
parameters without ever computing the full posterior.
It is sufficient to get unbiased binary samples from
the posterior. An online, steepest ascent version of
maximum-likelihood learning is then

Dwij / hLþ1
j hL

i � pL
i

� �
; ð3:2Þ

where hj
Lþ1 and hi

L are the sampled binary values and
pi

L is the top-down prediction from the sampled
values in layer L þ 1.

Unfortunately, it is hard to even get an unbiased
sample from the posterior because of a phenomenon
known as ‘explaining away’ that is illustrated in
figure 1b. Markov chain Monte Carlo methods can
be used to get approximate samples from the posterior,
but these methods are too slow to be a plausible model
of how the brain computes percepts. This leaves two
alternatives: use biased samples and hope that the
learning procedure still works or find a way to elimin-
ate explaining away so that it is easy to get unbiased
samples.
Phil. Trans. R. Soc. B (2010)
4. LEARNING WITH INCORRECT INFERENCE
Suppose that instead of sampling a binary explanation,
h, from the true posterior distribution p(hjv, W ) given
the visible vector v and the weights, W, we sample from
a simpler, approximating distribution q(hjv, W ) which
might, for example, be constrained to be a factorial
distribution in which the probabilities of the hidden
variables are independent given the data vector, v. If
we then use the learning rule in equation (3.2), it
does not perform gradient ascent in the log probability
of generating v from a model with weights W. It does,
however, perform gradient ascent in a closely related
quantity called the (negative) variational free energy
(Zemel 1994; Neal & Hinton 1998) that differs from
the log probability of v by the Kullback Liebler
divergence between q(hjv, W ) and p(hjv, W )

�FðvjW Þ ¼ log pðvjW Þ �
X

h

qðhjv;W Þ log qðhjv;W Þ
log pðhjv;W Þ :

ð4:1Þ

If q(hjv, W ) ¼ p(hjv, W ), the variational free
energy is minimized, w.r.t. q(hjv, W ) and performing
gradient ascent in 2F(vjW ) w.r.t. W corresponds to

http://rstb.royalsocietypublishing.org/
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maximum-likelihood learning. If q(hjv, W )= p(hjv,
W ), then 2F(vjW ) is a lower bound on log p(vjW )
and following the gradient of 2F(vjW ) performs a
trade-off between finding parameters that give high
probability to v and finding parameters that make
the approximate inference work well by making the
true posterior distribution p(hjv, W ) close to the
approximating distribution q(hjv, W ). The gradients
w.r.t. the parameters of the two terms on the right of
equation (4.1) are infeasible to compute because
they involve the true posterior, but the gradient of
their difference only involves the approximating distri-
bution and is easy to compute if the approximation has
a simple form.

Variational learning is now widely used for learning
complicated belief nets (Jordan et al. 1999). A modified
version of variational learning has also been proposed as
a model of learning in cortex (Hinton et al. 1995). The
generative model resides in the top-down connections
between cortical areas, and the approximate posterior
q(hjv, W ) is computed by separate bottom-up connec-
tions that have their own learning rule. For learning
many layers of nonlinear features, however, there is a
more efficient method that is based on a scheme
for eliminating explaining away so that the posterior
distribution really is factorial.
5. A STACKABLE LEARNING MODULE
When a multilayer belief net generates data, the
stochastic decisions made in one layer influence the
probabilities of variables in the layer below, but they
have no effect on the probabilities in the layer above
because belief nets are ‘directed’ models in which the
effects only flow in one direction during the generative
process. There is a very different type of model called
an ‘undirected’ model in which the effects flow in both
directions during generation. An especially simple type
of undirected model is a restricted Boltzmann machine
(RBM) which contains a layer of binary visible units
connected to a layer of binary hidden units, with no
connections within each layer. The connections are
symmetric, having the same weight in both directions.
An RBM is similar to a Hopfield net (Hopfield 1982),
but instead of being directly connected the visible units
are indirectly connected via the hidden units whose
states are not observed. This makes the model more
powerful than a Hopfield net because it can use the
hidden units to represent higher than the second-
order correlations between the visible units, but it
also makes the model more difficult to learn.

To generate samples from an RBM, we can alter-
nate between updating all of the hidden units in
parallel given the visible states and updating all of
the visible units in parallel given the hidden states

pðhj ¼ 1jvÞ ¼ s
X

i

viwij

 !
ð5:1Þ

and

pðvi ¼ 1jhÞ ¼ s
X

j

hjwij

 !
: ð5:2Þ
Phil. Trans. R. Soc. B (2010)
This alternating Markov chain converges to a
stationary distribution in which the probability of a
joint configuration v, h of the visible and hidden
units is determined by a simple energy function

pðv;hÞ ¼ 1

Z
expð�Eðv;hÞÞ; Z ¼

X
v;h

expð�Eðv;hÞÞ;

ð5:3Þ

where the energy of a joint configuration is given by

Eðv;hÞ ¼ �
X

i;j

vihjwij : ð5:4Þ

The maximum-likelihood learning rule for an RBM
is very simple. Each connection weight, wij, must be
changed in proportion to the difference between two
expectations. The first is the expectation that a visible
and a hidden unit both have state 1 when the visible
vector is sampled from the training data and the
hidden states are computed from the visible vector
using equation (5.1). The second is the same expec-
tation when the visible and hidden vectors are
sampled from the stationary distribution of the
Markov chain described above

Dwij / kvihjldata � kvihjlmodel: ð5:5Þ

It is conceivable that the second term in equation
(5.5) could be estimated by letting an RBM settle to
its stationary distribution during an off-line ‘sleep’
phase (Crick & Mitchison 1983) but this would
mean that the estimate became progressively worse
during the day as the weights changed so it would be
hard to learn much in a single day. A more efficient
alternative is simply to run the Markov chain for
very few steps. First, the visible units are determined
by the sensory input and the hidden units are stochas-
tically activated using equation (5.1). Then the visible
activities are reconstructed from the hidden states
using equation (5.2) and the hidden units are activated
again by the reconstruction. This gives a very simple
learning rule called ‘contrastive divergence’ (Hinton
2002)

Dwij / kvihjldata � kvihjlreconstruction: ð5:6Þ

This rule does not maximize the probability that the
RBM would generate the training data, but it does
work surprisingly well in a wide variety of applications
(e.g. Lee et al. 2009).

One big advantage of using an RBM, instead of a
directed model, is that the hidden units really are con-
ditionally independent given a visible vector, so it is
possible to get an unbiased sample from the posterior
in one step. This makes perceptual inference accurate,
simple and fast. Another big advantage is that RBMs
can be stacked to form multi-layer models that are
learned one layer at a time. The hidden states of one
RBM, when they are being driven by training data,
are treated as the ‘data’ for training the next RBM in
the stack. The full justification for this recursive learn-
ing procedure is given by Hinton et al. (2006), who
showed how to add extra hidden layers in a way that
is guaranteed to improve a variational bound. In
other words, the new multi-layer model that is created

http://rstb.royalsocietypublishing.org/
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Figure 2. (a) A restricted Boltzmann machine (RBM) that
consists of two layers of binary variables with undirected
connections between layers and no connections within each
layer. (b) An alternative graphical depiction of the same

RBM in which the same weight matrix is used twice. This
has no effect on the probability distribution over visible vec-
tors defined by the model. (c) A more powerful model
produced by allowing the top-level weights to depart from
their initial values of W1

T while holding the lower level

weights fixed at W1. The weights W2 are learned by treating
the activity vectors in the first hidden layer as data for train-
ing the top-level RBM.

image

labels

(a) (b)

image

labels

Figure 3. (a) After learning two layers of features, a top-level
RBM can be trained to model the joint probability distri-
bution of feature vectors and labels. (b) If the labels are
unreliable, they can be treated as noisy observations of the

true labels so that information coming from the image can
overrule the label when it is obviously wrong.
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by adding another hidden layer has a better lower
bound on the probability of generating the training
data than the previous multi-layer model.

Surprisingly, after training several layers, the compo-
site, multi-layer graphical model is not an undirected
multi-layer Boltzmann machine as might be expected,
but a ‘deep belief net’ that has an undirected RBM in
its top two layers and top-down directed connections
from there to lower layers as shown in figure 2c.
Because of the way in which the multi-layer model is
learned, it is possible to use the top-down generative
weights in the reverse direction for rapid bottom-up
inference, but the bottom-up weights between lower
layers are not part of the generative model.

One way to understand the composite model that is
created by stacking two RBMs is to write the prob-
ability that the first RBM assigns to a visible vector,
v, in terms of a ‘prior’ distribution over hidden vectors
p(h1jW1) and a conditional distribution of visible
vectors given hidden vectors

pðvjW1Þ ¼
X
h1

pðh1jW1Þpðvjh1;W1Þ: ð5:7Þ

Unlike a normal directed model, the prior uses
exactly the same parameters, W1, as are used for the
conditional distribution, p(vjh1, W1). Also, the prior
does not assume that the hidden units are independent
during the generative process. The prior p(h1jW1)
contains strong correlations that exactly cancel the
anti-correlations between hidden units caused by
explaining away, so the hidden units are independent
in the posterior.

Equation (5.7) makes it clear that the generative
model in figure 2b is just another way of writing the
RBM model in figure 2a. But the model in figure 2b
can now be improved by freezing the bottom layer of
weights, W1, and changing the higher layer of weights
to create a better prior distribution for the first hidden
layer. A better prior is one that is a better fit to the
average, over all training vectors, of the posterior distri-
butions over the first hidden layer given the data.
Phil. Trans. R. Soc. B (2010)
Hence, these posterior distributions over the first
hidden layer should be treated as training data for
the higher level RBM. After learning a better prior,
we have the model in figure 2c and the right way to
generate data from it is to run a Markov chain to get
an unbiased sample of p(h1jW2) from the top-level
RBM and then to do one top-down step to generate
a visible vector using p(vjh1, W1).
6. ASSOCIATING FEATURE VECTORS
WITH LABELS
Once a high-level representation of the visual input has
been learned, there are several ways to associate class
labels with that representation. The most obvious
method is to treat the high-level representation as the
input for a subsequent supervised learning procedure.
Excellent performance can be achieved by back propa-
gating derivatives from the supervised procedure
through the layers of the deep belief net to refine all
of the bottom-up weights that are used for inference.
Using back propagation to fine-tune feature detectors
that are initially learned as a generative model works
much better than using back propagation with
random initial weights (Hinton & Salakhutdinov
2006; Erhan et al. 2009).

An alternative method is to use a top-level RBM to
model the joint distribution of feature vectors and
labels. The RBM is trained on data obtained by conca-
tenating the high-level representation produced by
unsupervised learning with a binary label vector that
contains a 1 in the location representing the correct
label (see figure 3a). To improve discriminative per-
formance, it is possible to add the gradient of the log
probability that the RBM would generate the correct
label if the feature vector was fixed. This gradient can
be computed exactly in a time proportional to the
number of possible labels (Larochelle & Bengio 2008).

Figure 4 shows what can be achieved by learning
the network shown in figure 3a one layer at a time
using 500 hidden units in the first two hidden layers
and 2000 hidden units in the top layer (see Hinton
et al. 2006 for details).

When many of the labels provided by the supervisor
are incorrect, the RBM can use both the provided label

http://rstb.royalsocietypublishing.org/


Figure 4. Some test images that the network classifies
correctly even though it has never seen them before.
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and the features obtained from the image to infer the
true label. So, if the image is a clear example of some
other class, the RBM can overrule the provided label.
This works remarkably well and allowed a neural net
digit recognizer like the one shown in figure 3b to
get almost 98 per cent of both the training and the
test cases correct even when half of the training labels
were wrong. Like a good student, the net ignores the
supervisor when the supervisor is obviously wrong but
still makes good use of the fact that the supervisor is
better than random. This is possible because the unsu-
pervised learning reveals natural classes in the data and
the role of the supervisor is primarily to name these
natural classes rather than to define them.
7. A BETTER MODULE FOR DEEP LEARNING
Deep belief nets composed of RBMs are capable of mod-
elling any distribution over binary data vectors even if the
width of the hidden layers is constrained (Sutskever &
Hinton 2008), but they are a clumsy way to generate
some types of structure. Consider, for example, how an
officer generates a neat rectangle of soldiers on a
parade ground. Instead of directly telling each soldier
exactly where to stand, the officer tells them roughly
where to stand and also specifies lateral interactions
between the soldiers that ensure regular spacing. This
greatly reduces the bandwidth of communication
required between the officer and the soldiers. Hierarchi-
cal systems in which the values of the variables at one
level determine the interactions between variables at the
level below provide a more flexible way to generate or
represent complex structures. Each level creates an
energy function for the level below, but leaves the details
of how to minimize that energy function to the level
below, thus avoiding cumbersome micro-management.

RBMs can be modified to allow the states of the
hidden units to modulate pairwise interactions
between the visible units. The energy function is rede-
fined in terms of three way multiplicative interactions
(Sejnowski 1986) between two visible units, i, j, and
one hidden unit k

Eðv;hÞ ¼ �
X
i;j;k

vivjhkwijk: ð7:1Þ

Given the states of the hidden units, the visible units
form a Markov random field in which the effective
Phil. Trans. R. Soc. B (2010)
pairwise interaction weight between i and j isP
k hkwijk. The hidden units remain conditionally

independent given the states of the visible units and
their binary states are sampled using

pðhk ¼ 1Þ ¼ s
X

i;j

vivjwijk

 !
: ð7:2Þ

Given the hidden states, however, the visible units
are no longer independent so a ‘mean field’ recon-
struction of the data from the hidden states is
performed by starting at the data vector and using a
few iterations of the damped mean field equation

riðtÞ ¼ lriðt � 1Þ þ ð1� lÞs
X
h;j

hkrjðt � 1Þwijk

 !
;

ð7:3Þ

where 0 , ri (t) , 1 is a real-valued approximation to
the stochastic binary state vi and 0 , l , 1 must be
large enough to prevent oscillations. After computing
the reconstruction, the hidden states are again
sampled using ri and rj in place of vi and vj in equation
(7.2). The contrastive divergence learning rule for the
third-order weights is then

Dwijk / kvivjhkldata � krirjhklreconstruction: ð7:4Þ

This way of allowing hidden units to modulate
interactions between visible units has far too many
parameters because each hidden unit has independent
control over every pairwise interaction between the vis-
ible units. For real images, however, we expect the
required lateral interactions to have a lot of regular
structure. A hidden unit that represents a vertical
occluding edge, for example, needs to modulate the
lateral interactions so as to eliminate the horizontal
interpolation of intensities in the region of the edge.
This regular structure can be approximated by model-
ling the tensor of three-way weights as a sum of
‘factors’, f, each of which is a three-way outer product

wijk ¼
X

f

wif w jf wkf : ð7:5Þ

Thus equation (7.1) becomes

�E ¼
X

f

X
i

viwif

 ! X
j

vjw jf

 ! X
k

hkwkf

 !
:

ð7:6Þ

The factors are deterministic and, unlike the sto-
chastic visible and hidden units, they must send
different messages to different sets of stochastic
units. To sample a hidden unit from its posterior distri-
bution given the states of the visible units, the input to
the hidden unit must be the reduction in the energy of
the whole system caused by turning the hidden unit on

pðhk ¼ 1Þ ¼ s
X

f

wkf

X
i

viwif

 ! X
j

vjw jf

 !" #
:

ð7:7Þ
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(b)

Figure 5. (a) Shows the receptive fields of the hidden units of an RBM after training on images of handwritten digits. (b) Shows
the receptive fields of the three-way factors after training on some lower resolution handwritten digits. Each factor controls an

additive contribution to the inverse covariance matrix of the pixels. The strength of the contribution is proportional to the pro-
ducts of the weights from the factor to the two pixels, so the bar-shaped receptive fields contribute strong positive correlations
in the direction of a stroke. They also contribute strong negative correlations in the orthogonal direction for pixels separated by
about the width of the stroke.
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If we assume that the same weights between pixels
and factors are used in the first and second weighted
sums in equation (7.6), the message that factor f
must send to every hidden unit is

mH
f ¼

X
i

viwif

 !2

: ð7:8Þ

By similar reasoning, the message that factor f must
send to every visible unit is

mV
f ¼

X
i

viwif

 ! X
k

hkwkf

 !
: ð7:9Þ

The use of factors that send different messages to
different places is a form of belief propagation
(Kschischang et al. 2001). It ensures that the hidden
units remain conditionally independent which is cru-
cial for fast, accurate inference. It also makes
contrastive divergence learning very simple. For the
factor-to-hidden weights

Dwkf / khkmH
f ldata � khkmH

f lreconstruction ð7:10Þ

and for the visible-to-factor weights

Dwif / kvim
V
f ldata � kvim

V
f lreconstruction: ð7:11Þ

The use of a third-order energy function has led to a
module for deep learning containing an intermediate
layer of deterministic factors that act as linear filters
which send their squared outputs to the hidden units
via weighted connections. This is exactly the ‘oriented
energy’ model (Adelson & Bergen 1985) that is widely
used in computer vision. It is also very similar to a
standard model of the interaction between simple
and complex cells in visual cortex which is supported
by both psychophysical evidence and single cell
recordings (Carandini et al. 2005), though the stan-
dard model also includes divisive normalization. By
deriving this familiar model from a third-order
energy function, we obtain a simple, local learning
procedure for all of the parameters. Figure 5 shows
how the receptive fields learned by the third-order
factors differ from the receptive fields learned by
a standard RBM when trained on the images of
Phil. Trans. R. Soc. B (2010)
handwritten digits. The ‘Gaussian scale mixture’
model (Portilla et al. 2004) is a closely related, directed
graphical model with multiplicative interactions, but
inference and learning are more complex because of
explaining away.

Third-order, factorized energy functions can also be
used to stabilize the interactions between visible units
during the reconstruction process. If all of the weights
of a three-way factor are constrained to be negative and
the states of the visible units are constrained to be posi-
tive, a factor that is only connected to visible units will
act as a gain control that contributes energy which
grows cubically as the activities of the units increase.
The message that the three-way factor must send to
the visible units is the squared output of a linear
filter, as in equation (7.8), so the incoming negative
weights can all be implemented by positive weights,
but the outgoing weights must remain negative. This
resembles an inhibitory interneuron and is one way
to implement divisive normalization.

Factorized, third-order RBMs can be stacked to
form composite models that have many hidden layers.
This work has only just begun, but it should lead to
very powerful generative models. If neurons in the first
hidden layer represent local oriented energy, neurons
in the second hidden layer should represent local spatial
distributions of oriented energy. They should therefore
resemble SIFT features (Lowe 1999) which were
designed by hand but were originally motivated by
neurophysiology. SIFT features are widely used in
computer vision systems for recognizing objects.
8. CONCLUSION
Learning procedures that are inspired by biology but
evaluated by their computational performance have
become much more sophisticated over the last few
decades. This is leading to a convergence between
adaptive computer vision systems and models of the
object recognition pathway in the cortex. As computers
become more powerful, this trend is likely to continue.
Eventually, our understanding of how to engineer adap-
tive visual systems should become good enough to allow
us to hear what the experimental data are telling us
about how the cortical visual system is learned.
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