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Formants in sonorants

.beé.t — — bai —_— bOt.t\ — bbét —
/oit/ /baet/ /bat/ /but/

However, formants are insufficient features for use in speech
recognition generally...
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Challenges in speech data

Co-articulation and dropped phonemes.

(Intra-and-Inter-) Speaker variability.
No word boundaries.

Slurring, disfluency (e.g., ‘um’).

Signal Noise.

Highly dimensional.




Phonemes

®* Words are formed by phonemes (aka ‘phones’),

e.g., ‘pod’ = /p aa d/

®* Words have different pronunciations. and in practice we can
never be certain of which phones were uttered, nor their

start/stop points.

Syntactic )

Lexical '
Phonemic)

Sentence

Verb phrase

Noun phrase

Verb Modifier
Det Noun (plu)
Noun Noun
open the pod bay doors
ow| p |ah dh|ah| p |aa| d | b |ey ao| r | z
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Phonetic alphabets

® International Phonetic Association (IPA)
* Can represent sounds in all languages
®* Contains non-ASCII characters

* ARPAbet

® One of the earliest attempts at encoding English for
early speech recognition.

* TIMIT/CMU

® Very popular among modern databases for speech
recognition.




Example phonetic alphabets

IPA | CMU | TIMIT | Example IPA symbol name

[a] AA aa father. hot script a

[2] AE ae had digraph

[a] AHO |ax sofa schwa (common in
unstressed syllables)

[a] AH1 |ah but turned v

Bsod] AO ao caught open o — Note, many
speakers of Am. Eng.
do not distinguish
between [0: ] and
[a]. If your “caught”
and “cot” sound the
same. you do not.

[e] EH eh head epsilon

L] IH ih hid small capital I

1] |IXY 1y heed lowercase i

[U] UH uh hood. book upsilon

[u:] UwW uw boot lowercase u

[aT] AY ay hide

[au] AW aw how

[ex] EY ey today

[ou] oW oW hoed

Ko oY oy joy. ahoy

[&] ERO axr herself schwar (schwa changed
by following r)

[ 3] ER1 er bird reverse epsilon right

hook

IPA | CMU | TIMIT Example IPA symbol name
[D] NG ng sing song eng or angma
[.5:] SH sh sheet, wish | esh or long s
[t§] | CH ch cheese
[J] X y yellow lowercase |
[3] Z] zh vision long z or yogh
[dz] [TH jh judge
[O] DH dh thee, this eth

[

The other consonants are

transcribed as you would
expect

® le,p,bmt dn, Kk,
g) S) Z’ f) V) W) h
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Assignment 3

®* Two parts:

* Speaker identification: Determine which of 30 speakers

an unknown test sample of speech comes from, given
Gaussian mixture models you will train for each
speaker.

* Speech recognition: Compute word-error rates for
speech recognition systems using Levenshtein distance.




Speaker Data

® 32 speakers (e.g., S-3C, S-5A).

® Each speaker has up to 12 training utterances.

® e.g. /u/csc401/A3/data/S-3C/0.wav

®* Each utterance has 3 files:
®* x.wav : The original wave file.
®* *.mfcc.npy : The MFCC features in NumPy format

* *.txt : Sentence-level transcription.




Speaker Data (cont.)

* All you need to know: A speech utterance is an T x d matrix
® Each row represents the features of a d-dimensional point in time.

®* There are N rows in a sequence of N frames.

®* The data is in numpy arrays * .mfcc.npy

®* To read the files: np.1load (‘1 .mfcc.npy’)

data dimension

1 2 d
1 X [1] X [2] X [d]
2 | X I1] X, [2] X,[d]

time
frames

T XT[ 1] XT[z] xT.fdJ




Speaker Data (cont.)

® You are given human transcriptions in
transcripts.txt

® You are also given Kaldi and Google transcriptions in
transcripts.*.txt.

®* Ignore any symbols that are not words.
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Speaker Recognition

®* The data is randomly split into training and testing

utterances. We don’t know which speaker produced which
test utterance.

* Every speaker occupies a characteristic part of the acoustic
space.

®* We want to learn a probability distribution for each speaker
that describes their acoustic behaviour.

* Use those distributions to identify the speaker-dependent
features of some unknown sample of speech data.




Some background: fitting to data

® Given a set of observations X of some random variable, we
wish to know how X was generated.

®* Here, we assume that the data was sampled from a
Gaussian Distribution (validated by data).

® Given a new data point (x=15), It is more likely that x was
generated by B.

A B
A .
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Finding parameters: 1D Gaussians

e Often called Normal distributions

exp ( (m_“)Q) N(u,0)

a

202
><10'3

p(z) = Joro .

n B
3 -
3

0" = E((z — p)?) = /(x — p)*p(z)dz

® The parameters we can adjust to fit the data are (4 and g0 = <,LL, (7>
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Maximum likelihood estimation

® Givendata: X ={z1,22,...,2,}
® and Parameter set: 6

* Maximum likelihood attempts to find the parameter set
that maximizes the likelihood of the data.

n

L(X,0) =p(X | 0) = p(z1,32,...,2n | 0) = | [ p(zi | 6)

1=1

* The likelihood function I,(X,60) provides a surface over all

possible parameterizations. In order to find the Maximum
Likelihood, we set the derivative to zero: 5
—L(X,0)=0
06
19 y




MLE - 1D Gaussian

® Estimate [t :

L0t = | 1) = [otes 1 = T2 )
) =P % —i:1p ;| W —221 >
L 2
log L(X, ) = 22(2202 2 nlogv2wo
0 D> i(Ti — 1)
_1 L X — [ —
5y 08 (X, 1) > 0
Zq;xz‘

i =
1

* A similar approach gives the MLE estimate of 52:

~2 Zz(mz — ﬂ)Q
%

n &
20 < T




Multidimensional Gaussians

* When your data is d-dimensional, " y N
the input variable is ‘

T = (z[l],x|2],...,z|d])

the mean vector is

= E(@) = (pl1],pl2],. .., pld])
the covariance matrix is

Y =E(Z- @)@ -[)")

WIth 533, j] = E([ilz[5]) — pldulj]
and exp ( (f—ﬁ)Tz—l(f—m)

o 2
p(:z:) - (27T)d/2‘2‘1/2

21



Non-Gaussian data

 Our speaker data does not behave unimodally.
- i.e., we can't use just 1 Gaussian per speaker.
- E.g., observations below occur mostly bimodally, so fitting 1
Gaussian would not be representative.
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Gaussian mixtures

® Gaussian mixtures are a

weighted linear combination 15 T
of M component gaussians. M
p(@) =) p(T;)p(E|T;)
i=1

0.35
0.3 F “
0.25
0.2 |

015 F

0.1 F

0.05F




MLE for Gaussian mixtures

® For notational convenience W =D('m), b (7:) =p(z: | T'm)

®* So pe(x: Zwm © = (W, hm, 2m), m=1,...,. M

d Lt|l m 2
e (—%zizl el 1)

2m)ir2 (TIL, o2, m)”z

* To find @, we solve Ve log L(X,0) =0 where

N
log L(X, ©) Zlogp@ Ty ) Zlog (Z Winbm )
...see Appendix for more | y




MLE for Gaussian mixtures (pt. 2

N

o i Olog L(X,©) 1 [ 0 )
Given s t\AB) wo b (5
Opiminl 2 p0@0) | D)
. G 0 , o\ Zt[n] — pin (]
S —
ince ol b (1) = by (T3) o2
® We obtain Um|n] by solving for pm|n in :

dlog L(X,0) _ S _“m by () T = Al

Oumln] 2= pol@) o2,[n]




Recipe for GMM ML estimation

* Do the following for each speaker individually. Use all the
frames available in their respective Training directories

. Initialize: Guess O = (wm, i, Z), m=1,..., M with M
random vectors in the data, or by performing M-means

clustering

logp(X | ©it1) —

4. Repeat 2&3 until converges




Cheat sheet

2\ Probability of

_1Nd (@i —pmi]) : ,
_ eXp( 3 2ii=1 " o2 ) observing x_in the m*"
o, )1/2 Gaussian

(2m) ¥ (TTE, o2

— Prior probability of the m®
“m = P{l'm) Gaussian
th
p(Ty, | 72, ©) Wm__y, M )Probablllty of the m

Gaussian, given x.

M e .

_ Probability of x, in the

p@(xt) — Z wmbm(xt) GMM d '
m=1
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Initializing theta

© = <w17:u17217w27lu'27227° J 7wM7,U'M72M>
* Initialize each Wm to a random vector from the data.

* Initialize 2.,,, to a random diagonal matrix (or identity
matrix).

* Initialize Wy, randomly, with these constraints:
0<w,, <1

Zwmzl
m 1

* A good choice would be to set to 2., = —
m

28




Over-fitting in Gaussian Mixture Models

- Singularities in likelihood function when a component
‘collapses’ onto a data point: 00

11 T

(271.)1/20. _

then consider o; — 0

 Likelihood function gets larger as we add more 2
components (and hence parameters) to the model

— not clear how to choose the number K of components

Solutions:

i Ensure that the variances don’t get too small.
. Bayesian GMMs

* Slide borrowed from Chris Bishop’s presentation
UNIVERSITY O
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Your Task

- For each speaker, train a GMM, using the EM algorithm,
assuming diagonal covariance.

- Identify the speaker of each test utterance.

 Experiment with the number of mixture elements in the
models, the improvement threshold, number of possible
speakers, etc.

« Comment on the results

30



Practical tips for MLE of GMMs

» We assume diagonal covariance matrices. This reduces the
number of parameters and can be sufficient in practice given
enough components.

- Numerical Stability: Compute likelihoods in the log domain
(especially when calculating the likelihood of a sequence of
frames).

log b, ( zd: Tt _)[ ) C—ilog27r—llog1_[cf_’ °In]
— 2 2 i

- Here, =3, pm and g 2 are d-dimensional vectors.

31



Practical tips (pt. 2)

- Efficiency: Pre-compute terms not dependent on g}

32



Agenda

* Background
* Speech technology, in general
* Acoustic phonetics

* Assignment 3

* Speaker Recognition: Gaussian mixture models

* Speech Recognition: Word-error rates with
Levenshtein distance.

33



Word-error rates

* If somebody said

REF: how to recognize speech

but an ASR system heard
HYP: how to wreck a nice beach
how do we measure the error that occurred?

®* One measure is #CorrectWords/#HypothesisWords
e.g., 2/6 above

®* Another measure is (S+I1+D)/#ReferenceWords
® S: # Substitution errors (one word for another)
® |: # Insertion errors (extra words)

® D: # Deletion errors (words that are missing).

34




Computing Levenshtein Distance

® In the example

REF: how to recognize speech.
HYP: how to wreck a nice beach
How do we count each of S, I, and D?

(( 1)

* If “wreck” is a substitution error, what about and

“Nice’”?

35



Computing Levenshtein Distance

® In the example

REF: how to recognize speech.
HYP: how to wreck a nice beach
How do we count each of S, |, and D?
If “wreck” is a substitution error, what about “a” and “nice”?

* Levenshtein distance:

Initialize R[0,0] = 0, and Rl[i,j] = max(i, j) for all i=0 or j=0

for i=1..n (#ReferenceWords)

for j=1..m (#Hypothesis words)
R[i,jl = min( R[i-1,j] + 1 (deletion)

Rli-1,j-1] (only if words match)
Rli-1,j-1]+1  (only if words differ)
Rli,j-1] +1 ) (insertion)
Return 100*R(n,m)/n

36




Levenshtein example

speech

how to | wreck nice | beach

0 / 2 3 5 6

how / 0 / 2 4 5
to 2
recognize | 3
4

37




Levenshtein example

speech

how | to |wreck| a | nice | beach
0 / 2 3 4 5 6
how / 0 / 2 3 4 5
to 2 / 0 / 2 3 4
recognize | 3
4

38




Levenshtein example

speech

how to |wreck| a nice | beach
o | 1| 2| 3| 4| 5| 6
how I | o | 1 | 2| 3| 4| 5
to 2 | 1| o | 1| 2| 3| 4
recognize| 3 | 2 | I I | 2| 3 | 4
4

39




Levenshtein example

how to |wreck| a nice | beach
o | I | 2| 3| 4| 5| 6
how I | o | 1| 2| 3| 4| 5
to 2 | 1o | 1| 2| 3| 4
recognize| 3 | 2 | I | I | 2| 3 | 4
speech | 4 | 3 | 2| 2| 2| 3| 4

Word-error rate is 4/4 = 100%

2 substitutions, 2 insertions

40



Key Takeaways

. Store a matrix of backpointers (needed to calculate number of
substitutions, insertions, deletions)
. Break ties with the following priority
- 1. Substitution
- 2. Insertion
- 3. Deletion
. Forward calculation : Compute WER

. Backward tracing : # subs, ins and dels




Appendices
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Multidimensional Gaussians, pt. 2

® If the it" and j* dimensions are statistically independent,
E(z[i|x]j]) = E(x[i]) E(z]j])
and >t,7] =0

* If all dimensions are statistically independent, xji. j) = 0, vi # j
and the covariance matrix becomes diagonal, which means

where

43



MLE example - dD Gaussians

® The MLE estimates for parameters © = (01,02, ...,04)

given i.i.d. training data X = (x3,...,2,) are obtained
by maximizing the joint likelihood

L(X,0) =p(X | ©) = p(a1,...,2n | ©) =Hp<x—;; | ©)

®* To do so, we solve VgL(X,0)=0 , where

* Giving
ﬁ’: D i1 Tt & 2 t—1 (mt—ﬂ) (mt—ﬂ)




MLE for Gaussian mixtures (pt1.5)

M
®* Given logL(X,0) = Zlogp@(f%) and pe(z3) = Z Wi b (T1)
t=1 m=1

® Obtain an ML estimate, NA:n , of the mean vector by
maximizing log L(X, i) w.r.t. fim[n]

N

Olog L(X, ©) 1 [ 0 |
lo T — War, Oy, (T4
(9,um n] Za gp@ t) ;p@( t) _8Hm[n] ( t)_

* Why? d of sum = sum of d ) (d rule for log, }
d wrt ., is 0 for all other
mixtures in the sum in pe (<)

U
O]
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