
CSC401/2511
ONE OF THE FIRST TUTORIALS EVER,

EVERYBODY SAYS SO

- Frank Rudzicz

THE WORLD WE LIVE IN

THE WORLD WE LIVE IN

LOGICAL FALLACIES

WHAT CAN BE DONE?

• There are probably many solutions, including better
education and a ramping down of political zealotry from
Our Glorious Leaders.

• But this is a class on natural language processing.

• Can we detect bias automatically from online texts?

LANGUAGE ANALYSIS
AND LYING

https://youtu.be/H0-WkpmTPrMhttps://youtu.be/4ab2ZeZ-krY

“Don’t use a big word when a diminutive one
would suffice.”

https://youtu.be/H0-WkpmTPrM
https://youtu.be/4ab2ZeZ-krY

ASIDE: HOW CAN BIAS DETECTION
HELP?

• Social media platforms:
• May want to more closely monitor highly biased groups (e.g.

allocate more human annotators to look for ban-able content like
inciting violence or doxing).

• Sociologists and network scientists:
• Better understanding of biased online communities can help us

address the root causes of bias.

• How do online communities become biased?
• Are biased online communities uniformly biased?

REDDIT CORPUS

• We have curated data from Reddit by scraping subreddits, using
Pushshift, by perceived political affiliation.

• These data are stored on the teach.cs servers under
/u/cs401/A1/data/. These files should only be accessed from
that directory (and not copied). All data are in the JSON format.

A COMMENT, IN JSON

• If you want to experiment a bit, there are some fields of
metadata that might be interesting, but the main thing is body.

"{"id":"c05os7s", "author":"[deleted]",
"subreddit":"conspiracy", "author_flair_css_class":null,
"ups":-1, "archived":true, "edited":true,
"subreddit_id":"t5_2qh4r", "body":"WAIT! Are you saying
that 9/11 was a *conspiracy*?! Like...an *inside job* or
something?", "score_hidden":false,
"parent_id":"t3_74xuq", "distinguished":null,
"link_id":"t3_74xuq", "author_flair_text":null,
"created_utc":"1223008247",
"retrieved_on":1425887728,"gilded":0,"name":"t1_c05os7s"
,"controversiality":0,"score":-1,"downs":0}",

THREE STEPS

• In order to infer whether the author of a given comment leans a
certain way, politically, we use three steps:
1. Preprocess the data, so that we can extract meaningful

information, and remove distracting ‘noise’.
2. Extract meaningful information.
3. Train classifiers, given labeled data.

Python 3.9 on CDF

wolf:~$ python --version
Python 2.7.13
wolf:~$ python3 --version
Python 3.10.1
wolf:~$ python3.9 --version
Python 3.9.7

SPACY.IO
NLP IN PYTHON

import spacy
nlp = spacy.load('en_core_web_sm’)
nlp.add_pipe(“sentencizer")

sentence = “This is a useful library!”
doc = nlp(sentence)

for sent in doc.sents:
print(sent)
for token in sent:

print(token, token.tag_, token.lemma_, token.dep_)

PREPROCESSING 1

1. Replace all whitespace characters with spaces.

2. Replace HTML character codes (i.e., &...;) with their ASCII equivalent.

3. Remove all URLs (i.e., tokens beginning with http(s):// or www.).

4. Remove duplicate spaces between tokens.

5. Apply the following steps using spaCy:
1. Tagging with part-of-speech (dog -> dog/NN)

2. Lemmatization (words/NNS -> word/NNS)

3. Sentence segmentation

1. (“I know words. I’ve got the best words” -> “I know words.\nI’ve got the best
words\n”)

PUTTING IT ALL TOGETHER

I know words. I’ve got the best words.

I/PRP know/VBP word/NNS ./.\nI/PRP ‘ve/VBP get/VBN
the/DT good/JJS word/NNS ./.\n

import re, string, html

print(string.whitespace)
print(string.punctuation)

print(re.sub(“spacy”, “spaCy”, “spacy is a python library”))

LEMMATIZATION V STEMMING:
DAWN OF SPARSENESS

• Both lemmatization and stemming are often used to
transform word tokens to a more base form.
• This helps to improve sparseness.
• It also helps in using various resources.

• (e.g., funkilicious might not exist in a norm or
embedding, but ‘funk’ ought to).

LEMMATIZATION V STEMMING:
DAWN OF SPARSENESS

• lemma: n. an abstract conceptual form of a word that has
been mentally selected for utterance in the early
stages of speech production.

• E.g. 𝑙𝑒𝑚𝑚𝑎 𝑏𝑒𝑠𝑡 = 𝑔𝑜𝑜𝑑 (degree)

• E.g. 𝑙𝑒𝑚𝑚𝑎(ℎ𝑜𝑢𝑠𝑒𝑠) = ℎ𝑜𝑢𝑠𝑒 (number/amount)

• E.g. 𝑙𝑒𝑚𝑚𝑎(ℎ𝑜𝑢𝑠𝑖𝑛𝑔) = ℎ𝑜𝑢𝑠𝑖𝑛𝑔

• stem: n. usually, a part of a word to which affixes can be attached.

• E.g. 𝑠𝑡𝑒𝑚 ℎ𝑜𝑢𝑠𝑒𝑠 = 𝑠𝑡𝑒𝑚 ℎ𝑜𝑢𝑠𝑖𝑛𝑔 = ℎ𝑜𝑢𝑠

• We use lemmatization given some of our features, but check out nltk.stem in the NLTK package.

http://www.nltk.org/

PREPROCESSING:
YOUR TASK

• Copy the starter template from the drive*. There are two functions you need to modify:

• In preproc1, perform each preprocessing step above.

• In main, replace the lines marked with TODO with the code they describe. Add a new cat field with
the name of the class

• The program takes three arguments:

1. your student ID (mandatory),

2. the output file (mandatory), and

3. the maximum number of lines to sample from each category file (optional; default=10,000).
python a1 preproc.py 999123456 -o preproc.json

*The CDF folder /u/cs401/A1/code may not be up-to-date with changes made since the
release. Check Piazza announcements for details.

https://drive.google.com/open?id=1L_3Sq1UJq9rcIEMVQzbT6SHEDRXwVCCV
https://piazza.com/class/kx9cacio1zf5rh?cid=66

PREPROCESSING:
SUBSAMPLING

• We provide our student IDs so we each see a different part of the available data.

• By default, you should only sample 10,000 lines from each of the Left, Centre,
Right, and Alt files, for a total of 40,000 lines.

• From each file, start sampling lines at index [ID % len(X)]

• Feel free to play around with more or less data, respectful of your peers on
the servers, but this step guarantees it’s tractable (and that there’s no ‘desired’
level of accuracy).

FEATURE EXTRACTION

• The a1_extractFeatures.py program reads a preprocessed JSON file and
extracts features for each comment therein, producing and saving a NumPy
array, where the row is the features for the comment, followed by an integer
for the class (0: Left, 1: Center, 2: Right, 3: Alt), as per the cat JSON.

"{"id":"c05os7s",
"body":”wait ! be you say
that 9 / 11 be a *
conspiracy *?! like ...
an * inside job * or
something ?",cat:”Alt”}",

 comment in input

… 3

 row in output

 features class

PREPROCESSING:
Searching for Patterns

● Useful tools: regex

● Useful tools: spaCy documentation
○ https://spacy.io/models/en#en_core_web_sm

● Useful shortcut:
https://github.com/explosion/spaCy/blob/master/spacy/glossary.py

● Useful tools: the handout, tables.

import re

pattern = re.compile("\d+")
pattern.findall("Highway 401 continues in Quebec as
Autoroute 20")

spacy.explain(‘VBG’)

https://spacy.io/models/en#en_core_web_sm
https://github.com/explosion/spaCy/blob/master/spacy/glossary.py

Warringer: These norms measure the valence (V), arousal (A), and dominance
(D) of each lemma, according to the VAD model of human affect and emotion.
See: Warriner, A.B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and

dominance for 13,915 English lemmas. Behavior Research Methods, 45:1191-1207.

Bristol et al: measure the age-of-acquisition (AoA), imageability (IMG), and
familiarity (FAM) of each word, which we can use to measure lexical complexity.
See: Gilhooly, KJ, Logie, RH (1980). Age-of-acquisition, imagery, concreteness, familiarity, and
ambiguity measures for 1,944 words Behavior Research Methods, 12(4):394-427.

http://crr.ugent.be/papers/Warriner_et_al_affective_ratings.pdf
http://crr.ugent.be/papers/Warriner_et_al_affective_ratings.pdf
https://link.springer.com/article/10.3758/BF03201693
https://link.springer.com/article/10.3758/BF03201693

LIWC/RECEPTIVITI 1

• The Linguistic Inquiry & Word Count (LIWC) tool has been a standard in a
variety of NLP research, especially around authorship and sentiment analysis.
• This tool provides 85 measures mostly related to word choice.

• The company Receptiviti provides a superset of these features, which also
includes 59 measures of personality derived from text.

• To simplify things, we have already extracted these 144 features for you. Simply
copy the pre-computed features from the appropriate uncompressed npy files
stored in /u/cs401/A1/feats/.

LIWC/RECEPTIVITI 2

• Comment IDs are stored in _IDs.txt files (e.g., Alt_IDs.txt). When processing a
comment, find the index (row) of the ID in the appropriate ID text file, for the
category, and copy the 144 elements, starting at element , from the associated
feats.dat.npy file.

"{"id":"c05os7s",
"body":"wait ! be you
say that 9 / 11 be a *
conspiracy *?! like
... an * inside job *
or something ?",
cat:”Alt”}",

...
c05nn92
c05o81l
c05os7s
c05p5vj
c05pbbg
...

comment Alt_IDs.txt

46th line

… … …

Row 46

Alt_feats.dat.npy

feats_arr = numpy.load(‘/u/cs401/A1/feats/Alt_feats.dat.npy’)
feats_comment = feats_arr[46]

LIWC/RECEPTIVITI 3:
FEATURE NAMES

feats.txt

CLASSIFICATION

• Four parts:
• Compare classifiers
• Experiment with the amount of training data used
• Select the best features for classification
• Do cross-fold validation

CLASSIFICATION 1:
COMPARE CLASSIFIERS

• Randomly split data into 80% training, 20% testing.

• We have 5 classification methods, which you can consider to be ‘black boxes’ (input goes in,
classes come out).
1. Support vector machine with linear kernel

2. Gaussian naïve Bayes classifier.

3. Random forest classifier

4. Neural network

5. Adaboost (with decision tree)

CLASSIFICATION 1:
COMPARE CLASSIFIERS

• Accuracy: the total number of correctly classified instances
over all classifications: .

• Recall: for each class k , the fraction of cases that are truly
class k that were classified as class k.

• Precision: for each class k, the fraction of cases classified as k
that truly are k.

L C R A

L

C 8

R

A

True class

Predicted class

number of times class
 was classified as class

CLASSIFICATION 2:
AMOUNT OF DATA

• You previously used a random comments to train.
• Using the classifier with the highest accuracy from Sec3.1,

retrain the system using an arbitrary samples from the original
train set.

CLASSIFICATION 3:
FEATURE ANALYSIS

• Certain features may be more or less useful for classification, and
too many can lead to various problems.

• Here, you will select the best features for classification for .
• Train the best classifier from Sec3.1 on just features on both and

training samples.
• Are some features always useful? Are they useful to the same

degree (p-value)? Why are certain features chosen and not others?

CLASSIFICATION 4:
CROSS-FOLD VALIDATION

• What if the ‘best’ classifier from Sec3.1 only appeared to be the
best because of a random accident of sampling?

• Test your claims more rigorously.
Part 1 Part 2 Part 3 Part 4 Part 5

Iteration 1 : Err1 %

Iteration 2 : Err2 %

Iteration 3 : Err3 %

Iteration 4 : Err4 %

Iteration 5 : Err5 %
Testing Set

Training Set

BONUS

• You have complete freedom to expand on this assignment in any
way you choose.

• You should have no expectation to the value of such an exploration –
check with us (privately if you want) about the appropriateness of
your idea.

• Bonus marks can make up for marks lost in other sections of the
assignment, but your overall mark cannot exceed 100%.

FESTIVAL DE MIERDA DE TORO

• If things go well, we would love to run a special ‘workshop’ where:

1. students who did interesting bonuses could describe their work

2. grad students (working around the theme) could present their projects

3. we could hold a competition for best systems in A1, A2, A3

• Problem: the instructors and TAs already have a lot on their plates.

• Solution (?): If any of you are interested in spearheading such a get-together at the end of the term (and getting bonus marks), we’d be glad to support.

Remember to…

• Check Piazza regularly for clarifications and announcements.

• Changes to starter code since release:

1. URL removal (a1_preproc.py, Line 44)

• If you are working in non-CDF environments: use the requirements.txt file to match
package versions.

• Sample input and output for Parts 1 and 2 will be out soon (EoD).

• Ask questions: Piazza, tutorials.

• Recommendation: setup up a functioning pipeline, then go back and improve specific
sub-modules.

