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Robust Text-Independent Speaker Identification
Using Gaussian Mixture Speaker Models

Douglas A. Reynolds, Member, IEEE, and Richard C. Rose, Member, IEEE

Abstract— This paper introduces and motivates the use of
Gaussian mixture models (GMM) for robust text-independent
speaker identification. The individual Gaussian components of
a GMM are shown to represent some general speaker-dependent
spectral shapes that are effective for modeling speaker identity.
The focus of this work is on applications which require high
identification rates using short utterance from unconstrained con-
versational speech and robustness to degradations produced by
transmission over a telephone channel. A complete experimental
evaluation of the Gaussian mixture speaker model is conducted
on a 49 speaker, conversational telephone speech database. The
experiments examine algorithmic issues (initialization, variance
limiting, model order selection), spectral variability robustness
techniques, large population performance, and comparisons to
other speaker modeling techniques (uni-modal Gaussian, VQ
codebook, tied Gaussian mixture, and radial basis functions).
The Gaussian mixture speaker model attains 96.8% identification
accuracy using 5 second clean speech utterances and 80.8%
accuracy using 15 second telephone speech utterances with a 49
speaker population and is shown to outperform the other speaker
modeling techniques on an identical 16 speaker telephone speech
task.

I. INTRODUCTION

HE speech signal conveys several levels of information.
Primarily, the speech signal conveys the words or mes-

sage being spoken, but on a secondary level, the signal also
conveys information about the identity of the talker. While
the area of speech recognition is concerned with extracting
the underlying linguistic message in an utterance, the area of
speaker recognition is concerned with extracting the identity
of the person speaking the utterance. As speech interaction
with computers becomes more pervasive in activities such as
telephone financial transactions and information retrieval from
speech databases, the utility of automatically recognizing a
speaker based solely on vocal characteristics increases.

Depending upon the application, the general area of speaker
recognition is divided into two specific tasks: verification and
identification. In verification, the goal is to determine from
a voice sample if a person is whom he or she claims. In
speaker identification, the goal is to determine which one of a
group of known voices best matches the input voice sample.
Furthermore, in either task the speech can be constrained to
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be a known phrase (text-dependent) or totally unconstrained
(text-independent). Success in both tasks depends on extracting
and modeling the speaker-dependent characteristics of the
speech signal which can effectively distinguish one talker from
another.

In this paper a new speaker model based on Gaussian
mixture models (GMM) is introduced and evaluated for text-
independent speaker identification. The use of Gaussian mix-
ture models for modeling speaker identity is motivated by the
interpretation that the Gaussian components represent some
general speaker-dependent spectral shapes and the capability
of Gaussian mixtures to model arbitrary densities. The Gauss-
ian mixture speaker model is experimentally evaluated on a 49
speaker conversational speech database containing both clean
and telephone speech. The experiments examine algorithmic
issues such as model initialization, variance limiting, and
model order selection. To compensate for spectral variability
introduced by the telephone channel and handsets, robustness
techniques such as long-term mean removal, difference co-
efficients, and frequency warping are applied and compared.
The experiments also examine the GMM speaker identification
performance with respect to an increasing speaker population.
Finally, the performance of the Gaussian mixture speaker
model, uni-modal Gaussian model [1], vector quantization
(VQ) codebook model (2], tied Gaussian mixture model, and
radial basis function (RBF) model [3] are compared on a 16
speaker telephone speech identification task.

The techniques for speaker recognition can be categorized
into three major approaches. The first and earliest approach
is to use long-term averages of acoustic features, such as
spectrum representations or pitch [7], [8]. The idea is to
average out the other factors influencing the acoustic features,
such as the phonetic variations, leaving only the speaker
dependent component. For spectral features, the long-term
average represents a speaker’s average vocal tract shape.
This approach is equivalent to a Gaussian classifier and has
been used successfully for several difficult, text-independent
speaker identification tasks [1], [9]. However, the averaging
process discards much speaker-dependent information and can
require long (>20 s) speech utterances to derive stable long-
term speech statistics.

The second approach is to model the speaker-dependent
acoustic features within the individual phonetic sounds that
comprise the utterance. By comparing acoustic features from
phonetic sounds in a test utterance with speaker-dependent
acoustic features from similar phonetic sounds, the comparison
measures speaker differences rather than textual difference.
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This approach can be accomplished using explicit or implicit
segmentation of the speech into phonetic sound classes prior to
speaker model training or recognition. In [10] and [11], explicit
segmentation was performed using a hidden Markov model
(HMM)-based continuous speech recognizer as a front-end
segmenter for text-independent speaker recognition systems. It
was found in both studies that the front-end speech recognizer
provided little or no improvement in speaker recognition
performance compared to no front-end segmentation. More-
over, using a continuous speech recognizer front-end imposes
a significant increase in computational complexity on both
training and recognition.

Implicit segmentation, on the other hand, relies on some
form of unsupervised clustering to provide implicit segmenta-
tion of the acoustic features during both training and recogni-
tion. The sound classes are not labeled, so separate training of
a segmenter is not required. Template based clustering, such
as vector quantization [12], [2] and K -nearest neighbor with
leader clustering [13], has proven to be very effective for this
approach to speaker recognition. In the VQ approach, each
speaker is represented by a codebook of spectral templates rep-
resenting the phonetic sound clusters in his/her speech. While
this technique has demonstrated good performance on limited
vocabulary (digits) tasks, it is limited in its ability to model the
possible variabilities encountered in an unconstrained speech
task. As has been shown in speech recognition, probablistic
models provide a better model of acoustic speech events and
a framework for dealing with noise and channel degradations.
HMM’s, in a variety of forms, have been used as probabilistic
speaker models for both text-independent and text-dependent
speaker recognition [14], [17]. The HMM models not only the
underlying speech sounds, but also the temporal sequencing
among these sounds. Although temporal structure modeling
is advantageous for text-dependent tasks, for text-independent
tasks the sequencing of sounds found in the training data does
not necessarily reflect the sound sequences found in the testing
data and contains little speaker-dependent information. This is
supported by experimental results in [15] and [17] which found
text-independent performance was unaffected by discarding
transition probabilities in HMM speaker models.

The third and most recent approach to speaker recognition
is the use of discriminative neural networks (NN). Rather
than train individual models to represent particular speakers,
discriminative NN’s are trained to model the decision function
which best discriminates speakers within a known set. Several
different networks, such as multilayer perceptrons [18], time-
delay NN’s [19], and radial basis functions [3], have recently
been applied to various speaker recognition tasks. Generally,
NN’s require a smaller number of parameters than independent
speaker models and have produced good speaker recognition
performance, comparable to that of VQ systems. The major
drawback to many of the NN techniques is that the complete
network must be retrained when a new speaker is added to
the system.

The Gaussian mixture speaker model falls into the implicit
segmentation approach to speaker recognition. It provides a
probabilistic model of the underlying sounds of a person’s
voice, but unlike HMM’s does not impose any Markov-

ian constraints between the sound classes. The probabilistic
framework also allows the application of newly developed
noise and channel robustness techniques from the speech
recognition area. In [20] a statistical background noise model is
integrated with the Gaussian mixture speaker model for noise
robustness using this framework. Furthermore, the new model
is computationally efficient and can easily be implemented on
a real-time digital signal processor [21], [22].

The research in this paper is concerned with realistic speech
data encountered in practical applications of speaker identifi-
cation. Speaker labeling of voice mail, for example, must use
unconstrained conversational speech, possibly received over a
noisy telephone line. In such an application, the speaker model
must have some compensation to be robust to the acoustic
distortions produced by telephone handsets and networks.
Also, since there is usually no control over how long a person
speaks, this research is focused on performance using short
(<10 s) speech utterances for identification. These issues are
examined in speaker identification experiments conducted on
a telephone quality conversational speech database.

The rest of the paper is organized as follows. In the
next section, we introduce the Gaussian mixture speaker
model and motivate its use for text-independent speaker mod-
eling. Section III then presents an experimental study of
the Gaussian mixture speaker model on an unconstrained
conversational database. The experiments examine parameter
estimation, model order selection, spectral variability robust-
ness, effect of population size, and performance comparisons
to other speaker classifiers. Finally, Section IV gives a sum-
mary and conclusions.

II. THE GAUSSIAN MIXTURE SPEAKER MODEL

This section describes the form of the Gaussian mixture
model (GMM) and motivates its use as a representation of
speaker identity for text-independent speaker identification.
The speech analysis for extracting the mel-cepstral feature
representation used in this work is presented first. Next, the
Gaussian mixture speaker model and its parameterization are
described. The use of the Gaussian mixture density for speaker
identification is then motivated by two interpretations. First,
the individual component Gaussians in a speaker-dependent
GMM are interpreted to represent some broad acoustic classes.
These acoustic classes reflect some general speaker-dependent
vocal tract configurations that are useful for modeling speaker
identity. Second, a Gaussian mixture density is shown to
provide a smooth approximation to the underlying long-term
sample distribution of observations obtained from utterances
by a given speaker. Finally, the maximum-likelihood pa-
rameter estimation and speaker identification procedures are
described.

A. Speech Analysis

Although there are no exclusively speaker distinguishing
speech features, the speech spectrum has been shown to be
very effective for speaker identification [4]. This is because the
spectrum reflects a person’s vocal tract structure, the predom-
inant physiological factor which distinguishes one person’s
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Fig. 1. Mel-scale cepstral feature analysis.

voice from others. LPC spectral representations, such as LPC
cepstral and reflection coefficients, have been used extensively
for speaker recognition; however, these model-based represen-
tations can be severely affected by noise [5]. Recent studies
have found directly computed filterbank features to be more
robust for noisy speech recognition [6]. In this paper we use
cepstral coefficients derived from a mel-frequency filterbank
to represent the short-time speech spectra.

Fig. 1 shows a block diagram of the steps in our front-
end feature extraction. The magnitude spectrum from a 20 ms
short-time segment of speech is pre-emphasized and processed
by a simulated mel-scale filterbank. The filterbank follows that
described in [23]. The log-energy filter outputs are then cosine
transformed to produce the cepstral coefficients. The zeroth
cepstral coefficient is not used in the cepstral feature vector.
This processing occurs every 10 ms, producing 100 feature
vectors per second.

B. Model Description

A Gaussian mixture density is a weighted sum of M
component densities, as depicted in Fig. 2 and given by the
equation

M

pEIN = pibi(@)

t=1

ey

where # is a D-dimensional random vector, b;(%),1 =
1,..., M, are the component densities and p;,i=1,..., M,
are the mixture weights. Each component density is a D-
variate Gaussian function of the form

. 1 1., . 1=
bi(%) = mi‘—l/’zexp{—aﬁ - E) T (E - ﬂi)}
@
with mean vector fi; and covariance matrix ¥;. The mixture
weights satisfy the constraint that Zgl p; =1
The complete Gaussian mixture density is parameterized by
the mean vectors, covariance matrices and mixture weights
from all component densities. These parameters are collec-
tively represented by the notation
)(:{p,',ﬁ,',z,'}’i=l,...,M. (3)
For speaker identification, each speaker is represented by a
GMM and is referred to by his/her model A.

YTARS

[TV

-
X

Fig. 2. Depiction of an M component Gaussian mixture density. A Gaussian
mixture density is a weighted sum of Gaussian densities, where p;,¢ = 1,
..., M, are the mixture weights and b;(), ¢ =1,..., M, are the component
Gaussians.

The GMM can have several different forms depending on
the choice of covariance matrices. The model can have one
covariance matrix per Gaussian component as indicated in
(3) (nodal covariance), one covariance matrix for all Gauss-
ian components in a speaker model (grand covariance), or
a single covariance matrix shared by all speaker models
(global covariance). The covariance matrix can also be full
or diagonal. In this paper, nodal, diagonal covariance matrices
are primarily used for speaker models, except as noted for
some experiments. This choice is based on initial experimen-
tal results indicating better identification performance using
nodal, diagonal variances compared to nodal and grand full
covariance matrices.

C. Model Interpretations

There are two principal motivations for using Gaussian
mixture densities as a representation of speaker identity. The
first motivation is the intuitive notion that the individual
component densities of a multi-modal density, like the GMM,
may model some underlying set of acoustic classes. It is
reasonable to assume the acoustic space corresponding to a
speaker’s voice can be characterized by a set of acoustic
classes representing some broad phonetic events, such as
vowels, nasals, or fricatives. These acoustic classes reflect
some general speaker-dependent vocal tract configurations that
are useful for characterizing speaker identity. The spectral
shape of the ith acoustic class can in tum be represented
by the mean fi; of the ith component density, and variations
of the average spectral shape can be represented by the
covariance matrix ¥;. Because all training or testing speech is
unlabeled, the acoustic classes are “hidden” in that the class
of an observation is unknown. Assuming independent feature
vectors, the observation density of feature vectors drawn from
these hidden acoustic classes is a Gaussian mixture.

The second motivation for using Gaussian mixture densities
for speaker identification is the empirical observation that
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Fig. 3. Comparison of distribution modeling: (a) Histogram of a single
cepstral coefficient from a 25 second utterance by a male speaker; (b) max-
imum likelihood unimodal Gaussian model; (c) GMM and its 10 underlying
component densities; (d) histogram of the data assigned to the VQ centroid
locations of a 10-element codebook.

a linear combination of Gaussian basis functions is capable
of representing a large class of sample distributions. One
of the powerful attributes of the GMM is its ability to
form smooth approximations to arbitrarily-shaped densities.
The classical unimodal Gaussian speaker model represents a
speaker’s feature distribution by a position (mean vector) and a
elliptic shape (covariance matrix) and the VQ model represents
a speaker’s distribution by a discrete set of characteristic
templates. In some sense the GMM acts as a hybrid between
these two models by using a discrete set of Gaussian functions,
each with their own mean and covariance matrix, to allow
a better modeling capability. Fig. 3 compares the densities
obtained using a unimodal Gaussian model, a GMM and a
VQ model. Plot (a) shows the histogram of a single cepstral
coefficient from a 25 second utterance by a male speaker; plot
(b) shows the maximum likelihood unimodal Gaussian model;
plot (c) shows the GMM and its 10 underlying component
densities; and plot (d) shows a histogram of the data assigned
to the VQ centroid locations of a 10-element codebook. The
GMM not only provides a smooth overall distribution fit, its
components also clearly detail the multi-modal nature of the
density.

Also, because the component Gaussians are acting together
to model the overall pdf, full covariance matrices are not
necessary even if the features are not statistically independent.
The linear combination of diagonal covariance Gaussians is
capable of modeling the correlations between feature vector
elements. The effect of using a set of M full covariance
Gaussians can be equally obtained by using a larger set of
diagonal covariance Gaussians.

D. Maximum Likelihood Parameter Estimation

Given training speech from a speaker, the goal of speaker
model training is to estimate the parameters of the GMM,
A, which in some sense best matches the distribution of the
training feature vectors. There are several techniques available
for estimating the parameters of a GMM [24]. By far the most
popular and well-established method is maximum likelihood
(ML) estimation.

The aim of ML estimation is to find the model parameters
which maximize the likelihood of the GMM, given the training

data. For a sequence of T training vectors X = {f1,..., %1},
the GMM likelihood can be written as
pX | N) = Hp(ztu “)

Unfortunately, this expression is a nonlinear function of the pa-
rameters A and direct maximization is not possible. However,
ML parameter estimates can be obtained iteratively using a
special case of the expectation-maximization (EM) algorithm
[25].

The basic idea of the EM algorithm is, beginning with
an initial model ), to estimate a new model X, such that
p(X | ) > p(X | A). The new model then becomes the
initial model for the next iteration and the process is repeated
until some convergence threshold is reached. This is the same
basic technique used for estimating HMM parameters via the
Baum-Welch reestimation algorithm [26].

On each EM iteration, the following reestimation formulas
are used which guarantee a monotonic increase in the model’s
likelihood value:

Mixture Weights:

(&)

| zt)

Means:
= T pi] &, N
Hi = T o ©)
Et=1 p(i l Ty, A)

Variances:

72 = E?:l p(i | &y, \)a} 2 %)
DA L N

where a?, Ty, and p; refer to arbitrary elements of the vectors
Gi%, Ty, and fi;, respectively.

The a posteriori probability for acoustic class ¢ is given by
pibi(Z:)
M 7 a2
D ke1 Prbr(F:)

Two critical factors in training a Gaussian mixture speaker
model are selecting the order M of the mixture and initializing

the model parameters prior to the EM algorithm. There are
no good theoretical means to guide one in either of these

p(i | £, 2) = ®)
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selections, so they are best experimentally determined for a
given task. An experimental examination of these factors on
speaker ID performance is discussed in Section IIL

E. Speaker Identification

For speaker identification, a group of S speakers S =
{1, 2,...,8} is represented by GMM’s A1, A2,...,As. The
objective is to find the speaker model which has the maximum
a posteriori probability for a given observation sequence.
Formally,

P(X | M) Prde)
p(X)

)
where the second equation is due to Bayes’ rule. Assuming
equally likely speakers (i.e., Pr(A¢) = 1/5) and noting that
p(X) is the same for all speaker models, the classification
rule simplifies to

S =arg 11511’2(5 Pr()\; | X) = arg 1?]?%(5

S = . 10
S=arg 1réﬂ,gtsxsp(z’( | Ak) (10)
Using logarithms and the independence between observations,
the speaker identification system computes

T

S=arg lrggs;logp(z: | Ak) an

in which p(Z; | Ax) is given in (1).

I1I. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the
Gaussian mixture speaker model for text-independent speaker
identification. The GMM speaker identification system was
evaluated in a task domain where utterances are from con-
versational speech spoken over both wideband, high signal-to-
noise ratio (SNR) channels and narrowband telephone chan-
nels. The experimental study has four parts. In the first set of
experiments, issues related to parameter estimation and model
order selection for the Gaussian mixture speaker model are
examnined. The second set of experiments evaluates several
different robustness techniques for improving performance
using telephone speech. The third set of experiments exam-
ines the effects of speaker population size on identification
performance. Finally, the last set of experiments compares
the performance of the Gaussian mixture speaker model to
several other classifiers, including unimodal Gaussian, vector
quantization codebook, tied Gaussian mixture model, and
radial basis functions.

A. Database Description

The experiments were primarily conducted using a subset
of the KING speech database [27]. The KING database is a
collection of conversational speech from 51 male speakers. For
each speaker there are 10 conversations of approximately 45
seconds each recorded during 10 separate sessions. The speech
from a session was recorded from a high-quality microphone
locally and was transmitted over a long distance telephone
link, providing a high-quality (clean) version and a telephone

quality version of the speech. The experiments used five
sessions per speaker with two-three sessions used for training
data and the remaining sessions used for testing data. The
model initialization experiments, described in Section III-C-1,
were conducted on a different wideband, conversational speech
database consisting of 12 speakers (eight male, four female).

B. Performance Evaluation

The evaluation of a speaker identification experiment was
conducted in the following manner. The test speech was first
processed by the front-end analysis to produce a sequence
of feature vectors {Z,...,Z:}!. To evaluate different test
utterance lengths, the sequence of feature vectors was divided
into overlapping segments of T feature vectors. The first two
segments from a sequence would be

Segment 1

S e o
X1,Z2, -y TTyTT+1, TT+2y - -+

Segment 2

L1,Z2,. yITT, TT+1,TT+2y- - -+

A test segment length of 5 seconds corresponds to T' = 500
feature vectors at a 10 ms frame rate. Each segment of T
vectors was treated as a separate test utterance.

The identified speaker of each segment was compared
to the actual speaker of the test utterance and the number
of segments which were correctly identified was tabulated.
The above steps were repeated for test utterances from each
speaker in the population. The final performance evaluation
was then computed as the percent of correctly identified T-
length segments over all test utterances

% correct identification
__ # correctly identified segments

total # of segments

x 100. (12)

The evaluation was repeated for different values of T to
evaluate performance with respect to test utterance length.

Each speaker had approximately equal amounts of testing
speech so the performance evaluation was not biased to any
particular speaker. While there may be variations among the
individual speakers’ performance, the aim of the evaluation
measure was to track the average performance of the system
for different speaker identification tasks, allowing a common
basis of comparison.

C. Algorithmic Issues

1) Initialization: As stated in the previous section, the
GMM training procedure must be initialized with some starting
model A(®). The EM algorithm is guaranteed to find a local
maximum likelihood model regardless of the starting point,
but the likelihood equation for a GMM has several local
maxima and different starting models can lead to different local
maxima [24]. To investigate the effect of model initialization
on speaker identification performance, speaker models were

1periods of silence are removed from the test speech prior to feature
extraction using an adaptive energy threshold speech/silence detector.
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trained using different methods of initialization and used for a
speaker identification experiment. This experiment used the 12
speaker conversational database. Speakers were modeled by a
50 component GMM with a grand, diagonal covariance matrix
trained using approximately 5000 12-dimensional mel-cepstral
vectors (50 seconds). Testing was done using approximately
three minutes of speech per speaker.

The first method of initialization used a speaker-independent
HMM to automatically segment the training speech. The train-
ing data was segmented into 50 labeled phonetic classes which
corresponded to the initial mixture components. The class
means and global variances then served as the initial model
for EM training. The segmentation was performed by a forced
Viterbi decoding of the unlabeled training utterance using
monophone acoustic models. The acoustic models were ob-
tained from averaging speaker-independent, context-dependent
subword HMM’s. The subword HMM’s were trained using the
forward-backward algorithm on orthographically transcribed
continuous speech utterances. The second initialization method
consisted of randomly choosing 50 vectors from a speaker’s
training data (after silence removal) for the initial model means
and an identity matrix for the starting covariance matrix.

Surprisingly, no significant difference in speaker identifi-
cation performance was found between the two initialization
methods. The different initial models may have converged to
different local maximizers of the likelihood function, but the
difference between the final models is insignificant in terms
of speaker identification performance. It was also observed
that both methods of initialization required the same number
of EM iterations for convergence of the likelihood function,
s0 no training speed advantage was found for either method.
These results indicate that elaborate initialization schemes are
not necessary for training Gaussian mixture speaker models.

Subsequent experiments also found no significant difference
between the above random mean selection and binary k-
means clustering for initialization. The rest of the experiments
in this paper use random mean selection, followed by a
single iteration k-means clustering to initialize means, nodal
variances, and mixture weights.

2) Variance Limiting: When training a nodal variance
GMM, it has been observed that variance elements can become
quite small in magnitude. This is particularly true for a mixture
model with a large (>32) number of component densities.
These small variances produce a singularity in the model’s
likelihood function and can degrade identification performance
by distorting speaker model scores used in the maximum
likelihood classifier. These singularities can arise when there
is not enough data to sufficiently train a component’s variance
vector or when using noise-corrupted data. The noisy data can
contain outliers in the data that give rise to components with
very small variances [28].

To avoid these spurious singularities, a variance limiting
constraint is applied. This constraint places a minimum vari-
ance value on elements of all variance vectors in a speaker’s
model. For an arbitrary element of mixture component i’s
variance vector, o2, and a minimum variance value, o2

min?

the constraint

o if 62>,

5l = (13)
Phin i oF <ok,

is applied to the variance estimates after each EM iteration to

avoid singularities in the final model. This is a constrained

version of the EM algorithm which has been been shown

to provide more robust parameter estimates than the uncon-

strained version [24], [29].

Care must be exercised when setting the minimum variance
value. If it is set too high, the component variances are masked
to the same value which would overly constrain the model and
hence degrade identification performance. Setting the value too
low may not perform the desired limiting at all. The variance
limit must be empirically determined for any particular data
set, feature set, and model size to optimize performance.
Preliminary experiments on a 16 speaker set found a variance
limit between o2, = 0.01 and o2, = 0.1 to provide the best
robustness for mel-cepstral features.

3) Model Order: Determining the number of components
M in a mixture needed to model a speaker adequately is
an important but difficult problem. There is no theoretical
way to estimate the number of mixture components a priori.
For speaker modeling the objective is to choose the mini-
mum number of components necessary to adequately model
a speaker for good speaker identification. Choosing too few
mixture components can produce a speaker model which does
not accurately model the distinguishing characteristics of a
speaker’s distribution. Choosing too many components can
reduce performance when there are a large number of model
parameters relative to the available training data and can also
result in excessive computational complexity both in training
and classification. The following experiments examine the
performance of the GMM speaker ID system for different
model orders using a fixed and variable amount of training
data.

To investigate the speaker identification performance of the
GMM with respect to the number of component densities
per model, the following experiment was conducted on a 16
speaker subset of the KING database. Speaker models with 1,
2, 4,8, 16, 32, and 64 component Gaussian densities and nodal
variances were trained using 6000 25-dimensional mel-cepstral
vectors corresponding to one minute of speech. Sessions one
and two were used for model training and sessions three, four,
and five were used for testing. Variance limiting was used with
o2, = 0.01. Fig. 4 shows the percent correct identification
performance versus the number of Gaussian components for
1, 5, and 10 second test utterance lengths.

There are several observations to be made from these results.
First, the sharp increase in identification performance from 1 to
8 mixture components, and leveling off above 16 components,
indicates that there is a lower limit on the number of mixture
components necessary to adequately model the speakers. Mod-
els must contain at least this minimum number of components
to maintain good speaker identification performance. This limit
seems to be 16 mixture components for these speakers and this
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Fig. 4. Speaker identification performance as a function of the number of
component densities per speaker model.

TABLE 1
GMM IDENTIFICATION PERFORMANCE FOR DIFFERENT
AMOUNTS OF TRAINING DATA AND MODEL ORDERS

Amount of Model Test Length
Training Speech | Order || 1 sec | 5 sec | 10 sec
30 sec M= 54.6 | 79.8 | 85.6

M=16| 63.7 | 87.3 | 90.5
M=2321] 646 | 85.3 | 884
60 sec M=8 66.1 | 91.5 [ 97.3
M=16] 749 | 95.7 [ 988
M=321[ 786 | 95.6 | 98.3
90 sec M=8 || 71.5 | 955 | 98.8
M=16] 79.0 [ 98.0 | 99.7
M=321 8471988 | 99.6

data. Above this minimum model order, the performance is
insensitive to the number of mixture components for the 5 and
10 second length test utterances. For the 1 second test utterance
length, the identification performance continues to increase (at
a decreasing rate) with the model order. This demonstrates
how additional components, which model additional acoustic
classes, are effectively used for short utterance identification.
The increase in performance begins to level out above 32
component Gaussians.

In the next experiment, speaker models with 8, 16, and 32
component densities were trained using 30, 60, and 90 seconds
of speech in the same manner as described above. The various
amounts of training data were sequentially taken from sessions
one, two, and three and sessions four and five were used for
testing. Table I shows the complete identification results. For
each model order, the identification performance for 1, 5, and
10 second test utterance lengths are given for 30, 60, and 90
seconds of training data.

As expected, with increased training data, identification
performance increases. Identification rates for shorter test
utterance lengths show the greatest improvement. The largest
increase in performance occurs at all test utterance lengths
when the amount of training data increases from 30 to 60
seconds. Increasing the training data to 90 seconds also
improves performance but with a smaller increment. This
suggests that at least one minute of conversational speech is
necessary to maintain high speaker identification performance

" ‘ ' UM S
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Fig. 5. Speaker identification performance versus model order for models
trained with 30, 60 and 90 seconds of speech. The test utterance length is
5 seconds.

and using more training data improves performance at a
decreasing rate. Note, however, that each increase in the
training data also adds training data from another session.
Thus, the addition of data from different sessions may also
be a factor, along with the increase in amount of data.

It is also evident that model order selection becomes more
important with smaller amounts of training data. Fig. 5 plots
the identification performance for the 5-second test utterance
length versus model order for models trained with different
amounts of training data. For all amounts of training data,
performance peaks at 16 components. However, performance
decreases for the 32 mixture model trained with only 30
seconds of speech. Compared with the constant or slightly
increasing performance using 60 and 90 seconds of speech,
this is a good example of the effects of having insufficient
training samples relative to the number of model parameters
being estimated.

D. Spectral Variability Compensation

The major spectral degradation found in speech collected
from the telephone network is a filtering effect which band lim-
its and imposes some spectral shaping on the speech spectrum
[30]. Left uncompensated, this degradation can produce severe
reductions in identification performance due to data mismatch
between training and recognition data. As a first-order model,
the spectral variability introduced by a telephone channel can
be modeled by a linear filter effect which modifies the spectral
features used by the GMM speaker ID system. Below, some
spectral variability compensation techniques to produce robust
features for telephone quality speech are described.

1) Frequency Warping: To avoid any differences in channel
bandwidth and using any spurious out-of-band spectral com-
ponents, frequency warping was applied to the magnitude DFT
spectrum. The warping maps the frequency axis f to a new
frequency axis f’ according to the equation

f’ — f — f min

f max — f min
where fy is the original Nyquist frequency. The linear warp-
ing both eliminates spectral components outside the specified

fn (14)
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frequency range [fmin, fmax] and expands the spectrum to full
bandwidth for subsequent processing.

2) Spectral Shape Compensation: When the speech signal
passes through a linear filter h[n] representing the telephone
channel, its magnitude spectrum is multiplied by the magnitude
response of the filter. If it is assumed that the magnitude
spectrum of the filter is relatively smooth, it can be shown
that the effect of the filter is an additive component on the
mel-cepstral feature vector [31]

F=F+h (15)
where Z'is the observed cepstral vector, F is the channel filter
cepstral vector, and £ is the input speech cepstral vector.

The aim of the spectral shape compensation is to remove
the “bias” term h from the feature vectors. Two methods
were applied to the GMM speaker identification system: mean
normalization and time difference coefficients.

The method of mean normalization has been used in many
speaker recognition systems [32]-[35]. Essentially, it consists
of removing the bias component by subtracting off the global
average vector from each feature vector. For a set of feature
vectors {2}, the global average vector is

1 X
m= T Z (16)
t=1

and the channel compensated vectors are given by

ZOMP = — 1. an
For each channe] from which speech was collected, the global
mean is subtracted off each vector before training a speaker
model or scoring for recognition. All feature vectors then
have the same global mean and speaker discrimination is not
affected by different channel biases.

The above assumes a time-invariant channel filter. If the
channel filter is time-varying, an adaptive bias removal
method, such as RASTA processing [36], can be used to
remove the time-varying channel bias.

Besides removing the channel filter bias, this compensation
also removes the global mean of the speech feature vectors.
This is equivalent to filtering the speech by the inverse of
its average spectrum. Although the average speech spectrum
does contain speaker specific information, it exhibits signifi-
cant intra-speaker variability over time [37], [35] which can
decrease recognition performance when training and testing
on speech collected at different times. The average spectra
is also susceptible to variations due to speech effort (for
example, loud or soft) and health (for example, a speaker has
a cold). Using mean normalization for clean speech improves
identification performance by minimizing intersession variabil-
ity. When used on telephone speech, removal of the global
average minimizes both intersession variability and removes
the spectral shaping imposed by different telephone channels.

Another way to minimize the channel filter effects is to use
“channel invariant” features. One such set of channel invariant
features used in speaker recognition systems is cepstrum
difference coefficients [38]-{40].

The motivation in using difference coefficients is both to
capture dynamic information and to remove time-invariant
spectral information generally attributed to the interposed
communications channel. This is accomplished by creating a
new set of features as the time difference between the cepstral
feature vectors. For frame ¢ the difference coefficients, denoted
AZ;, are formed by taking the difference between cepstral
feature vectors that are W frames apart:

AZy =2 —Z-w. (18)
Since the channel filter is time-invariant or slowly varying,
the bias term A in (15) is removed, leaving the difference in
speech cepstra

AZy =Ty — To-w. 19
Because the difference coefficients capture the spectral
changes in time, they are also referred to as transitional or dy-
namic features, with the cepstral vectors called instantaneous
or static features.

Difference coefficients have been shown to contain speaker
specific information and to be fairly uncorrelated with the
static cepstral feature vectors; however, when used by them-
selves, they do not perform as well as the static feature
vectors [39]. To combine the two feature sets, the difference
coefficients are appended to the cepstral feature vectors. The
new feature vector not only contains channel invariant fea-
tures but also spectral transitional information along with the
instantaneous cepstral coefficients.

Using the above compensation techniques, speaker identifi-
cation experiments were conducted using speech from different
telephone channels. The experiments were conducted using
the telephone version speech sessions from a 16 speaker
subset of the KING database. Each speaker was modeled by
a 50 component GMM trained with speech from sessions
one, two, and three (which corresponds to an average of
80 seconds of training speech) using 20-dimensional mel-
cepstrum feature vectors and a variance limit of o2, = 0.1.
The experiment with difference coefficients used 20 cepstral
coefficients appended with 20 difference coefficients from a
40 ms interval (+2 frames) around the current frame. For
frequency warping, the telephone bandwidth 3003300 Hz was
linearly warped to full bandwidth. The identification results
using the different compensation techniques are shown in
Fig. 6.

It is evident that without compensation, speaker identi-
fication performance was degraded using telephone speech.
For a similar experiment using the clean speech versions of
the sessions, a speaker identification accuracy of 94.3% was
attained for a 5 second test utterance compared to 64.4% using
the uncompensated telephone speech. Of the compensation
techniques, the most effective method for minimizing the
channel variation effects was mean normalization. This simple
method improved the performance by an average 28% over
all test utterance lengths. Spectrum frequency warping alone
produced a substantial 21% increase compared to no com-
pensation and was the second best effective method of com-
pensation. Using appended difference coefficients provided a
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Fig. 6. Identification performance for different spectral variability compen-

sation techniques applied to telephone speech.

modest improvement performance over no compensation on
the order of 6%. Performing frequency warping prior to mean
normalization and using mean normalized features appended
with difference coefficient showed no significant improvement
over mean normalization alone.

E. Large Population Performance

One factor which defines the difficulty of the speaker
identification task is the size of the speaker population. As the
number of speakers that the system must distinguish increases,
the probability of an incorrect classification increases. The
similarity of the speakers in the population also must be
considered, since a set of speakers with dissimilar voice
characteristics (e.g., a population of half males and half
females) generally produces higher identification performance
than a more homogeneous set of speakers (e.g., all male). The
following experiments examined the performance of the GMM
speaker identification system as a function of population size
for an all-male collection of speakers using both clean and
telephone speech.

For these experiments, each speaker was modeled by a 50
component GMM with nodal variances using 20-dimensional
mel-cepstral feature vectors. The models were trained using all
the data from sessions one, two, and three (80—100 seconds of
speech per speaker) and testing was conducted using sessions
four and five. Each session was mean normalized to minimize
inter-session variability and channel bias. A variance limit of
02, = 0.1 was used in training. For the telephone speech,
the frequency bandwidth 300-3300 Hz was warped to full
bandwidth.

Identification performance versus test utterance lengths for
populations of 16, 32, and 49 speakers are shown in Fig. 7.
In the clean speech case, it is clear that the GMM speaker ID
system maintains high identification performance as the pop-
ulation size increases. The largest degradation for increasing
population size is for the 1-second test utterance length, but
almost perfect identification for all population sizes is obtained
for 15 second test utterances.

When compared to the clean speech results, there was a
marked decrease in performance using telephone speech. One
major contributing factor to this reduced performance is the
relatively low SNR of some of the telephone speech. The
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Fig. 7. Speaker identification performance versus test utterance length for
population sizes of 16, 32, and 49 speakers: (a) Clean speech performance;
(b) telephone speech performance.

40
0

compensation techniques only address spectral variability and
so significant differences in noise levels between channels
were not compensated. Examination of the telephone speech
found that half of the speakers’ telephone speech sessions
are very noisy (SNR ranges roughly from 10 to 20 dB). The
16 speaker population used moderate SNR (approximately 30
dB) speech and the results are comparable to those using
clean speech. However, as the population size increased, more
speakers with noisy speech were added to the population and
the performance rapidly declined.

F. Comparison to Other Speaker Models

The last set of experiments compared the performance
of the Gaussian mixture speaker model with other speaker
modeling techniques. Specifically, the other techniques are
the unimodal Gaussian classifier (GC) [1], vector quantization
(VQ) codebook [2], tied Gaussian mixture model (TGMM)
and radial basis function (RBF) [3]. The aim is to compare
the performance of these different identification methods using
the same data and front-end processing.

These different speaker modeling techniques are interesting
to compare because they represent different ways of modeling
the speaker’s acoustic feature distribution. In the simplest
case, the GC models each speaker’s feature distributions by
a unimodal Gaussian distribution. Since the data is mean
normalized, the Gaussian mean vector is effectively zero
and identification is based only on the covariance modeling
of the data. This is similar to “covariance-only” speaker
identification method in [9]. The VQ models the distributions
by representative templates from hard partitions of the feature
space. As discussed earlier, the GMM generalizes on this
notion by providing a soft partitioning of a speaker’s space
using Gaussian basis functions.

The RBF and TGMM both share the same underlying
structure as the GMM, but model the feature space in different
ways (see Fig. 8). The TGMM uses a pool of Gaussians
which covers the feature space of all speakers. A maximum
likelihood training procedure adjusts each speaker’s mixture
weights to the underlying Gaussians to best model his/her
feature distribution. The underlying Gaussians’ parameters
are also updated in the training to match the overall feature
distribution. The RBF differs from the above models in that it
focuses on modeling the boundary regions separating speaker
distributions in the feature space. Like the TGMM, it too uses
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Fig. 8. TGMM and RBF model structure. In each model, speakers are
represented by a weighted combination of a common pool of Gaussian or
basis functions.

a pool of basis functions to represent all speakers. However,
the basis functions are fixed during training and the speaker’s
connection weights are trained using a discriminative criterion.

The data used for the experiment was from the 16 speaker
KING subset using the telephone speech sessions. All sessions
were mean normalized prior to training and testing. Each
model was trained using all the speech from sessions one,
two, and three, with testing performed on sessions four and
five. Twenty-dimensional mel-cepstral feature vectors were
used and trained variances were limited to 02, = 0.1.

Model parameters were set as follows. Two forms of the
GMM were used where the first form (GMM-nv) had 50
components with nodal variances and the second form (GMM-
gv) also had 50 components, but with a single grand variance
per model. The VQ-50 speaker model used 50 vectors per
codebook while the VQ-100 model used 100 vectors per
codebook, both trained with the LBG algorithm [41] using
the Mahalanobis distance with a global, diagonal covariance
matrix. The tied Gaussian mixture model used a pool of
800 Gaussians and a global diagonal covariance matrix. The
radial basis function used 512 basis functions with empirically
determined function widths. Finally, the unimodal Gaussian
classifier used a full 20 x 20 covariance matrix.

The average number of parameters per speaker for each
model is shown in Table II. For example, the number of
parameters for the GMM-gv is calculated as (#mean_vecs +
#variance_vecs) X vec_dim + #mixture_weights = (50+1) x
20+50=1070. The GMM-nv has the most parameters due to
the use of nodal variances, while the GC has the least number
of parameters due to the limited model structure. The GMM-nv
and VQ-100 models have comparable number of parameters,
as do the GMM-gv and VQ-50 models. The TGMM and
RBF have different number of parameters because numerical
difficulties prevented the training of an RBF with 800 basis
functions.

Table III shows the percent correct identification for 5
second test utterance lengths for the different models. Also
shown is the binomial standard deviation of the tests using
only the number of nonoverlapping test intervals as the number
of trials (n = 160). The classifiers can be divided into four
levels of performance. On the top level, the nodal variance
GMM (GMM-nv) has the best absolute performance with the
VQ-100 about 1.5 percentage points lower. On the second

TABLE 0
NUMBER OF PARAMETERS PER SPEAKER
FOR SPEAKER MODELS DisCUSSED IN TEXT

Speaker Model Avg number of
parameters per speaker

GMM-nv 2050
VQ-100 2001
GMM-gv 1070
VQ-50 1001
RBF 1152
TGMM 1801
GC 210

TABLE I
SPEAKER IDENTIFICATION PERFORMANCE
FOR SPEAKER MODELS DISCUSSED IN TEXT

Speaker Model | % Correct Identification
(5 second test length)

GMM-nv 94.5 +1.8
VQ-100 92.9 £2.0
GMM-gv 895 £2.4
VQ-50 90.7 £2.3
RBF 87.2 2.6
TGMM 80.1 £3.1
GC 67.1 3.7

level, the grand variance GMM (GMM-gv), VQ-50, and
RBF all have similar classification performances. The drop in
performance of the GMM going from nodal to grand variances
indicates the importance of variance parameterization in model
selection. Also, note that although the RBF has fewer centers
per speaker compared to the GMM-gv and VQ models,
it maintains similar performance due to the discriminative
training. On the third level, the TGMM has significantly lower
classification performance. This is likely due to the overly-
restrictive constraint of using a single global variance vector.
Lastly, the GC, using only covariance matrices, produced the
worst identification performance of the classifiers.

IV. CONCLUSION

This paper has introduced and evaluated the use of Gaussian
mixture speaker models for robust text-independent speaker
identification. The primary focus of this work was on a task
domain for real applications, such as voice mail labeling and
retrieval. The Gaussian mixture speaker model was specif-
ically evaluated for identification tasks using short duration
utterances from unconstrained conversational speech, possibly
transmitted over noisy telephone channels.

Gaussian mixture models were motivated for modeling
speaker identity based on two interpretations. The component
Gaussians were first shown to represent characteristic spectral
shapes (vocal tract configurations) from the phonetic sounds
which comprise a person’s voice. By modeling the underlying
acoustic classes, the speaker model is better able to model
the short-term variations of a person’s voice, allowing high
identification performance for short utterances. The Gaussian
mixture speaker model was also interpreted as a nonpara-
metric, multivariate pdf model, capable of modeling arbitrary
feature distributions.
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The experimental evaluation examined several aspects of
using Gaussian mixture speaker models for text-independent
speaker identification. Some observations and conclusions are:

Identification performance of the Gaussian mixture
speaker model is insensitive to the method of model
initialization.

Variance limiting is important in training to avoid model
singularities.

There appears to be a minimum model order needed to ad-
equately model speakers and achieve good identification
performance (Sixteen for this 16 speaker database).

The Gaussian mixture speaker model maintains high
identification performance with increasing population size
(The system attained a 96.8% identification rate for 5
second clean speech utterances and 80.8% for 15 second
telephone speech utterances for an all-male 49 speaker
population).

Cepstral mean normalization is a very effective compen-
sation for telephone spectral variability degradations.
With nodal variance parameterization, the Gaussian mix-
ture speaker model outperforms the VQ, RBF, TGMM,
and GC speaker modeling techniques on an identical
telephone speech task.

These results indicate that Gaussian mixture models provide
a robust speaker representation for the difficult task of speaker
identification using corrupted, unconstrained speech. The mod-
els are computationally inexpensive and easily implemented on
a real-time platform [21], [22]. Furthermore, their probabilistic
framework allows direct integration with speech recognition
systems [42] and incorporation of newly developed speech
robustness techniques [20].

ACKNOWLEDGMENT

The authors wish to thank Capt. M. S. Ciancetta for his
help on the large population and speaker model comparison
experiments.

(11
[2

—_—

[3
[4]
[5

—

—

(6]
{71

[8

9

{10]

REFERENCES

H. Gish et al., “Investigation of text-independent speaker identification
over telephone channels,” in Proc. IEEE ICASSP, 1985, pp. 379-382.
F. Soong et al., “A vector quantization approach to speaker recognition,”
in Proc. IEEE ICASSP, 1985, pp. 387-390.

J. Oglesby and J. Mason, “Radial basis function networks for speaker
recognition,” in Proc. IEEE ICASSP, May 1991, pp. 393-396.

B. Atal, “Automatic recognition of speakers from their voices,” Proc.
IEEE, vol. 64, pp. 460475, Apr. 1976.

J. Tierney, “A study of LPC analysis of speech in additive noise,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-28, pp. 389-397,
Aug. 1980.

C. R. Jankowski, unpublished research, MIT Lincoln Laboratory.

S. Furui, F. Itakura, and S. Saito, “Talker recognition by longtime
averaged speech spectrum,” Electron., Commun. in Japan, vol. 55-A,
no. 10, pp. 54-61, 1972.

J. Markel, B. Oshika, and A. Gray, Jr., “Long-term feature averaging for
speaker recognition,” /EEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-25, pp. 330-337, Aug. 1977.

H. Gish et al., “Methods and experiments for text-independent speaker
recognition over telephone channels,” in Proc. IEEE ICASSP, 1986, pp.
865-868.

T. Matsui and S. Furui, “A text-independent speaker recognition method
robust against utterance variations,” in Proc. IEEE ICASSP, 1991, pp.
377-380.

[11]

(12]
{13}

[14]

[15]

[16]

[17]

(18]
(191

[20]

[21}

[22)

[23)

[24])
[25]

[26]

[27]

[28]
[29]

[30)
[31]

[32}

[33]

[34]

[35])

[36]
[37]

[38]

Y. Kao, P. Rajasekaran, and J. Baras, “Free-text speaker identification
over long distance telephone channel using hypothesized phonetic
segmentation,” in Proc. IEEE ICASSP, 1992, pp. 1. 177-11. 180.

R. E. Helms, “Speaker recognition using linear predictive vector code-
books,” Ph.D. thesis, Southern Methodist University, 1981.

A. Higgins, L. Bahler, and J. Porter, “Voice identification using nearest-
neighbor distance measure,” in Proc. IEEE ICASSP, Apr. 1993, pp.
-375-10-378.

A. B. Poritz, “Linear predictive hidden Markov models and the speech
signal,” in Proc. IEEE ICASSP, May 1982, pp. 1291-1294.

N. Z. Tishby, “On the application of mixture AR hidden Markov models
to text independent speaker recognition,” IEEE Trans. Signal Processing,
vol. 39, pp. 563-570, Mar. 1991.

A. E. Rosenberg, C. H. Lee, and F. K. Soong, “Sub-word talker
verification using hidden Markov models,” in JEEE ICASSP, Apr. 1990,
pp. 269-272.

T. Matsui and S. Furui, “Comparison of text-independent speaker recog-
nition methods using VQ-distortion and discrete/continuous HMMs,” in
Proc. IEEE ICASSP, Mar. 1992, pp. 11.157-11.164.

L. Rudasi and S. A. Zahorian, “Text-independent talker identification
with neural networks,” in Proc. IEEE ICASSP, May 1991, pp. 389-392.
Y. Bennani and P. Gallinari, “On the use of TDNN-extracted features
information in talker identification,” in Proc. IEEE ICASSP, May 1991,
pp. 385-388.

R. C. Rose, E. M. Hofstetter, and D. A. Reynolds, “Integrated models
of speech and background with application to speaker identification in
noise,” IEEE Trans. Speech Audio Processing, vol. 2, no. 2, pp. 245-257,
Apr. 1994,

D. A. Reynolds, “A Gaussian mixture modeling approach to text-
independent speaker identification,” Ph.D. thesis, Georgia Inst. of Tech-
nology, Sept. 1992.

D. A. Reynolds, R. C. Rose, and M. J. T. Smith, “PC-based TMS320C30
implementation of the Gaussian mixture model text-independent speaker
recognition system,” in Proc. Int. Conf. Signal Processing Appl., Tech-
nol., Nov. 1992, pp. 967-973.

S. B. Davis and P. Mermelstein, “Comparison of parametric repre-
sentations for monosyllabic word recognition in continuously spoken
sentences,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-
28, pp. 357-366, Aug. 1980.

G. McLachlan, Mixture Models. New York: Marcel Dekker, 1988.

A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” J. Royal Stat. Soc., vol. 39,
pp. 1-38, 1977.

L. Baum et al., “A maximization technique occurring in the statistical
analysis of probabilistic functions of Markov chains,” Ann. Math Stat.,
vol. 41, pp. 164-171, 1970.

J. Godfrey, D. Graff, and A. Martin, “Public databases for speaker
recogmtlon and verification,” in Proc. ESCA Workshop Automat. Speaker
Rec ification, Verification, Apr. 1994, pp. 39-42.

1. Holmes and N. Sedgwick, “Noise compensation for speech recogni-
tion using probabilistic models,” in Proc. IEEE ICASSP, 1986.

R. Hathaway, “A constrained formulation of maximum-likelihood esti-
mation for normal mixture distributions,” Ann. Stat., vol. 13, no. 2, pp.
795-800, 1985.

J. G. Proakis, Digital Communications.
ries in Electrical Engineering, 1983.
D. A. Reynolds and R. C. Rose, “An integrated speech-background
model for robust speaker identification,” in Proc. IEEE ICASSP, Mar.
1992, pp. 1I-185-11-188.

B. Atal, “Effectiveness of linear prediction characteristics of the speech
wave for automatic speaker identification and verification,” J. Acoust.
Soc. Amer., vol. 55, pp. 1304-1312, June 1974,

S. Furui, “Comparison of speaker recognition methods using statistical
features and dynamic features,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-29, pp. 342-350, June 1981.

M. Krasner et al., “Investigation of text-independent speaker identi-
fication techniques under conditions of variable data,” in Proc. IEEE
ICASSP, 1984, pp. 18B.5.14.

C. Bernasconi, “On instantaneous and transitional spectral information
for text-dependent speaker verification,” Speech Commun., vol. 9, pp.
129-139, Apr. 1990.

H. Hermansky et al.,“RASTA-PLP speech analysis technique,” in Proc.
IEEE ICASSP, Mar. 1992, pp. 1.121-1.124,

S. Furui, “Cepstral analysis technique for automatic speaker verifica-
tion,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-29,
pp. 254-272, Apr. 1981.

R. E. Bogner, “On talker verification via orthogonal parameters,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-29, pp. 1-12, Feb.
1981.

New York: McGraw-Hill Se-



REYNOLDS AND ROSE: ROBUST TEXT-INDEPENDENT SPEAKER IDENTIFICATION

[39]

[40]

[41]

(42}

F. Soong and A. Rosenberg, “On the use of instantancous and transi-
tional spectral information in speaker recognition,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 36, pp. 871-879, June 1988.

R. C. Rose and D. A. Reynolds, “Text-independent speaker identification
using automatic acoustic segmentation,” in Proc. IEEE ICASSP, 1990,
pp. 293-296.

R. Gray, “Vector quantization,” IEEE ASSP Magazine, pp. 4-29, Apr.
1984.

D. A. Reynolds and L. P. Heck, “Integration of speaker and speech
recognition systems,” in Proc. IEEE ICASSP, May 1991, pp. 869-872.

Douglas A. Reynolds (S’86-M’92) received the
B.E.E. degree with highest honors in 1986 and the
Ph.D. degree in electrical engineering in 1992, both
from the Georgia Institute of Technology.

Currently, he is a Staff Member in the Speech
Systems Technology Group at the Massachusetts
Institute of Technology Lincoln Laboratory, where
his research interests include robust speaker iden-
tification and verification, speech recognition, and
transient signal classification.

Dr. Reynolds is a member of Eta Kappa Nu and
Tau Beta Pi.

ol

83

Richard C. Rose (S’86-M’88) received the B.S.
and M.S. degrees in electrical engineering from the
University of Illinois in 1979 and 1981, respectively.
He received the Ph.D. degree in electrical engineer-
ing from the Georgia Institute of Technology in
1988, completing his dissertation work in speech
coding and analysis.

From 1980 to 1984, he was with Bell Labora-
tories, Holmdel, NJ, where he worked on speech
processing problems in digital switching environ-
ments. From 1988 to 1992, he was a member of the

Speech Systems Technology Group at the MIT Lincoln Laboratory. While
there, he was involved in developing techniques for keyword recognition,
improved noise robustness in speech processing, and speaker identification. He
is presently a member of the technical staff at Bell Laboratories, Murray Hill,
NJ, where his work has focused on problems relating to speech recognition

and speaker verification.

Dr. Rose is a member of the IEEE Signal Processing Society Technical
Committee on Digital Signal Processing and the Acoustical Society of
America Technical Committee on Speech. He is an adjunct faculty member
with the Georgia Institute of Technology. He is a member of Tau Beta Pi, Fta
Kappa Nu, and Phi Kappa Phi.



