CSC401/2511 — Natural Language Computing — Spring 2021
Lecture 8 Frank Rudzicz, Serena Jeblee, and Sean Robertson
University of Toronto
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Recall our input to ASR
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Is the spectrum the best input for our Frequency (Hz)

ASR systems?
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The Mel-scale

°* Human hearing is not equally sensitive to all frequencies.
* We are less sensitive to frequencies > 1 kHz.

°* A mel is a unit of pitch. Pairs of sounds which are perceptually
equidistant in pitch are separated by an equal number of mels.

Mel(f) = 2595logg (1 + 75—0)

(No need to
memorize this

either)
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The Mel-scale filter bank

* To mimic the response of the human ear (and because it can
improve speech recognition), we often discretize the spectrum
using M triangular filters.

® Uniform spacing before 1 kHz, logarithmic after 1 kHz

|
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Aside - Mel-Frequency Cepstral Coefficients

® Earlier ASR required additional Cepstral processing on the Mel
Spectrum

* Used to separate the source (glottal waveform) from filter
(vocal tract resonances)

®* MFCCs are used in Assignment 3

® Details on how to calculate them can be found in the
appendices (not tested)

®* Neural ASR usually uses the Mel-Spectrum as input

* Good at de-correlating source and filter by itself

o
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GAUSSIAN MIXTURES
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Classifying speech sounds

b 2600

2400

2200

2000

1800

F2 [Hz)

1600 -

1400

1200

1000 -

200

‘!
“,'” li'n

1i|

pir

wol

1
500

1
600
F1[Hz]

1
700

1
800

1
S00

Note: The vowel trapezoid’s
dimensions were physical

)
1000

* Speech sounds can cluster. This graph shows vowels, each in
their own colour, according to the 1% two formants.
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Classifying speakers

* Similarly, all of the speech produced by one speaker will cluster
differently in the Mel space than speech from another speaker.
* We can .. decide if a given observation comes from one
speaker or another.

.n-

2

Observation matrix
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Fitting continuous distributions

* Since we are operating with continuous variables, we need to

fit continuous probability functions to a
discrete number of observations.

* If we assume the 1-dimensional
data in this histogram is Normally
distributed, we can fit a
continuous Gaussian function
simply in terms of the mean u
and variance g?.

o
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(Aside) Univariate (1D) Gaussians

* Also known as Normal distributions, N(u, o)
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®* The parameters we can modify are 8 = (u, 02)

*u=E(x)=[x-P(x)dx (mean)
* 62 = E((x —w)?) = [(x — u)?P(x)dx (variance)

N2
exp <—(x2 ;;) )

\2TTO

* P(x;u,0) =

But we don’t have samples for all x...

o
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Maximum likelihood estimation

* Given data X = {xq, x5, ..., X,,}, MLE produces an estimate of
the parameters 8 by maximizing the likelihood, L(X,0):
6 = argmax L(X, 6)
0

where L(X,0) = P(X;0) = [[}L, P(x;; 8).

* Since L(X, 8) provides a surface over all 8, in order to find the
highest likelihood, we look at the derivative

o
—L(X,0)=0
—L(X,6)

to see at which point the likelihood stops growing.
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MLE with univariate Gaussians

* Estimate u:

i " exp (_ (x; — )2)
L(X, 1) = P(X; )=Hp(xi;9)=l_[ \/z_nia

i=1 =1
)2
log L(X, 1) = —Zi(legz ) — nlog(\/Zna)
) 2i(x; — 1)
ElogL(X, ) = — =0
_ Z;lxl ‘ |

* Similarly, 0% = 2iCriz)” \;

n
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Multivariate Gaussians

* When data is d-dimensional, the
input variable is
x = (x[1],x[2], ..., x[d])
the mean is
= EX) = (u[1], ul2], ..., u[d])
the covariance matrix is
2[i, j] = E(xlilx[jD — ulilulj]

and

- NTw—172= -
exp (— (X —@) %" (x — ,u)) A' is the transpose of A
2 A~ 1is the inverse of A

P(%) =
d 1 . .
(2m)2 2|2 |A| is the determinant of A

<
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Intuitions of covariance

u=[00] u=[00] u=[00]
Y =1 3 = 0.6l 3 = 2.0l

* As values in X become larger, the Gaussian spreads out.
* (Iis the identity matrix)

5
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Intuitions of covariance

* Different values on the diagonal result in different variances
in their respective dimensions
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CSC401/2511 — Spring 2021 16 ¥ TORONTO

@



Non-Gaussian observations

® Speech data are generally not unimodal.
* The observations below are bimodal, so fitting one Gaussian
would not be representative.

-50 150 e
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Mixtures of Gaussians

* Gaussian mixture models (GMMs) are a weighted linear
combination of M component Gaussians, (I';, I, ..., Ty):
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Observation likelihoods

* Assuming MFCC dimensions are independent of one another,
the covariance matrix is diagonal —i.e., 0 off the diagonal.

* Therefore, the probability of an observation vector given a
Gaussian from slide 20 becomes

* We imagine a GMM first chooses a Gaussian, then emits an
observation from that Gaussian.

o
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Mixtures of Gaussians

* If we knew which Gaussian generated each sample, we could
learn P (I’;) with MLE, but that data is hidden, so we must

use... _—
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Expectation-Maximization for GMMs

° If w,, = P(Fm) and ’ ‘compol?keerlmith(())k;sde,rvation '
] ‘weight’ M
@) = Y wn
m=1

where @ = (w,,,, h,,, Z,,,) form = 1..M

* To estimate 6, we solve Vy log L(X,0) = 0 where

T T M
logL(X,0) = 2 log Py (x;) = 2 log z Wy,
t=1 t=1 m=1

X

:“': UNIVERSITY OF
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Expectation-Maximization for GMMs

* We differentiate the log likelihood function w.r.t . i,,,|n| and
set this to 0 to find the value of 1,,,[n] at which the likelihood
stops growing.

mgii(x . zpeut) laum =0

Xk
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Expectation-Maximization for GMMs

°* The expectation step gives us:
= P(%;|Tm)

— Win Proportion of overall
P, |x.;0) = " : '
mi+t - . probability contributed by m
Po(xy) % : Y

°* The maximization step gives us:

—

,Ll - —
m Zt P(lext; 8)
— —2
— th(rmlxt; H)Xt —,2

—

— Zt P(Fm Ix_{, Q)X_t) Recall from slide
— 13, MLE wants:

Yy = — — U
. th(rmlxt; 6) m
T
Dy = = P(Tplxs; 6)
T £at=q

o
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Some notes...

* In the previous slide, the square of a vector, a?, is
elementwise (i.e., numpy.multiply)

* Eg.,[23,4]2 = [4,9,16]

* Since X is diagonal, it can be represented as a vector.

—2
° Can a,fl = Z;}:( (mllx‘;t’ )) — ﬁ{z become negative?

* No.
* This is left as an exercise, but only if you're interested.

4."(.
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Speaker recognition

* Speaker recognition: n. the identification of a speaker
among several speakers given only
acoustics.

* Each speaker will produce speech according to different
probability distributions.
* We train a Gaussian mixture model for each speaker,
given annotated data (mapping utterances to speakers).
* We choose the speaker whose model gives the highest
probability for an observation.

A Do o

Ak
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Recipe for GMM EM

* For each speaker, we learn a GMM given all T frames of their
training data.

1. Initialize: Guess 0 = (w,,,, [y, 20y) form = 1.. M
either uniformly, randomly, or by k-means
clustering.

2. E-step:  Compute and P(I',,|x;; 0).

3. M-step: Update parameters for (w,,,, [1,,,, 2,,,) @S
described on slide 21.

Bt
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SPEECH RECOGNITION
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Consider what we want speech to do

@ My hands arein \ | Dictation |
the air.

Buy ticket...
AC490...
yes

| Telephony | @

Put this
there.

[ Multimodal interaction ]

Can we just use GMMs?

o
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Aspects of ASR systems in the world

* Speaking mode: Isolated word (e.g., “yes”) vs. continuous

* Speaking style:

* Enrolment:

* Vocabulary:
* Transducer:

CSC401/2511 — Spring 2021

(e.g., “Hey Siri, ask Cortana for the weather”)
Read speech vs. spontaneous speech;

the latter contains many dysfluencies

(e.g., stuttering, uh, like, ...)
Speaker-dependent (all training data from
one speaker) vs. speaker-independent
(training data from many speakers).

Small (<20 words) or large (>50,000 words).
Cell phone? Noise-cancelling microphone?
Teleconference microphone?

R
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Speech is dynamic

R

6. 6786

* Speech changes over time.
* GMMs are good for high-level clustering, but they encode
no notion of order, sequence, nor time.

* Speech is an expression of language.
* We want to incorporate knowledge of how phonemes and
words are ordered with language models.

4"\5
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Speech is sequences of phonemes

We want to convert a series of (e.g) MFCC
vectors into a sequence of phonemes.

) not really

B
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Continuous HMMs (CHMM)

* A continuous HMM has observations that are distributed
over continuous variables.

* Observation probabilities, b;, are also continuous.

* E.g., here by (x) tells us the probability of seeing the
(multivariate) continuous observation X while in state O.

Y L LD
0-0-0
v v O

-~
e

2.48562
1.08139

=1
I

0.45628

UNIVERSITY OF

CSC401/2511 — Spring 2021 32 © TORONTO



Defining CHMMs

® Continuous HMMs are very similar to discrete HMMs.
. set of states (e.g., subphones)
. continuous observation space

°* S = {Sl’ ...,SN}
*X =R

° I = {my, ..., Ty}
V) ‘A={aij},i,jES
* B = bl(f),l ES,.?_C) e X

vielding

Q=190 91} G ES
°* 0 ={0y,..,00}L0;EX

CSC401/2511 — Spring 2021

. initial state probabilities
. state transition probabilities
. state output probabilities

(i.e., Gaussian mixtures)

. state sequence
: observation sequence

33
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, A A e
Using CHMMs @—@—@
N\ N\ &/
* As before, these HMMs are generative models that encode
statistical knowledge of how output is generated.

* We train CHMMs with Baum-Welch (a type of Expectation-
Maximization), as we did before with discrete HMMs.
* Here, the observation parameters, b;(x), are adjusted
using the GMM training ‘recipe’ from earlier.

* We find the best state sequences using Viterbi, as before.

* Here, the best state sequence gives us a sequence of
phonemes

s
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Phoneme dictionaries

®* How do we convert our phoneme sequence into words?
®* There are many phonemic dictionaries that map words to

pronunciations (i.e., lists of phoneme sequences).

* The CMU dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) is

popular.

* 127K words transcribed with the ARPAbet.
® Includes some rudimentary prosody markers.

EVOLUTION EH2

EVOLUTION (2) IY2
EVOLUTION (3) EH2
EVOLUTION (4) IY2
EVOLUTIONARY EH2

CSC401/2511 — Spring 2021

V AHO
V AHO
V. OWO
V. OWO
V AHO

35

o e e e

UW1
UW1
UW1
UW1
UW1

SH
SH
SH
SH
SH

AHO
AHO
AHO
AHO
AHO

N
N
N
N
N

EH2 R IYO

s
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The noisy channel model for ASR

Language model Acoustic model

W Channel X'
PX|W) & WWWWJWMWW

——
[ Word
sequence W '

W Observed X
l Acoustic
sequence X

How to encode P(X|W)?

[ = argmax PX|W)P(W) J

llllllllllll
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Putting it together

* How do we combine the language model, phonemic
dictionary, and CHMM together? — Nest them!

* Full details are an aside — see Appendices and J&M 2" Ed.

""#
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EVALUATING SPEECH RECOGNITION
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Evaluating ASR accuracy

* How can you tell how well an ASR system recognizes speech?
* E.g., if somebody said
Reference: how to recognize speech
but an ASR system heard
Hypothesis: how to wreck a nice beach
how do we quantify the error?

* One measure is word accuracy: #CorrectWords/#ReferenceWords
° E.g., 2/4, above
® This runs into problems similar to those we saw with SMT.
* E.g., the hypothesis ‘how to recognize speech boing boing
boing boing boing’ has 100% accuracy by this measure.
* Normalizing by #HypothesisWords also has problems

UNIVERSITY OF
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Word-error rates (WER)

* ASR enthusiasts are often concerned with word-error rate
(WER), which counts different kinds of errors that can be
made by ASR at the word-level.

* Substitution error: One word being mistook for another
e.g., ‘shift’ given ‘ship’

* Deletion error: An input word that is ‘skipped’
e.g. ‘| Torgo’ given ‘I am Torgo’

* Insertion error: A ‘hallucinated’ word that was not in
the input.

e.g., ‘This Norwegian parrot is no more’
given ‘This parrot is no more’

s
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Levenshtein distance

* The Levenshtein distance (and WER) is straightforward to
calculate using dynamic programming

Allocate matrix R[n + 2,m + 2] // where nis the number of reference words
// and m is the number of hypothesis words

Add <s> to beginning of each sequence, and </s> to their ends.
Fill [0:end] along the first row and column.
fori ;== 1..n+ 1 // #ReferenceWords
forj :=1..m + 1 // #Hypothesis words
R[i,j] = min( R[i—-1,j]+1, // deletion
R[i—1,j—1], // if the it" reference word and

// the jt™ hypothesis word match
R[i—1,j — 1] + 1, //if they differ, i.e., substitution

R[i,j—1]+1) //insertion
Return 100X R[n,m]/n // WER

UNIVERSITY OF
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Levenshtein distance — initialization

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

how 1

N -
B
B -
E2N -

The value at cell (i, j) is the minimum number of errors
necessary to align i with j.

Q
(@)
C
Q
S
Q
Y4—
)
o

£
-
E UNIVERSITY OF
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

N

how 1 0

N -
B
B -
E2N -

°* R[1,1] = min(LEFT + 1, (0), ABOVE + 1) = 0 (match)
* We put a little 2rrow in place to indicate the choice.

* ‘Arrows’ are normally stored in a backtrace matrix. B NIVERSITY OF
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

how 1~0»1»2»3»4»5»6

N -
B
B -
E2N -

* We continue along for the first reference word...
* These are all insertion errors

Q
(@)
C
Q
S
Q
Y4—
)
o

&
% TORONTO
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

how 1‘ -{1-}2-}3-}4-}5-}6

0 = 1 = 2 = 3 =) 4 =) 5

T L X

2
3
B
S -

* Since recognize + wreck, we have a substitution error.
* At some points, you have >1 possible path as indicated.
* We can prioritize types of errors arbitrarily.
CSC401/2511 — Spring 2021 45
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

how 1 2

N -
B
B -
E2N -

* And we finish the grid.
* There are R[end, end]| = 4 word errors and a WER of 4/4 = 100%.
* WER can be greater than 100% (relative to the reference).
CSC401/2511 — Spring 2021 46
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o
0 1 2 3 4 5 6 7

= 5 B 6
= 4 B 5
=
=Y

how

TP

= 1=
Y
R
N

Reference

> s
> s
2 DR ¢
</s>

* |f we want, we can backtrack using our arrows (in a backtrace matrix).
* Here, we estimate 2 substitution errors and 2 insertion errors.

=
=
=
=
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NEURAL SPEECH RECOGNITION
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Remember Viterbi

The best path to state s; at time ¢, §;(¢),
depends on the best path to each
possible previous state, 6;(t — 1), and
: their transitions to j, a;;

\

;
(53/

6](t) = ml_aX [8l(t = 1)ai]- b](O’t)

P;(t) = argmax [6:(t — Dayj]

Do these probabilities need to
- be GMMs?

0y = Ship o1 = frock o, = tops

Observations, ¢

£

-
[ s UNIVERSITY OF
.-:..
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Replacing GMMs with DNNs

* Obtain b;(x) = p(x|s;) with a neural network.
* |nstead of learning a continuous distribution directly, we can use
Bayes’ rule:

p(sj|x) - p(x)
p(sj)

p(x|s;) =

/

=

-5
% UNIVERSITY OF
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Replacing GMMs with DNNs

* The probability of a word sequence W comes loosely from
P(X|W)

0 iy
~ max HP(CIt|CIt—1)P(xt|Qt) X~ max HP(CIt|CIt—1)
d1-dr o d1-qr A

P(q¢lxt)
P(q¢)

-e-@

HMM

.. UNIVERSITY OF
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Training the DNN

* Maximize P(q;|x;)
* The order which we transition through states (= phonemes) is
known by the tra nSCFiption (ignoring alternate pronunciations)

* At what frames these transitions happen are unknown
® = @¢ is unknown!
* Solution: bootstrapping
* Use another model to determine q;
* Often argmax,. . Pcyym(qy. 1, %1 1) from GMM-HMM

® Prymm (9¢lge—1) often stolen as well

° ...and P(q;)
®* Other, advanced methods exist

s
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Hybrid HMM and DNN

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND

GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF GMM-HMM GMM-HMM
TASK TRAINING DATA DNN-HMM WITH SAME DATA WITH MORE DATA
SWITCHBOARD (TEST SET 1) 309 185 274 18.6 (2,000 H)
SWITCHBOARD (TEST SET 2) 309 16.1 236 17.1 (2,000 H)
ENGLISH BROADCAST NEWS 50 17.5 188
BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 304 36.2
GOOGLE VOICE INPUT 5,870 12.3 16.0(>> 5,870 H)
YOUTUBE 1,400 476 52.3

G Hinton et al (Nov 2012). “Deep neural networks for acoustic modeling in speech recognition”, IEEE Signal
Processing Magazine, 29(6):82—97. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296526

&
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What are these DNNs learning?

.
T

¢ t'S N E (stochastic neighbour embedding using t-distribution)
visualizations in 2D (colours=speakers).

* Deeper layers encode information '
about the segment 1

Mohamed, A., Hinton, G., & Penn, G. (2012). Understanding
how deep belief networks perform acoustic modelling. In ICASSP (pp. 6-9).

UNIVERSITY OF
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What are these DNNs learning?

o . ¢
\ 0 o |
- | Y e . * DNN trained to
AN _" ;_:tf'?r;.‘ S Pl ?5_{;*: .
| l ;.f,“‘“ Gt 5 classify phonemes
BEOOL e %L ® t-SNE visualizations
. v, ‘;,;{; L.;--;_:. »-Lv_vl.: .-; e ;:3' ]
F2(n2) _{) o “."3" ;‘%..‘:' .iq’mn:g; 37 5.7 Of hldden Iayer.
bt "o B pBo% o Y el
o] | X " '.g?;?»”sév;vuu “wy# 70 @ L ower layers detect
1 N j’z# manner of
{2 articulation

800 117111
200 400 800 & 800 F1(H)

Figure 1: Multilingual BN features of five vowels from
French (+), German (LJ) and Spanish (57): /a/ (black), /i/ (blue),
/el (green), /o/ (red), and /u/ (yellow)

Vu, N. T., Weiner, J., & Schultz, T. (2014). Investigating the learning effect of multilingual bottle-neck
features for ASR. Interspeech, 825—829.

E1)
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End-to-end neural networks

* Neural networks are typically trained at the frame level.

* This requires a separate training target for every frame, which in turn requires the
alignment between the audio and transcription sequences to be known.
* However, the alignment is only reliable once the classifier is trained.

* “End-to-end” = an objective function that allows sequence
transcription without requiring prior alignment between the
iﬂpUt X (frames of audio) and target Y (output strings) SEqUENCES with
arbitrary lengths, i.e.

P(Y|X)
* Target tokens can be words, sub-words, or just characters
* Two popular choices of P(Y|X):

1. Seqg2seq (encoder/decoder, transformers)
2. Connectionist Temporal Classification

s
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Seg2seq architectures

* The same architectures we saw in NMT work for ASR!
* Replace source embedding vector x; with Mel

spectrum vector
* Replace target sequence E with transcription

sequence Y

That’s it.

‘{-"\‘. UNIVERSITY OF
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Aside — Listen, Attend, and Spell

Slcr

(I‘mltmech-mmy.m:
clled by the

CharscterDistribution

AttestionContoxt ctcugs
context vector ¢, from

and 5
Table I: WER compasison on the clean and noisy Google voice scarch task. The CLDNN-HMM system is
the state-of-the-art system. the Listen, Attend and Spell (LAS) models are decoded with a beam size of 32
Language Model (LM) resconing was applied to our beams, and a sampling trick was apphed to bridge the gap
between training and inference.
 Model | Clean WER | Noisy WER |
~ CLDNN-HMM [20] 8.0 89
LAS 16.2 19.0
: 2 . 2 LAS + LM Rescoring 12.6 14.7
input sequence X is cncoded with the pyramadal X
{20 o BLET Doem ot s mecet P LAS + Sampling |14 16.5
DRy LAS + Sampling + LM Rescoring | 10.3 12.0
—

\\

Lastener

L] n n LE n . n ra ry

Figure 1: Listen, Attend and Spell (LAS) model: the listemer is a pyramidal BLSTM encoding our input
sequence X into high level features h, the speller is an attention-based decoder generating the y characters
from h.

https://arxiv.org/a&s/1508.01211
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Connectionist Temporal Classification

* Consider alignment: x, x, x; x, x; x4 input (X)
G (Gl Al @l @l st alignment
& a t output (¥)

* Not every input step needs an output. How can we collapse alignments
for multi-character output (like, ‘his’ vs ‘hiss’)?
®* CTCintroduces ‘blank token’ € as a placeholder

il e R T e Valid Alignments Invalid Alignments

First, merge repeat
characters. corresponds to

h e € 5 | © £ C C@Eyalt CElcCigyat Y=[c,c,a,t]

Then, remove any ¢
tokens.

h e Ik 1 LEH e B8 FEY T &Gl a7 g it has length 5

The remaining characters
are the output.

C a lEnleaiel 1 C l€lle flt t missing the 'a’

See: https://distill.pub/2017/ctc/ —
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Connectionist Temporal Classification

1550 438

D =R —

m O

See: https://distill.pub/2017/ctc/
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™

(D j > —o

© =

m O

We start with an input sequence,
like a spectrogram of audio.

The input is fed into an RNN,

for example,
This is computed
by an RNN
The network gives p, (a | X'),
a distribution over the outputs
{h, e, |, o, €} for each input step.
7
p(Y | X) = > 11 pe(a: | X)
AcAxy t=1

computing the probability for a
single alignment step-by-step.

marginalizes over the
set of valid alignments

The CTC conditional
probability

With the per time-step 0
distribution, we compute the
probability of different sequences

By marginalizing over alignments,
we get a distribution over outputs.

o
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Connectionist Temporal Classification

=

14
/W
1%

Summing over all alignments can be very expensive Dynamic programming merges alignments, so it’s much
faster.

See: https://distill.pub/2017/ctc/
CSC401/2511 — Spring 2021 61
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Connectionist Temporal Classification

LStel
e

‘@0
output .

o @
Y

= [a, b] \'
¢

b
Two find
noges

,, @

Node (s,t) in the diagram represents a, ¢ - the CTC score

of the subsequence Z,., after ¢ input steps.

See: https://distill.pub/2017/ctc/ @ ———
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Connectionist Temporal Classification

* |tis still expensive to consider all possible alignments, and it is naive to
merely pick the max probability at each time step.
* We therefore introduce a beam search (like in NMT)

T=1 T= 2 T=23

current proposed
M:}?:'."("-n?% extensions

hypotheses

e

A standard beam search algorithm with an
alphabet of {¢,a, b} and a beam size of three

See: https://distill.pu B NIVERSITY OF
CSCA401/2511 — Spring 2021 63 ﬁ TORONTO



https://distill.pub/2017/ctc/

End-to-end neural networks

Table 1. Wall Street Journal Results. All scores are word er-
ror rate/character error rate (where known) on the evaluation set.
‘LM’ is the Language model used for decoding. *14 Hr' and ‘81
Hr' refer to the amount of data used for training.

SYSTEM LM 14 HR 81 Hr
RNN-CTC NONE 74.2/30.9 | 30.1/9.2
RNN-CTC DICTIONARY | 69.2/30.0 | 24.0/8.0
RNN-CTC MONOGRAM | 25.8 15.8
RNN-CTC BIGRAM 15.5 10.4
RNN-CTC TRIGRAM 13.5 8.7
RNN-WER NONE 74.5/31.3 | 27.3/8.4
RNN-WER DICTIONARY | 69.7/31.0 | 21.9/7.3
RNN-WER MONOGRAM | 26.0 15.2
RNN-WER BIGRAM 15.3 9.8
RNN-WER TRIGRAM 13.5 8.2
BASELINE NONE —_ —
BASELINE DICTIONARY | 56.1 51.1
DNN/HMM BASELINE MONOGRAM | 23.4 19.9
hybrid BASELINE BIGRAM 11.6 9.4
BASELINE TRIGRAM 9.4 7.8
COMBINATION | TRIGRAM — 6.7

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JIMLR
Workshop Conf Proc, 32:1764-1772.

&
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State-of-the-art?

Deep Speech: Scaling up end-to-end
speech recognition

Awni Hannun; Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen,
Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, Andrew Y. Ng

Baidu Research - Silicon Valley Al Lab

Abstract

We present a state-of-the-art speech recognition system developed using end-to-
end deep learning. Our architecture is significantly simpler than traditional speech
systems, which rely on laboriously engineered processing pipelines; these tradi-
tional systems also tend to perform poorly when used in noisy environments, In
contrast, our system does not need hand-designed components to model back-
ground noise, reverberation, or speaker vanation, but instcad directly learns a
function that is robust to such cffects. We do not need a phoneme dictionary,
nor even the concept of a “phoneme.” Key to our approach is a well-optimized
RNN training system that uses multiple GPUs, as well as a set of novel data syn-
thesis techniques that allow us to efficiently obtain a large amount of varied data
for training. Our system, called Deep Speech, outperforms previously published
results on the widely studied Switchboard Hub5'00, achieving 16.0% error on the
full test set, Deep Speech also handles challenging noisy environments better than
widely used, state-of-the-art commercial speech systems,

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A.

Coates, A. Ng "Deep Speech: Scaling up end-to-end speech recognition”, arXiv:1412.5567v2, 2014.
% | UNIVERSITY OF
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State-of-the-art?

f ) * Input: spectrogram
® Qutput: characters (incl. space
and null characters)

* No phonemes or vocabulary
means no OOV words.

ISP

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A.
Coates, A. Ng "Deep Speech: Scaling up end-to-end speech recognition”, arXiv:1412. 5567v2 2014.
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State-of-the-art?

Model SWB CH Full
Vesely et al. (GMM-HMM BMMI) [44] 186 330 258
Vesely et al. (DNN-HMM sMBR) [44] 126 241 184
Maas et al. (DNN-HMM SWB) [28] 146 263 205
Maas et al. (DNN-HMM FSH) [28] 160 237 199
Seide et al. (CD-DNN) [39] 16.1 n/a nla
Kingsbury et al. (DNN-HMM sMBR HF) [22] 133 n/a n/a
Sainath et al. (CNN-HMM) [36]) 1.5 nfa n/a
Soltau et al. (MLP/CNN+I-Vector) [40] 104 na n/a
Deep Speech SWB 200 318 259
Deep Speech SWB + FSH 126 193 160

Table 3: Published error rates (%WER) on Switchboard dataset splits. The columns labeled “"SWB"

and "CH" are respectively the easy and hard subsets of Hub5'00.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A.
Coates, A. Ng "Deep Speech: Scaling up end-to-end speech recognition”, arXiv:l412.5$§7v2, 2014.
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Summary

* We've seen how to:

* extract useful speech features with Mel-scale filter
banks

* cluster multi-modal speech data with Gaussian mixture
models.

® recognize speech with hidden Markov models and
neural networks.

®* Recognize speech using only end-to-end neural
networks.

* evaluate ASR performance with Levenshtein distance.

* Next, we’ll see how to synthesize artificial speech.

s
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APPENDICES

(EVERYTHING THAT FOLLOWS IS AN ASIDE. NOT ON THE
EXAM.)

&
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APPENDIX: CEPSTRUM AND MFCCS
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Source and filter

°* The of speech are

WHIHHIIIl\lmllllhl produced by a glottal pulse
waveform (the source) passing

N\/\ through a vocal tract whose shape
modifies that wave (the filter).

Filter ========m====
i.

!
SOUTCE “= == == = - - - - -

_ * The shape of the vocal tract is more
A |m||!)Ilanuum.... important to phoneme recognition.
* We want to separate the source

!

r from the filter in the acoustics.

4"\5
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Source and filter

* Since speech is assumed to be the output of a linear time

invariant system, it can be described as a convolution.

* Convolution, x * y, is beyond the scope of this course, but can
be conceived as the modification of one signal by another.

] S SRR YT L g e w00 |
: : : : : : (S

: : : : : S Rt

05 .. ......... ......... .................. ....... ......... (f.gn)

0 l 1 1 1 1 1 1 1
15 -1 05 0 05 1 15 2 25 3

* For speech signal , glottal signal g|n], and vocal tract
transfer v|7| with spectra , G|z], and V|z], respectively :
[Tl] [ ] We’ve separated the

G[Z]V[ ] source and filter
= e gG[Z] i logV[ ] into two terms!

,4"\5
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The cepstrum

* We separate the source and the filter by pretending the log
of the spectrum is actually a time domain signal.
* the log spectrum is a sum of the log spectra of the

source and filter, i.e., a superposition;
finding /7s spectrum will allow us to isolate these components.

* Cepstrum: n. the spectrum of the log of the spectrum.
°* Funfact: ‘ceps’isthe reverse of ‘spec.
RSN Instead of ‘filters’ we have ‘lifters’...

il

|Og S |Og e _|ogi ' | — ‘
HH|||HI|\l\lmuum.... JAVAVA % i
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The cepstrum
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Spectrum Cepstrum

°* The domain of the cepstrum is quefrency (a play on the
word ‘frequency’).
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The cepstrum

w
S
Spectrum
° FREQUENCY (Hz) Pictures from
ohn Coleman
(2005)
w
(=]
Cepstrum

- —

QUEFRENCY {SECONBS——

This is due to the This is due to the

vocal tract shape glottis
&
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Mel-frequency cepstral coefficients

* Mel-frequency cepstral coefficients (MFCCs) are a popular
representation of speech used in ASR.
®* They are the spectra of the logarithms of the Mel-scaled
filtered spectra of the windows of the waveform.

Speech
signal

= UNIVERSITY OF
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MFCCs in practice

* An observation vector of MFCCs often consists of
* The first 13 cepstral coefficients (i.e., the first 13
dimensions produced by this method),
* An additional overall energy measure,

* The velocities (0) of each of those 14 dimensions,
* j.e., the rate of change of each coefficient at a given time

* The accelerations (00) of each of original 14 dimensions.

®* The result is that at a timeframe t we have an observation
MFCC vector of (13+1)-3 = 42 dimensions.
® This vector is what is used by our ASR systems...

S
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Advantages of MFCCs

* The cepstrum produces highly uncorrelated features (every

dimension is useful).
* This includes a separation of the source and filter.

* Historically, the cepstrum has been easier to learn than the
spectrum for phoneme recognition.

° “tl;dr: Use Mel-scaled filter banks if the [ML] algorithm is not
susceptible to highly correlated input. Use MFCCs if the [ML] algorithm
is susceptible to correlated input.” - Haytham Fayek

o
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APPENDIX: PHONEME HMMS AND COMPOSITION
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Phoneme HMMs

®* Phonemes change over time — we model these dynamics by
building one HMM for each phoneme.
* Tristate phoneme models are popular.
* The centre state is often the ‘steady’ part.

W, P N
0-0-0©
v v U

tristate phoneme model (e.g., /0i/)

UNIVERSITY 4
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Phoneme HMMs

* We train each phoneme HMM using (" Phoneme HMMs
all sequences of that phoneme. /'V/é_'é_’é
t; t;  phn /'h/é_'é_'é
i) —@— @
\ ¥ 4 \ 4 \ ¥ 4

-
aanl
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Putting it together

“open the pod bay doors”

[ Language model ] [ Acoustic model ]

| & UNIVERSITY OF
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Combining models

* We can learn an N-gram language model from word-level
transcriptions of speech data.
®* These models are discrete and are trained using MLE.

®* Our phoneme HMMs together constitute our acoustic model.
* Each phoneme HMM tells us how a phoneme ‘sounds’.

* We can combine these models by concatenating phoneme
HMMs together according to a known lexicon.
* We use a word-to-phoneme dictionary.

S
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Combining models

* If we know how phonemes combine to make words, we can
simply concatenate together our phoneme models by
inserting and adjusting transition weights.

* e.g., Zipf is pronounced /z ih f/, so...

©

NS/

-g-0-¢-¢-¢-¢-¢-¢

W U

(It’s more complicated: 1) the HMMs are often more complex,
2) they often represent phonemes in context of other phonemes
3)...) &
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Concatenating phoneme models

Lexicon

Martin text

si
End
sl
O (
/‘6——/ From Jurafsky &

y UNIVERSITY OF
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Bigram models

p( one | one )

p(one | two ) - UUO ah@@UUU

,p(two | one )
i ’u“CJ {f{)
p(twolzero) p(twoltwo)
p(zerofone)
- p(zeroltwo)
— R R A& ;% & R A KA & A 2
QJ_‘CZJ &/ U“\J Wy U low o U
- - - ~ From Jurafsky &
p(zero|zero) Martin text
o&
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APPENDIX: OTHER NEURAL ARCHITECTURES AND
IMPLEMENTATIONS
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End-to-end hybrids

( Softmax D\ | Cl'riplet Ranking Loss L ) ®* Get word boundaries from
3
"~ some external tool.
Embedding e| | | Embedding w4 |Embedding w- ®* Train word/characters and
Deep Deep Neural Deep Neural i i
i e s acou§t|cs simultaneously.
Network . ; ®* Obtain upto0.11%
T letter n-grams || letter n-grams improvement in error rates
) o .' §-a Wo’rd Wronq\Nord

Table 2: Word Error Rates for the three compared models, with
two different values of the beam search parameter.

WER
L beam=11 | beam=15
Baseline 10.16 9.70
Word embedding model 11.2 1.1
Combination 10.07 9.59

Bengio, S., & Heigold, G. (2014). Word Embeddings for Speech Recognition, Interspeech
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Convolutional Neural Networks

feature extraction classification

® Spectrograms are kinds of images, so let’s use the kinds of
neural networks used in computer vision.

UNIVERSITY OF
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The open-source Kaldi ASR

0 KALDI

* Kaldi is the de-facto open-source ASR toolkit:

http://kaldi-asr.org

* |t has pretrained models, including the ASpIRE chain model trained
on Fisher English, augmented with impulse responses and noises to
create multi-condition training.

* My favourite incarnation uses |-Vectors to account for the speaker.

* |t often (anecdotally) performs better than Google’s SpeechAPI.

* Itis originally in C++, but a wrapper (PyTorch-Kaldi) exists in the
much easier Python.

® Pro-sanity tip: don’t read news about its progenitor.

s
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https://cloud.google.com/speech-to-text/
https://github.com/mravanelli/pytorch-kaldi

Keeping up

LAS, Transformers, and the RNN-T (extends CTC) are
reaching state of the art, e.g.

12.01769v6 [cs.CL] 23 Feb 2018

7

1

STATE-OF-THE-ART SPEECH RECOGNITION
WITH SEQUENCE-TO-SEQUENCE MODELS

Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wy, Rokit Prabhavalkar, Patrick Nguyen,
Zhifeng Chen, Anjuli Kannan, Ron J. Weiss, Kanishka Rao, Ekaterina Gonina,
Navdeep Jaitly, Bo Li, Jan Chorowski, Michiel Bacchiani

Google, USA

ABSTRACT

Ancation-tased encoder-decoder archiocosres such as Listen. Anond.
and Spell (LAS). vabsume the acoustic, proausciation and language
medel compencnts of & radilions] sstomic speech fecogaition
(ASR) syviem into & singhe soural notwoek. I previous work, we
huve shown that such schitoctures see comparable 10 stste-of-the-
a1 ASR systems o0 Sctation sasks, but it was not chear if such
archisectines would be practical for more challienging tasks such as
volce search. In @is work, we explore a variety of srucveral and
optimization improvements 1 our LAS model which sigsificasily
impeove perfcemance. On the stractured sode, we thow Bat weed
pocce mordels can be used imitead of graphemss. We dso introdice &

b bead aezention . which offors bmy aver the
commonly-esed single-head atoation On e optimizseion side, we
explore syncheoncus traising. whedsled sampling, label smoothing.
end misimass woed crror rate optimiration, which are all shown 1o
impeore accuracy. We peesent roaults with & unidfiroctiosal LSTM
encoder fof wireaming recognitica. Ona D bows voice search

task. we find Bt the proposed changes improve the WER from 9. 2%
10 56%. while the bost comveational system achieves 6.7%: ca a
dictation task our model achioves a WER of 4.1% compared to 5%
for the comvestional systemn.

,yonghul, prabbavaixar, depng

Lfengo,anjull

rowski,

en 3 arpe vecabulary contisucus specch socognitica (LVCSR) sk

menies s iethttps://arxiv.org /pdf/1712.01769.pdf

outperform a conventional ASR system on a vouo search task
Sisce previous work sbowed that LAS offcred improvemerts
onver other soquence-lo-sequence model [6). we focus on impeove-
meats to the LAS model in thn woek. The LAS model is 2 single
neural network that includes an encoder which s asalogous 10 a
conveational acoustic model. an attender that acts as an alignmont
model. and a decovder that s analogous 0 the language model i a
comveational system We coasader both modifications o e model
stracture, i well a5 i the optimization peccess. On the strsctsre side,
first, we exphore wied picce medels (WPM) which have boes spplicd
1o maching translation [ 7] and more recoatly 10 spoech in RNN-T (3}
and LAS (3] We compare graphemes and WM for LAS. and find
modest improvement with WM. Neat, we eaplose mcorporating
tealti-head atseation [10], which aliows the mode] 1o beam 0o aniend
10 muliple locatioss of the cacoded features. Overall, we get 13%
selative impeevoment in WER with these slrature itgprovemests.
On the optmization side, we explooe a variety of straveglos as
well. Comvenmonal ASR systoms boaefit from discriminative se-
quence waining, which optimires crileria meee chnely related 8o

For HOT news and architectures, see https://github.com/syhw/wer _are we
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APPENDIX: SPEAKER ADAPTATION
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Speaker adaptation

® Given a neural ASR system trained with many speakers, we
want to adapt to the voice of a new individual.
* We know how to do this with HMMs

* e.g., with interpolation, or (aside) with MAP or MLLR training.

* DNNs need /ots of data to be useful, but we can adapt:

°* Conservative: re-train whole DNN, with some constraints
* Transformative: only retrain one layer (or a few)
* Speaker-aware: do not really train the parameters

With notes from Hung-yi Lee

s
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Conservative speaker adaptation

2. Stopping
criterion

® Stopping criteria
can exist on output,
parameters, or
meta-aspects of

All of Amazon or Facebook’s secret
recordings of billions of people in the .
bathroom training

Tiny database of you
in the bathroom

UNIVERSITY OF
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Transformative speaker adaptation

? speaker information.

h Tiny database of you
-g “ i:the bathroor\rlm '
®* There are many
alternatives...

° |nsert a new layer.

* Keeping all other
parameters fixed, train the
new ones to normalize

original '

adapted '
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Speaker-aware training

Speaker
vector

Data of
Speaker 1

—
—~

All of.Amazon.o.r Facebook’s sgcret Data of
recordings of billions of people in the
bathroom Speaker 2

@
@
@
O

O

Data of
Speaker 3

Fixed length low
dimension vectors,
obtained in a
variety of ways.

Note we can
segment things by
recording device,
noise, etc.

This can be used to
remove the
channel effect.

Senior, A., & Lopez-Moreno, I. (2014). Improving DNN speaker independence with I-vector inputs. ICASSP,

225-229. https://doi.org/10.1109/ICASSP.2014.6853591
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Speaker-aware training

Training data:
Speaker 1

—mamm s train

Speaker 2

Acoustic features augmented with speaker
vectors

speaker;

All speakers use the same DNN model
Different speakers augmented by different features

e
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APPENDIX: CLUSTERING
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Clustering

® Quantization involves turning possibly multi-variate and
continuous representations into univariate discrete symbols.
®* Reduced storage and computation costs.
* Potentially tremendous loss of information.

= | * Observation X is in Cluster One,
" T so we replace it with 1.

! - \_+_/ |F ® Clustering is unsupervised

‘s l learning.

o ®* Number and form of
clusters often unknown.

| 1 A
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Aspects of clustering

* What defines a particular cluster?
* |Is there some prototype representing each cluster?

* What defines membership in a cluster?
* Usually, some distance metric d(x, y) (e.g., Euclidean distance).

°* How well do clusters represent unseen data?
®* How is a new point assigned to a cluster?
* How do we modify that cluster as a result?

s
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K-means clustering

* Used to group data into K clusters, {C;, ..., Cx}.

* Each cluster is represented by the mean of its assigned data.
* (sometimes it’s called the cluster’s centroid).

* |terative algorithm converges to local optimum:
1. Select K initial cluster means {u4, ..., ux} from among data points.
2. Until (stopping criterion),
a) Assign each data sample to closest cluster
x€C; if dlxu) < d(x,/,tj), Vi#]j
b) Update K means from assigned samples
,Lli=E(X)VXECi, 1<i<K

s
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K-means example (K = 3)

* |nitialize with a random selection of 3 data samples.

* Euclidean distance metric d(x, u)

e &
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K-means stopping condition

* The total distortion, D, is the sum of squared error,

K
D=> > lx—wl?

=1 x€C;

* D decreases between nt" and (n + 1)" iteration.

* We can stop training when D falls below some threshold T'.
Dn+1)

D) T

B
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Acoustic clustering example

® 12 clusters of spectra, after training.
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Number of clusters

®* The number of true clusters is unknown.
* We can iterate through various values of K.
* As K approaches the size of the data, D approaches O...

o 8°. I e, .
.’::‘—I::o. ‘}?i: O—I_o.o ??2’0 .
RN e
o "
> K =4
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Hierarchical clustering

* Hierarchical clustering clusters data into hierarchical ‘class’
structures.

* Two types: top-down (divisive) or bottom-up (agglomerative).
* Often based on greedy formulations.

* Hierarchical structure can be used for hypothesizing classes.
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Divisive clustering

Creates hierarchy by successively splitting clusters into
smaller groups.
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Agglomerative clustering

* Agglomerative clustering starts with N ‘seed’ clusters and
iteratively combines these into a hierarchy.

®* On each iteration, the two most similar clusters are merged
together to form a new meta-cluster.

* After N — 1 iterations, the hierarchy is complete.

* Often, when the similarity scores of new meta-clusters are
tracked, the resulting graph (i.e., dendogram) can yield
insight into the natural grouping of data.

R
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Dendogram example

A

Distance
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Speaker clustering

* 23 female and 53 male speakers from TIMIT.
* Data are vectors of average F1 and F2 for 9 vowels.
* Distance d((;, C;) is average of distances between members.

[ p— Prm
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Acoustic-phonetic hierarchy

y [I” |e |=] Fir lulu wlovo?v"]‘“! zs]mrﬂngfffbvitdk p |h
£E® |10 wi [@2 Al mnn afbv
vuwl 0 2AQ tdkgph
c®1e’ afbvatdkgph
vuwlo'oaa
HEST
yi"ez1e”
FSruuwlo aaa
mnn&fbvatdkgph
yi'e®1e’ Sruuwlo 2a0

2jsczsmnn6fbvatdkgph

(this is basically an upside-down dendogram)ias
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Word clustering
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