Hidden Markov models

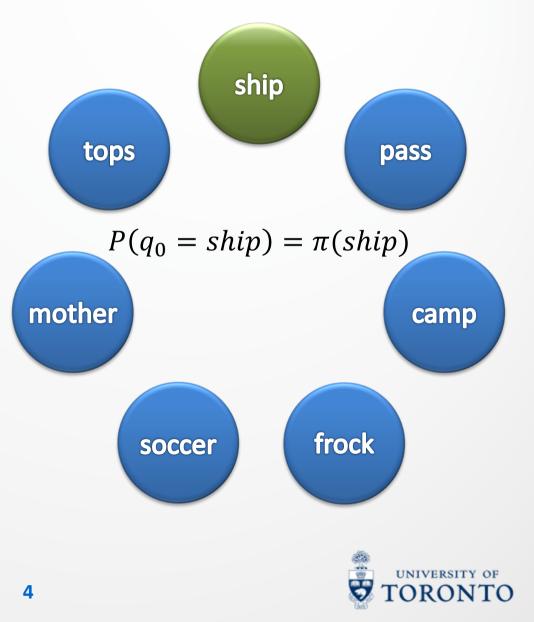
CSC401/2511 – Natural Language Computing – Winter 2021 Lecture 7 Serena Jeblee, Sean Robertson and Frank Rudzicz University of Toronto

• We've seen this type of model:

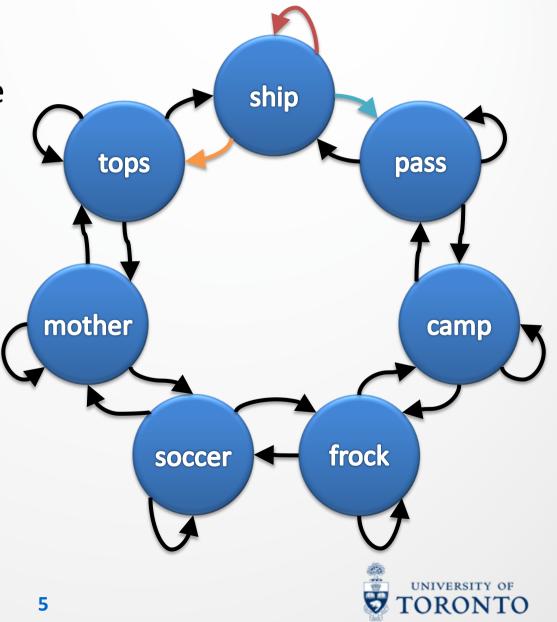
- e.g., consider the 7-word vocabulary: {ship, pass, camp, frock, soccer, mother, tops}
- What is the probability of the **sequence** *ship*, *ship*, *pass*, *ship*, *tops* ?
- Assuming a bigram model (i.e., 1st-order Markov), *P(ship|<s>)P(ship|ship)P(pass|ship)* · *P(ship|pass)P(tops|ship)*

- This can be conceptualized graphically.
- We start with N states, s₁, s₂, ..., s_N that represent unique observations in the world.
- Here, N = 7 and each state represents one of the words we can observe.

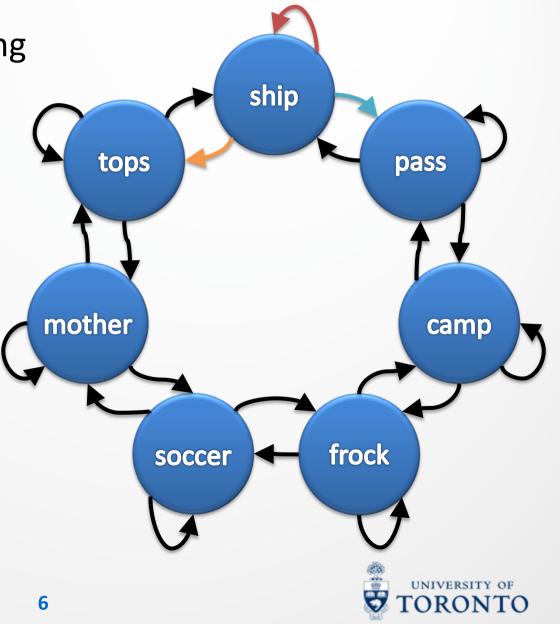
- We have discrete
 timesteps, t = 0, t = 1, ...
- On the tth timestep the system is in exactly one of the available states, q_t.
 - $q_t \in \{s_1, s_2, \dots, s_N\}$
- We could start in any state. The probability of starting with a particular state s is $P(q_0 = s) = \pi(s)$



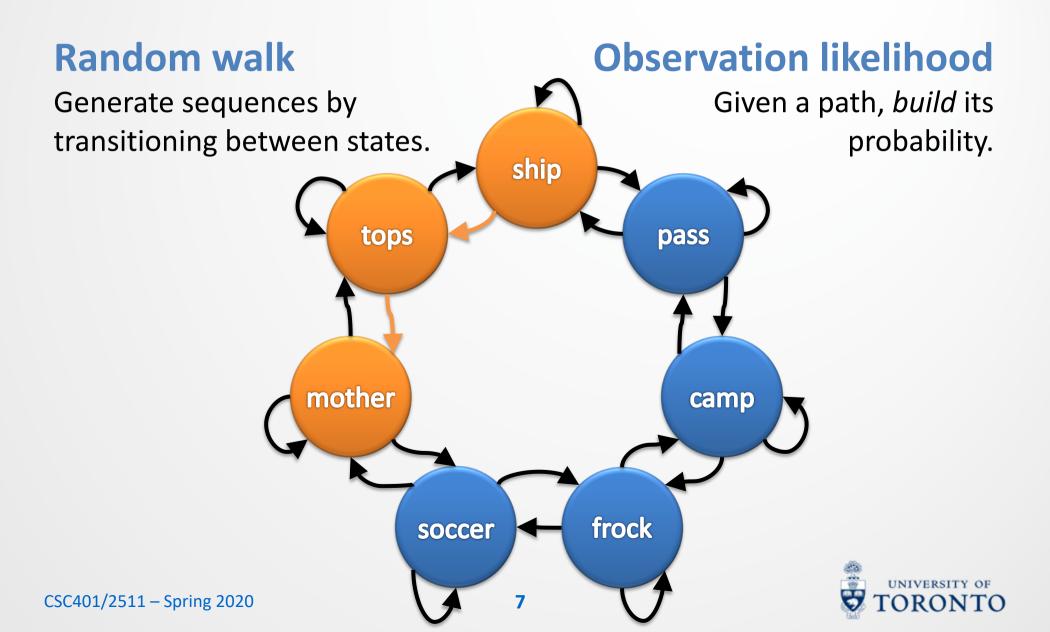
- At each step we must move to a state with some probability.
- Here, an arrow from q_t to q_{t+1} represents $P(q_{t+1}|q_t)$
- P(ship|ship)
- P(tops|ship)
- P(pass|ship)
- P(frock|ship) = 0



- Probabilities on all outgoing arcs must sum to 1.
- P(ship|ship) + P(tops|ship) + P(tops|ship) + P(pass|ship) = 1
- P(ship|tops) +P(tops|tops) +P(mother|tops) = 1



Using the graph



A multivariate system

 What if the probabilities of observing words depended only on some other variable, like mood?

P(word)			
0.1			
0.05			
0.05			
0.6			
0.05			
0.1			
0.05			

P(word)				
0.25				
0.25				
0.05				
0.3				
0.05				
0.09				
0.01				

word	P(word)			
ship	0.3			
pass	0			
camp	0			
frock	0.2			

soccer

mother

tops

0.05

0.05

0.4

A multivariate system

• What if that variable changes over time?

- e.g., I'm happy one second and disgusted the next.
- Here, $state \equiv mood$ observation $\equiv word$.

>	word	P(word)
	ship	0.1
	pass	0.05
	camp	0.05
	frock	0.6
	soccer	0.05
	mother	0.1
	tops	0.05

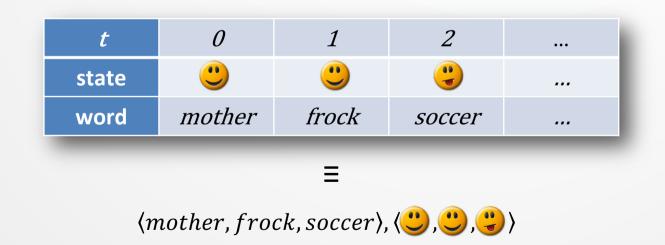
word	P(word)	
ship	0.25	
pass	0.25	
camp	0.05	
frock	0.3	
soccer	0.05	
mother	0.09	
tops	0.01	

word	P(word)
ship	0.3
pass	0
camp	0
frock	0.2
soccer	0.05
mother	0.05
tops	0.4
	IVERSITY OF

IOKONIO

Observable multivariate systems

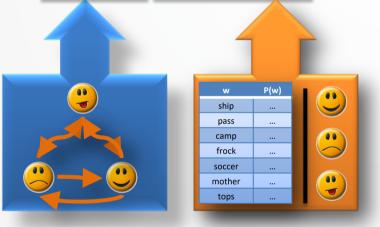
- Imagine you have access to my emotional state somehow.
- All your data are completely observable at every timestep.
- E.g.,



Observable multivariate systems

• What is the probability of a sequence of words and states?

• $P(w_{0:t}, q_{0:t}) = P(q_{0:t})P(w_{0:t}|q_{0:t}) \approx \prod_{i=0}^{t} P(q_i|q_{i-1})P(w_i|q_i)$



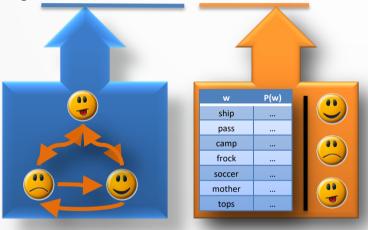
• e.g.,

 $P(\langle ship, pass \rangle, \langle \bigcirc, \bigcirc \rangle) = P(q_0 = \bigcirc) P(ship| \bigcirc) P(\bigcirc) P(pass| \bigcirc)$

Observable multivariate systems

• **Q**: How do you **learn** these probabilities?

• $P(w_{0:t}, q_{0:t}) \approx \prod_{i=0}^{t} P(q_i | q_{i-1}) P(w_i | q_i)$

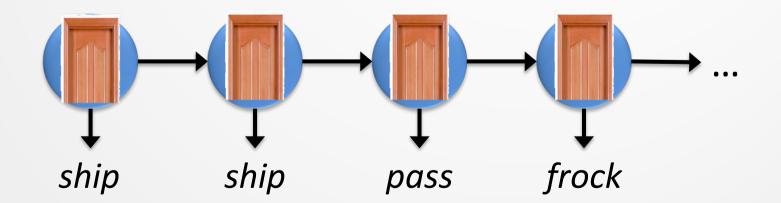


- A: When all data are observed, basically the same as before.
 - $P(q_i|q_{i-1}) = \frac{P(q_{i-1}q_i)}{P(q_{i-1})}$ is learned with MLE from training data. $P(w_i|q_i) = \frac{P(w_i,q_i)}{P(q_i)}$ is also learned with MLE from training data.

Hidden variables

• Q: What if you **don't** know the **states** during *testing*?

- e.g., compute P((ship, ship, pass, frock))
- Q: What if you **don't** know the **states** during *training*?



Examples of hidden phenomena

- We want to represent surface (i.e., observable) phenomena as the output of hidden underlying systems.
 - e.g.,
 - Words are the outputs of hidden parts-of-speech,
 - French phrases are the outputs of hidden English phrases,
 - Speech sounds are the outputs of hidden phonemes.
 - in other fields,
 - Encrypted symbols are the outputs of hidden messages,
 - Genes are the outputs of hidden functional relationships,
 - Weather is the output of hidden climate conditions,
 - Stock prices are the outputs of hidden market conditions,

Definition of an HMM

- A hidden Markov model (HMM) is specified by the 5-tuple $\{S, W, \Pi, A, B\}$:
 - $S = \{S_1, ..., S_N\}$
 - $W = \{w_1, ..., w_k\}$

$$= \{\pi_1, \dots, \pi_N\}$$

• $A = \{a_{ij}\}, i, j \in S$

 $\bullet B = b_i(w), i \in S, w \in W$: state **output** probabilities

- : set of states (e.g., moods)
- : output alphabet (e.g., words)
- : initial state probabilities
- : state transition probabilities

yielding

- $Q = \{q_0, ..., q_{T-1}\}, q_i \in S$: state sequence
- $\mathcal{O} = \{ \sigma_0, \dots, \sigma_{T-1} \}, \sigma_i \in W$: output sequence

A hidden Markov production process

- An HMM is a **representation** of a process in the world.
 - We can synthesize data, as in Shannon's game.
- This is how an HMM generates new sequences:
- $t \coloneqq 0$
- **Start** in state $q_0 = s_i$ with probability π_i
- Emit observation symbol $\sigma_0 = w_k$ with probability $b_i(\sigma_0)$
- While (not forever)
 - **Go** from state $q_t = s_i$ to state $q_{t+1} = s_j$ with probability a_{ij}
 - Emit observation symbol $\sigma_{t+1} = w_k$ with probability $b_j(\sigma_{t+1})$
 - $t \coloneqq t + 1$

Fundamental tasks for HMMs

1. Given a model with particular parameters $\theta = \langle \Pi, A, B \rangle$, how do we efficiently compute the likelihood of a *particular* observation sequence, $P(\mathcal{O}; \theta)$?

We previously computed the probabilities of word sequences using *N*-grams.

The probability of a particular sequence is usually useful as a means to some other end.

Fundamental tasks for HMMs

2. Given an observation sequence O and a model θ , how do we choose a state sequence $Q = \{q_0, \dots, q_{T-1}\}$ that *best explains* the observations?

This is the task of **inference** – i.e., guessing at the best explanation of unknown ('latent') variables given our model.

This is often an important part of **classification**.

Fundamental tasks for HMMs

3. Given a large **observation sequence** O, how do we choose the *best parameters* $\theta = \langle \Pi, A, B \rangle$ that explain the data O?

This is the task of **training**.

As before, we want our parameters to be set so that the available training data is maximally likely, But doing so will involve guessing unseen information.

Task 1: Computing $P(\mathcal{O}; \theta)$

We've seen the probability of a joint sequence of observations and states:

$$P(\mathcal{O}, Q; \theta) = P(\mathcal{O}|Q; \theta) P(Q; \theta)$$

= $\pi_{q_0} b_{q_0}(\sigma_0) a_{q_0 q_1} b_{q_1}(\sigma_1) a_{q_1 q_2} b_{q_2}(\sigma_2) \dots$

• To get the probability of our observations **without** seeing the state, we must **sum over all possible state sequences**:

$$P(\mathcal{O};\theta) = \sum_{Q} P(\mathcal{O},Q;\theta) = \sum_{Q} P(\mathcal{O}|Q;\theta) P(Q;\theta).$$

Computing $P(O; \theta)$ naïvely

 To get the total probability of our observations, we could directly sum over all possible state sequences:

$$P(\mathcal{O};\theta) = \sum_{Q} P(\mathcal{O}|Q;\theta) P(Q;\theta).$$

- For observations of length *T*, each state sequence involves 2*T* multiplications (1 for each state transition, 1 for each observation, 1 for the start state, minus 1).
- There are up to N^T possible state sequences of length T given N states.

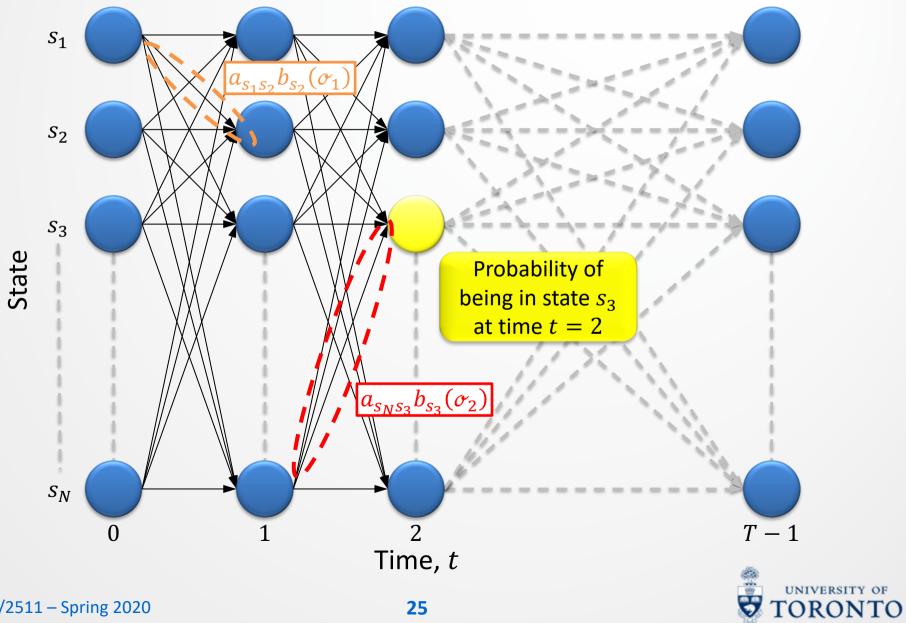
 $\therefore \sim (1 + T + T - 1) \cdot N^T$ multiplications \bigcirc

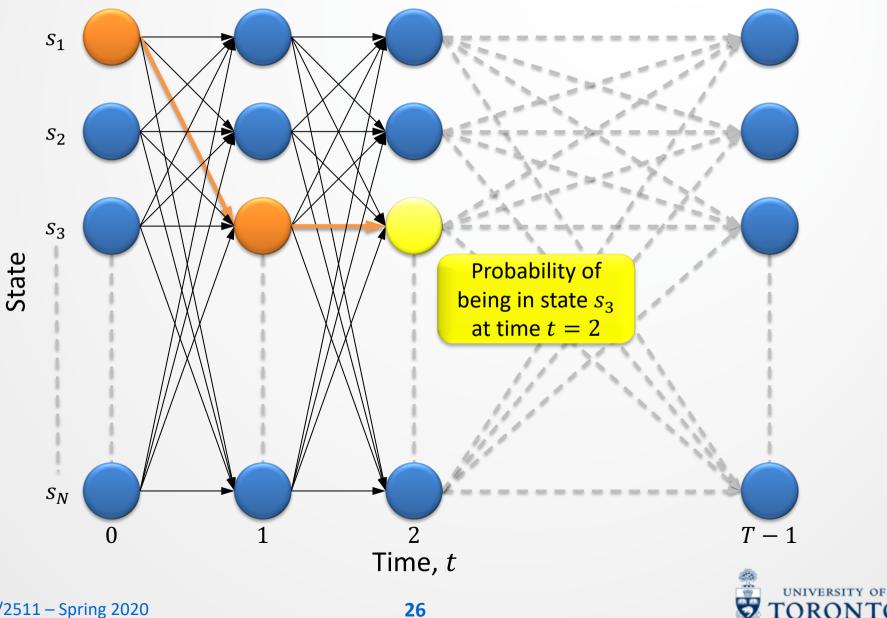
Computing $P(\mathcal{O}; \theta)$ **cleverly**

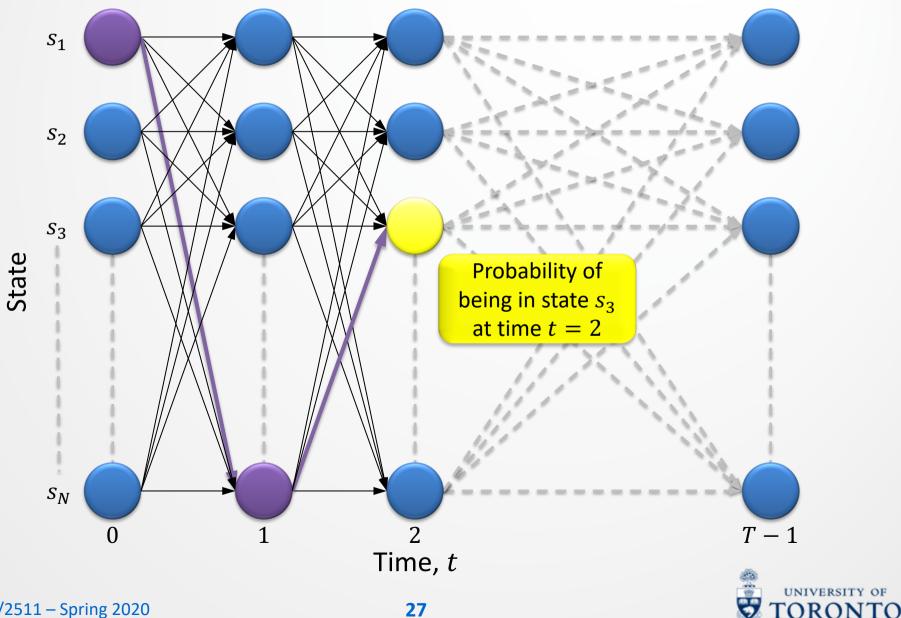
- To avoid this complexity, we use dynamic programming; we remember, rather than recompute, partial results.
- We make a trellis which is an array of states vs. time.
 The element at (i, t) is α_i(t) the probability of being in state i at time t after seeing all observations to that point:

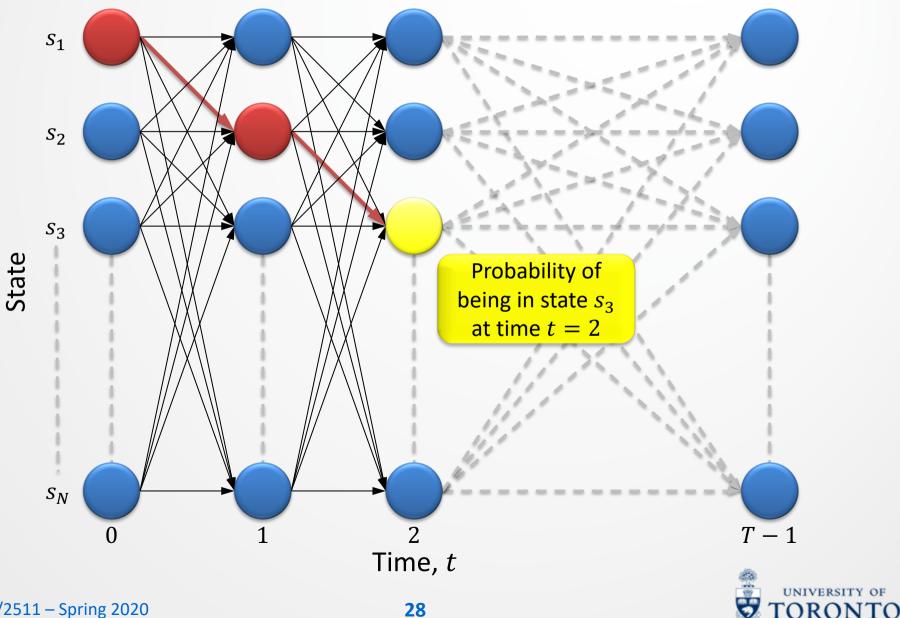
 $P(\sigma_{o:t}, q_t = s_i; \theta)$

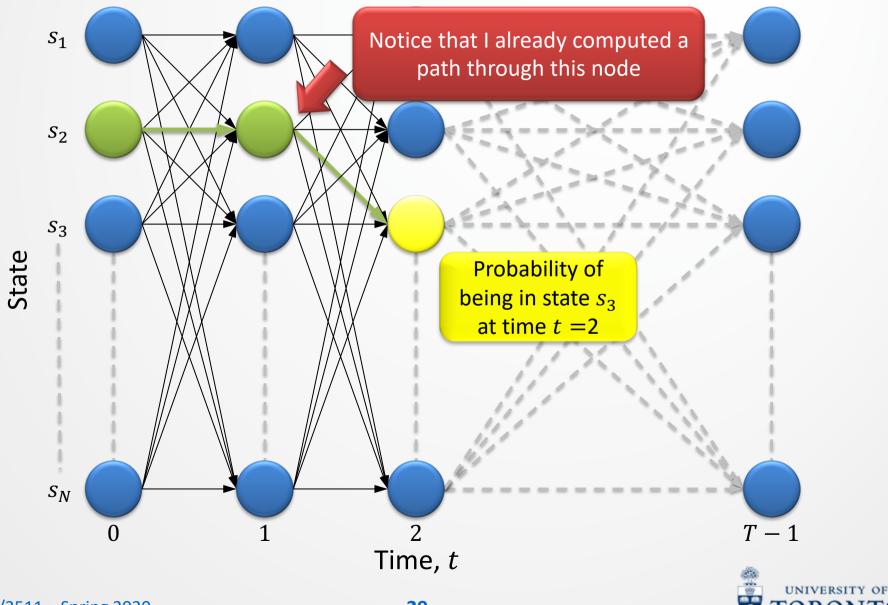
Trellis

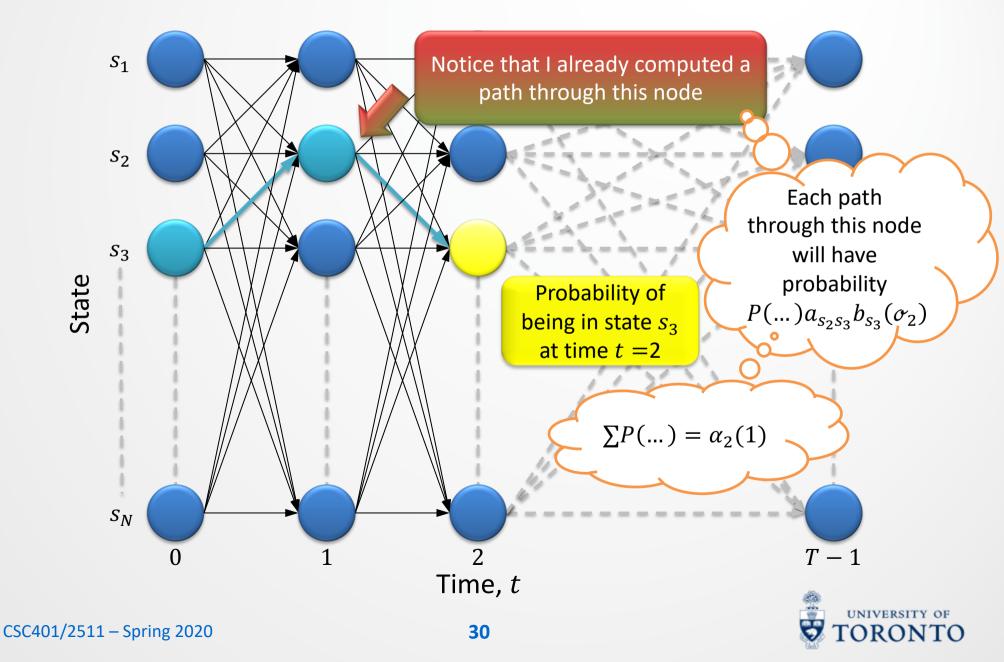






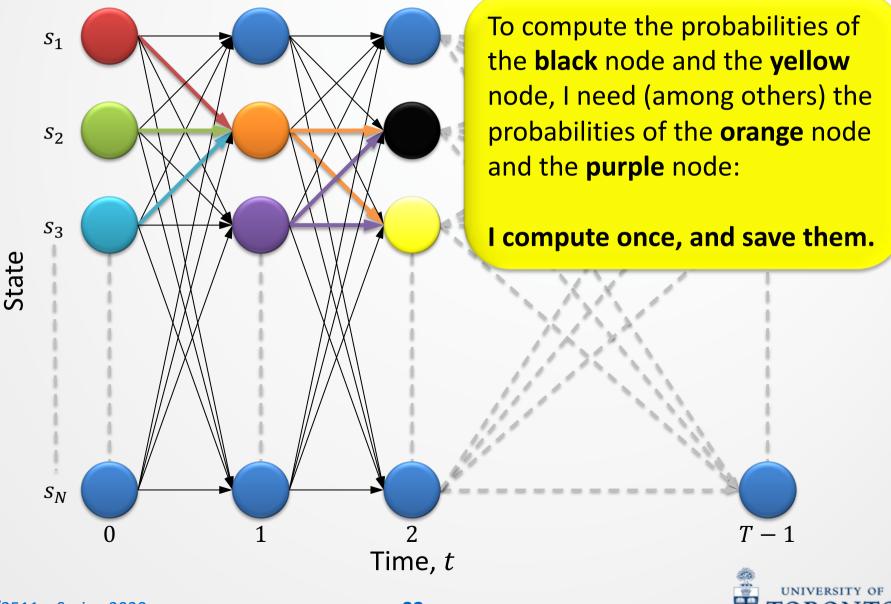






AND SO ON...

Trellis



The Forward procedure

• To compute

$$\alpha_i(t) = P(\sigma_{0:t}, q_t = s_i; \theta)$$

we can compute $\alpha_j(t-1)$ for possible *previous* states s_j , then use our knowledge of a_{ji} and $b_i(\sigma_t)$

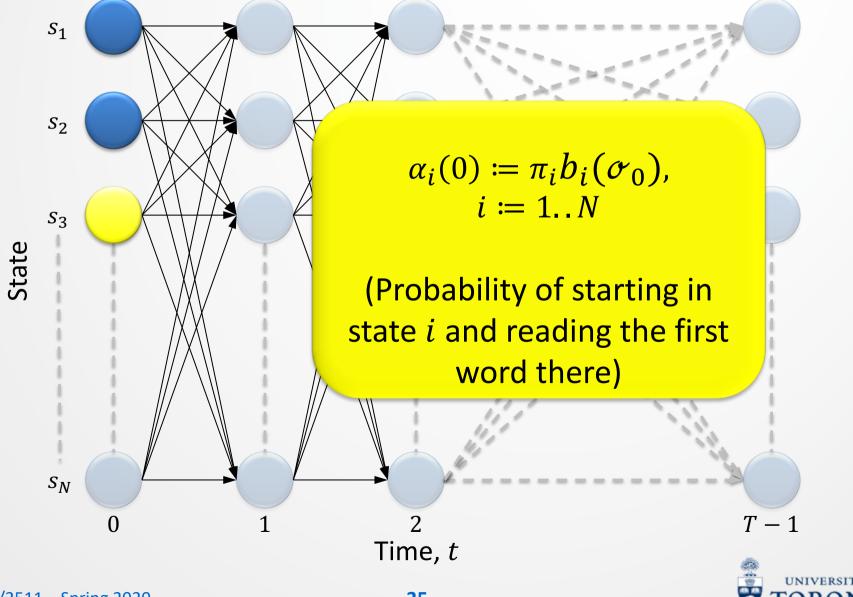
 We compute the trellis left-to-right (because of the convention of time) and top-to-bottom ('just because').

• **Remember**: σ_t is fixed and known. $\alpha_i(t)$ is agnostic of the future.

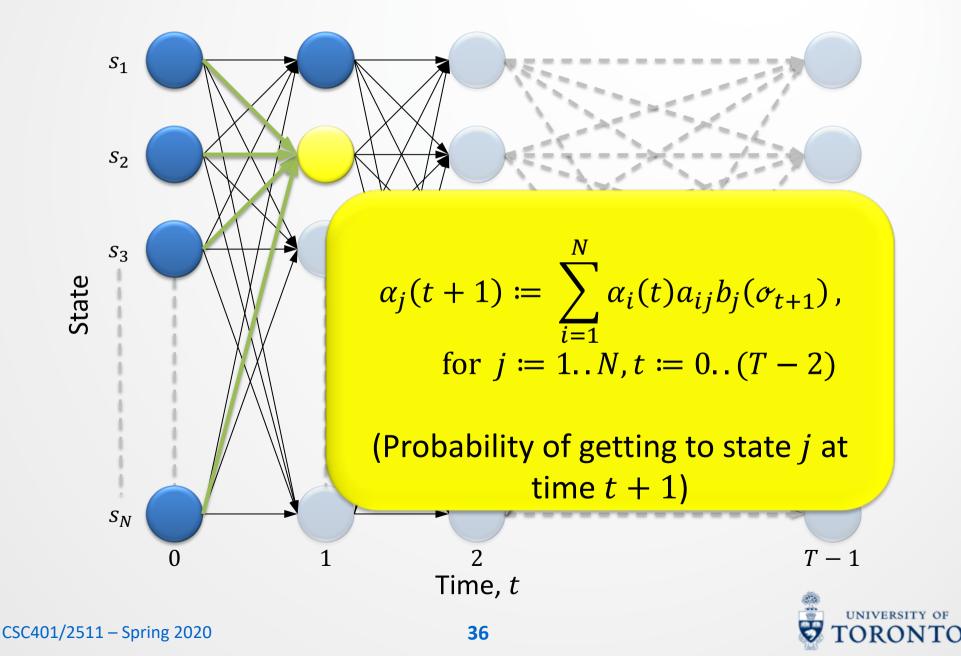
The Forward procedure

- The trellis is computed left-to-right and top-to-bottom.
- There are three steps in this procedure:
 - Initialization: Compute the nodes in the *first* column of the trellis (t = 0).
 - Induction: Iteratively compute the nodes in the *rest* of the trellis $(1 \le t < T)$.
 - Conclusion: Sum o
- Sum over the nodes in the *last* column of the trellis (t = T 1).

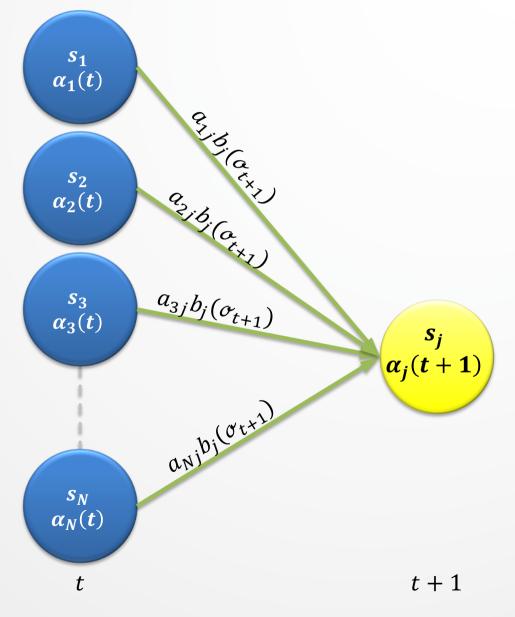
Initialization of Forward procedure



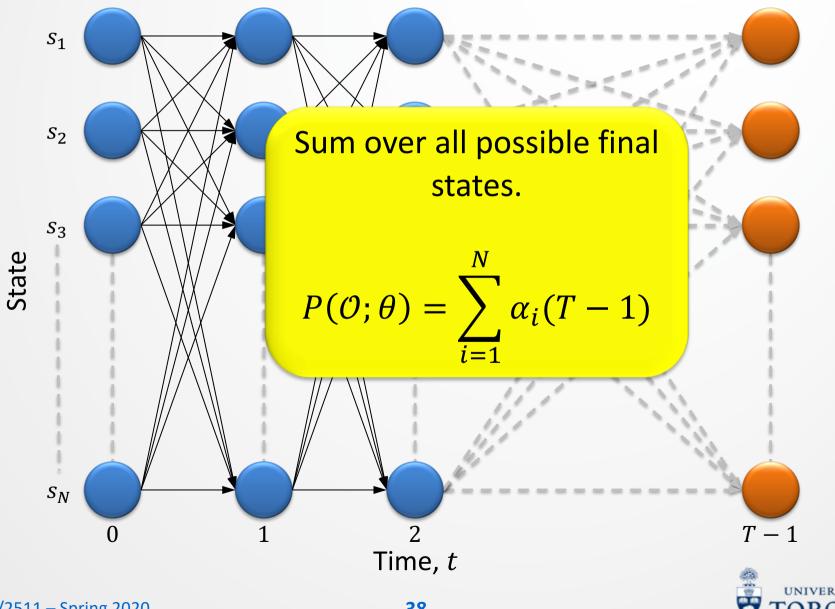
Induction of Forward procedure

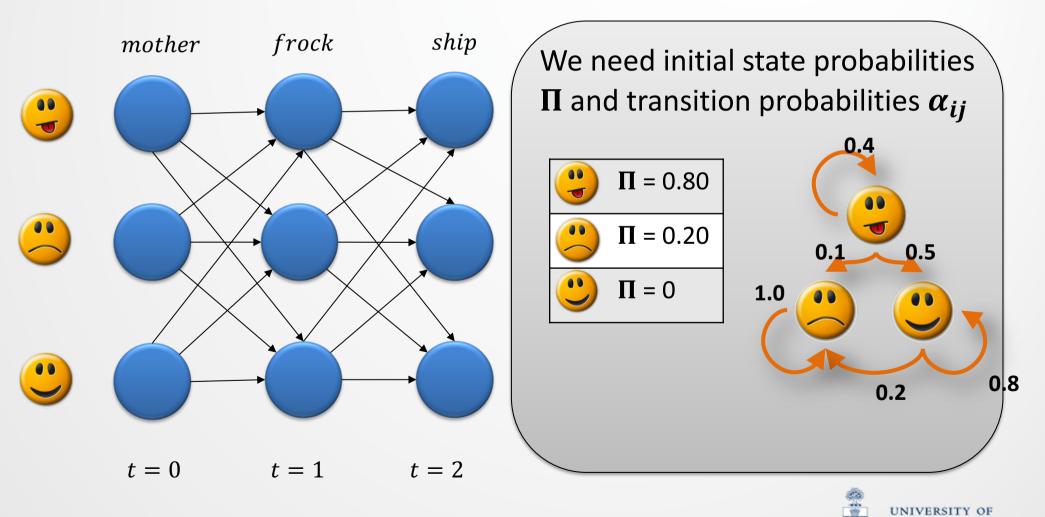


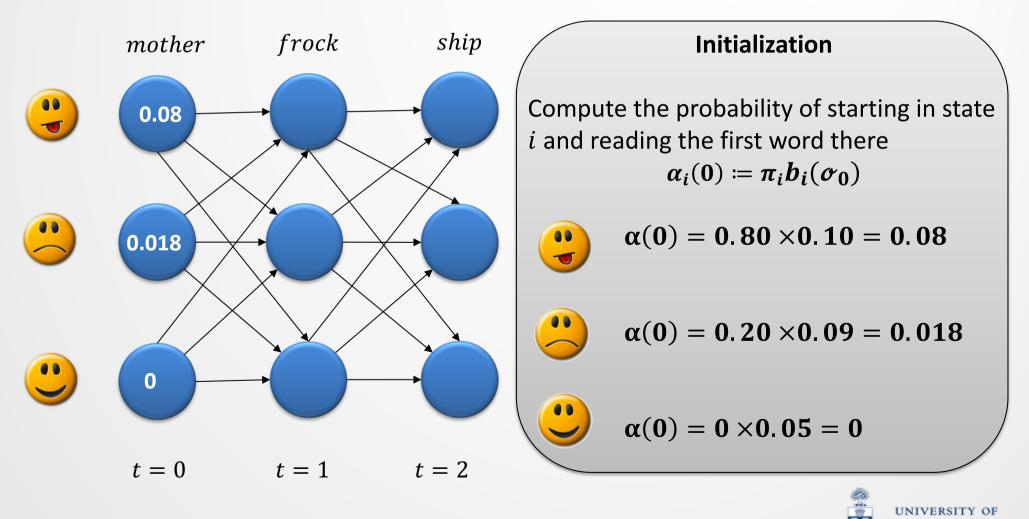
Induction of Forward procedure

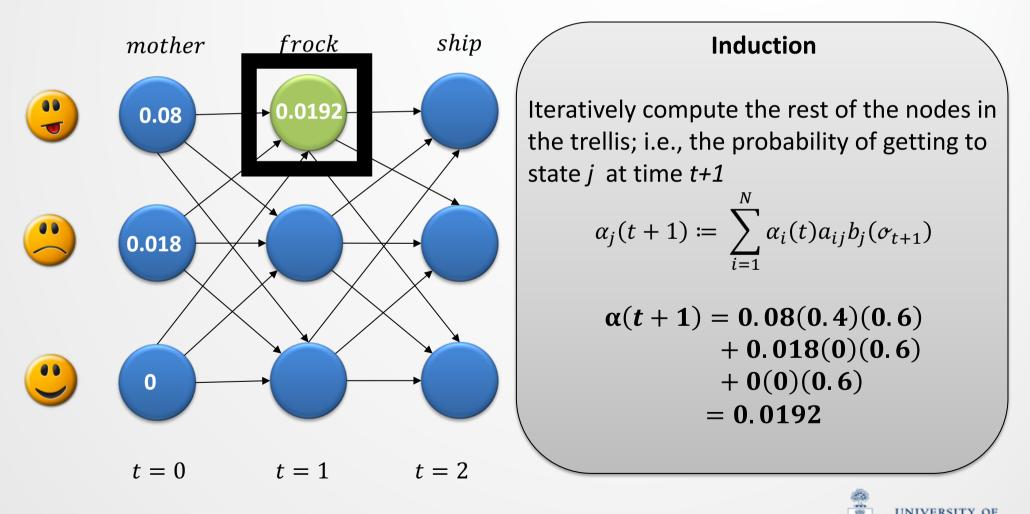


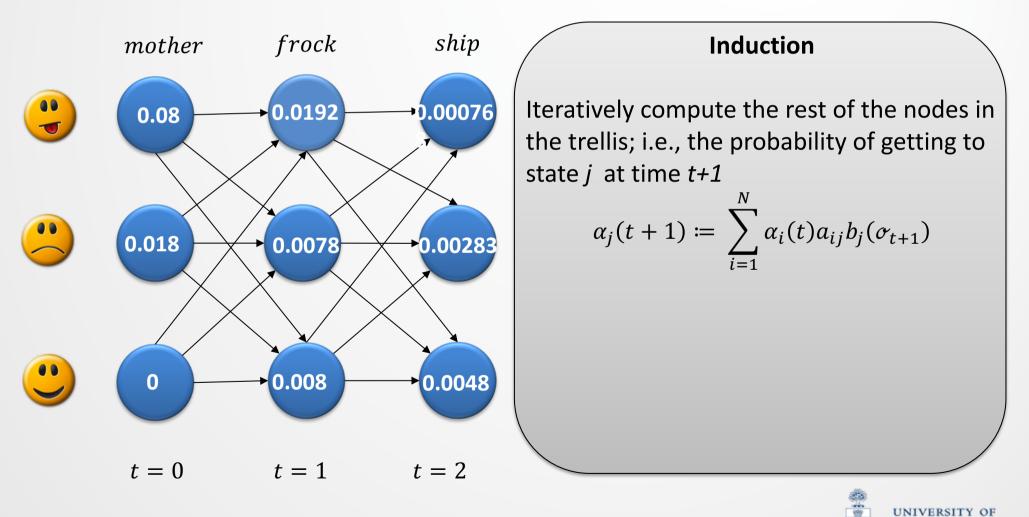
Conclusion of Forward procedure

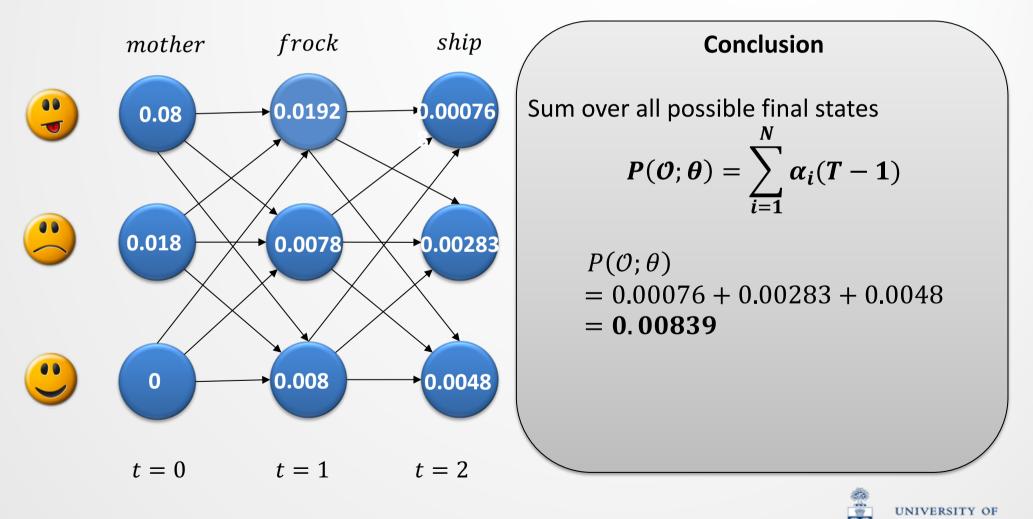












The Forward procedure

- The naïve approach needed $(2T) \cdot N^T$ multiplications.
- The Forward procedure (using dynamic programming) needs only 2N²T multiplications.
- The Forward procedure gives us $P(\mathcal{O}; \theta)$.
- Clearly, but less intuitively, we can also compute the trellis from back-to-front, i.e., backwards in time...

Remember the point

The point was to compute the equivalent of

$$P(\mathcal{O};\theta) = \sum_{Q} P(\mathcal{O},Q;\theta)$$

where $P(\mathcal{O}, Q; \theta) = P(\mathcal{O}|Q; \theta)P(Q; \theta)$ $= \pi_{q_0} b_{q_0}(\sigma_0) a_{q_0q_1} b_{q_1}(\sigma_1) a_{q_1q_2} b_{q_2}(\sigma_2) \dots$ $a_i(0)$ $a_i(1)$

The Forward algorithm stores all possible 1-state sequences (from the start), to store all possible 2-state sequences (from the start), to store all possible 3-state sequences (from the start)...

Remember the point

But, we can compute these factors in reverse
 P(O,Q;θ) = P(O|Q;θ)P(Q;θ)

$$= \pi_{q_0} \dots b_{q_{T-3}} (\sigma_{T-3}) a_{q_{T-3}q_{T-2}} b_{q_{T-2}} (\sigma_{T-2}) a_{q_{T-2}q_{T-1}} b_{q_{T-1}} (\sigma_{T-1})$$

$$\beta_i (T-2)$$

$$\beta_i (T-4)$$

We can still deal with sequences that evolve *forward* in time, but simply **store temporary results in reverse**...

The Backward procedure

• In the $(i, t)^{th}$ node of the **trellis**, we store $\beta_i(t) = P(\sigma_{t+1:T-1} | \sigma_{0:t}, q_t = s_i; \theta)$ $= P(\sigma_{t+1:T-1} | q_t = s_i; \theta)$

which is computed by summing probabilities on **outgoing** arcs **from** that node.

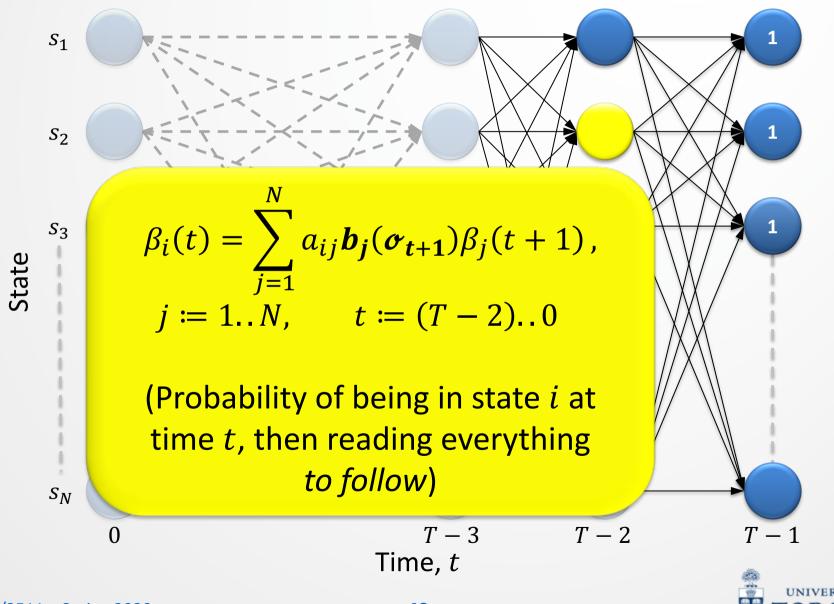
 $\beta_i(t)$ is the probability of starting in state *i* at time *t* then observing everything that comes thereafter.

The trellis is computed right-to-left and top-to-bottom.

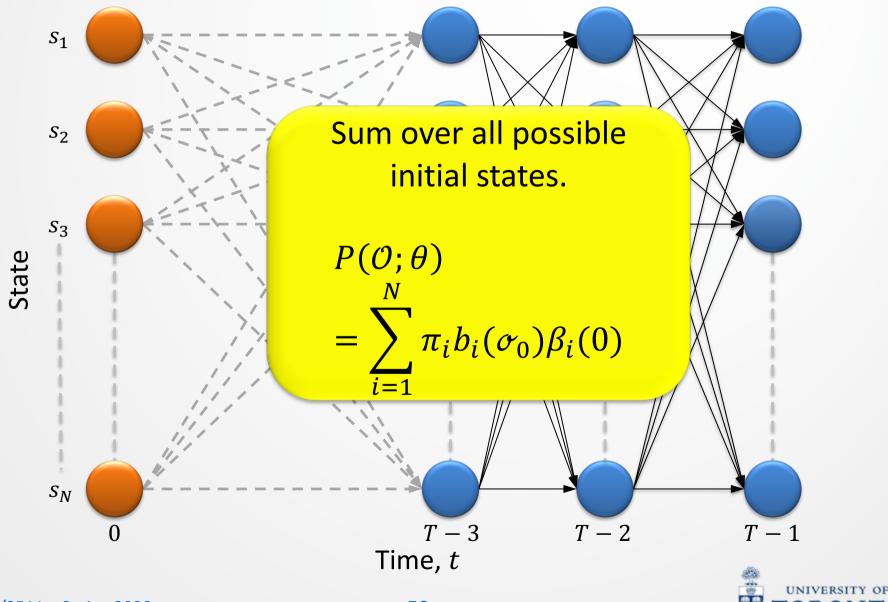
Step 1: Backward initialization



Step 2: Backward induction



Step 3: Backward conclusion



The Backward procedure

- Initialization
 - $\beta_i(T-1) = 1, \qquad i \coloneqq 1..N$
- Induction $\beta_i(t) = \sum_{j=1}^N a_{ij} b_j(\sigma_{t+1}) \beta_j(t+1), \qquad i \coloneqq 1..N$ $t \coloneqq T - 2..0$
- Conclusion $P(\mathcal{O};\theta) = \sum_{i=1}^{N} \pi_{i} b_{i}(\sigma_{0}) \beta_{i}(0)$

The Backward procedure – so what?

- The combination of Forward and Backward procedures will be vital for solving parameter re-estimation, i.e., training.
- Generally, we can combine α and β at any point in time to represent the probability of an entire observation sequence...

Combining α and β

$$P(\mathcal{O}, q_t = i; \theta) = \alpha_i(t)\beta_i(t)$$

$$\therefore P(\mathcal{O}; \theta) = \sum_{i=1}^{N} \alpha_i(t)\beta_i(t)$$

This requires the current word to be incorporated by $\alpha_i(t)$, but **not** $\beta_i(t)$.

> This isn't merely for fun – it will soon become useful...

Fundamental tasks for HMMs

2. Given an observation sequence O and a model θ , how do we choose a state sequence $Q^* = \{q_0, \dots, q_{T-1}\}$ that *best explains* the observations?

This is the task of **inference** – i.e., guessing at the best explanation of unknown ('latent') variables given our model.

This is often an important part of **classification**.

Task 2: Choosing $Q^* = \{q_0 ... q_{T-1}\}$

- The purpose of finding the best state sequence Q* out of all possible state sequences Q is that it tells us what is most likely to be going on 'under the hood'.
- With the Forward algorithm, we didn't care about specific state sequences – we were summing over all possible state sequences.

Task 2: Choosing $Q^* = \{q_0 ... q_{T-1}\}$

In other words,

$$Q^* = \operatorname*{argmax}_{Q} P(\mathcal{O}, Q; \theta)$$

where

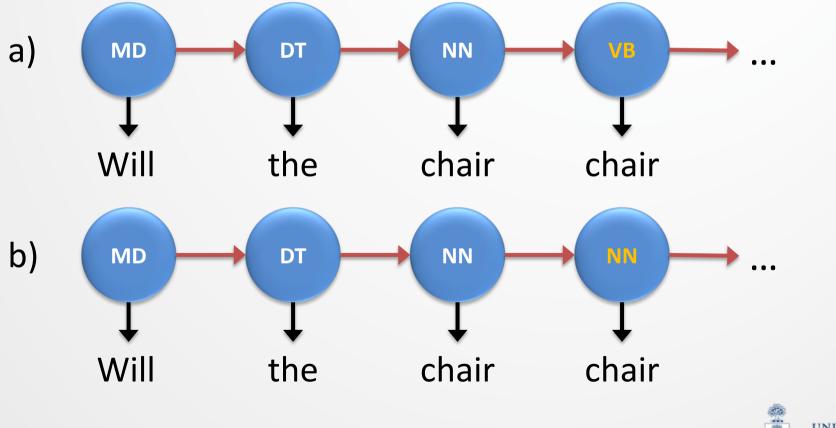
$$P(\mathcal{O}, Q; \theta) = \pi_{q_0} b_{q_0}(\sigma_0) \prod_{t=1}^{T-1} a_{q_{t-1}q_t} b_{q_t}(\sigma_t)$$

Why choose $Q^* = \{q_0 ... q_{T-1}\}$?

- Recall the purpose of HMMs:
 - To represent multivariate systems where some variable is unknown/hidden/latent.
- Finding the best hidden-state sequence Q^* allows us to:
 - Identify unseen parts-of-speech given words,
 - Identify equivalent English words given French words,
 - Identify unknown phonemes given speech sounds,
 - Decipher hidden messages from encrypted symbols,
 - Identify hidden relationships from gene sequences,
 - Identify hidden market conditions given stock prices,

Example – PoS state sequences

 Will/MD the/DT chair/NN chair/?? the/DT meeting/NN from/IN that/DT chair/NN?



Recall

- Observation likelihoods depend on the state, which changes over time
- We cannot simply choose the state that maximizes the probability of o_t without considering the state

word	P(word)	
ship	0.1	
pass	0.05	
camp	0.05	
frock	0.6	
soccer	0.05	
mother	0.1	
tops	0.05	

sequence.

word	P(word)
ship	0.25
pass	0.25
camp	0.05
frock	0.3
soccer	0.05
mother	0.09
tops	0.01

word	P(word)	
ship	0.3	
pass	0	
camp	0	
frock	0.2	
soccer	0.05	
mother	0.05	
tops	0.4	
UN	IVERSITY OF	

The Viterbi algorithm

- The Viterbi algorithm is an inductive dynamicprogramming algorithm that uses a *new kind* of trellis.
- We define **the probability of the most probable path** leading to the trellis node at (state *i*, time *t*) as

$$\boldsymbol{\delta_i(t)} = \max_{q_0 \dots q_{t-1}} P(q_0 \dots q_{t-1}, \boldsymbol{\sigma_0} \dots \boldsymbol{\sigma_t}, \boldsymbol{q_t} = \boldsymbol{s_i}; \boldsymbol{\theta})$$

• $\psi_i(t)$: The best possible previous state, if If I'm in state *i* at time *t*.

Viterbi example

For illustration, we assume a simpler state-transition topology:

0.01

ler sta	ate-tra	nsition	camp
			frock
logy:			soccer
		0.4 S_d	mother
		Su Su	tops
		0.1 0.5	
word	P(word)	↓ ↓	
ship	0.25	S_s S_h	
pass	0.25	5 10	
camp	0.05		
frock	0.3		
soccer	0.05	1.0 0.2	0.8
mother	0.09		

word	P(word)	
ship	0.1	
pass	0.05	
camp	0.05	
frock	0.6	
soccer	0.05	
mother	0.1	
tops	0.05	

word	P(word)	
ship	0.3	
pass	0	
camp	0	
frock	0.2	
soccer	0.05	
mother	0.05	
tops	0.4	
	UNIVER	RSITY OF

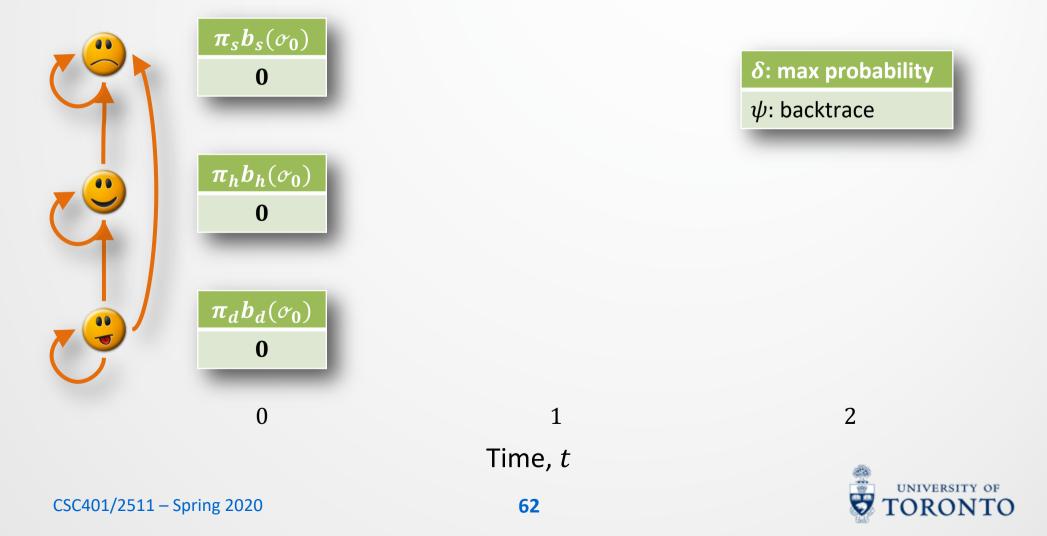
 $\mathbf{\nabla}$

TORONTO

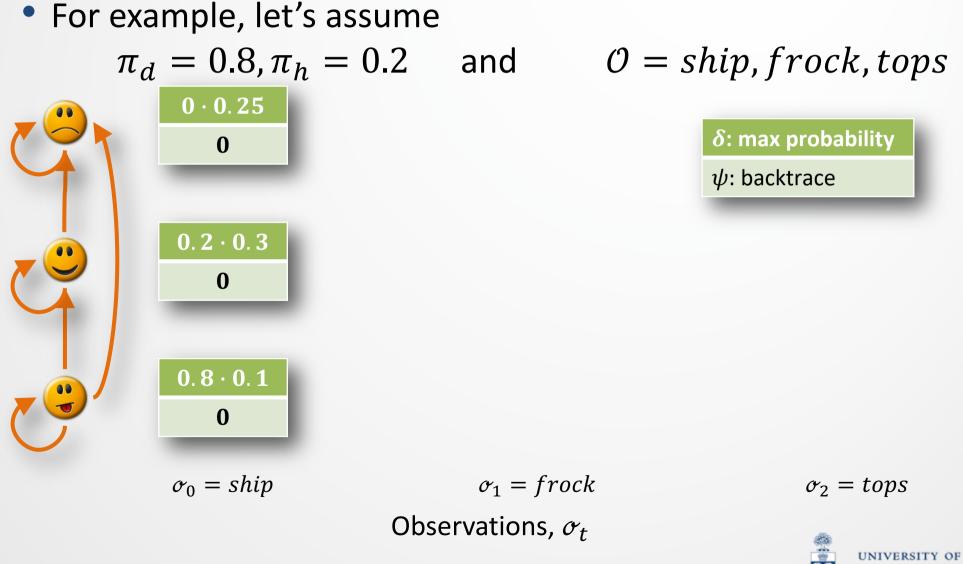
tops

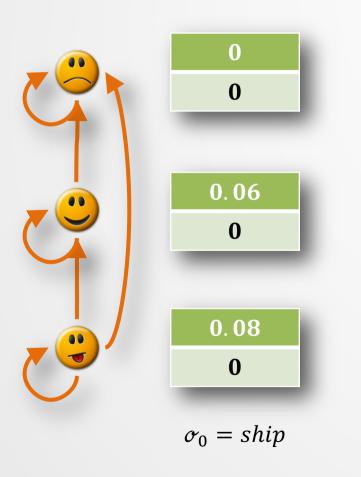
Step 1: Initialization of Viterbi

• Initialize with $\delta_i(0) = \pi_i b_i(\sigma_0)$ and $\psi_i(0) = 0$ for all states.



Step 1: Initialization of Viterbi





The best path to state s_j at time t, $\delta_j(t)$, depends on the best path to each possible previous state, $\delta_i(t-1)$, and their transitions to j, a_{ij}

$$\delta_j(t) = \max_i \left[\delta_i(t-1)a_{ij} \right] b_j(\sigma_t)$$

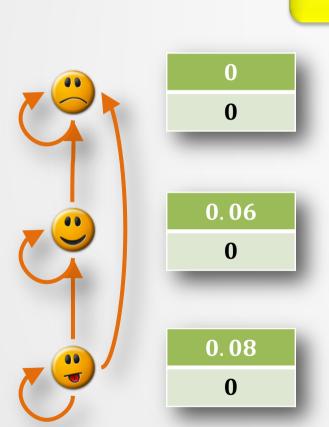
$$\psi_j(t) = \operatorname*{argmax}_i \left[\delta_i(t-1)a_{ij} \right]$$

 $\sigma_1 = frock$

Observations, σ_t

 $\sigma_2 = tops$

Specifically...



$$\delta_s(1) = \max_i \left[\delta_i(0) a_{is} \right] b_s(\sigma_1)$$
$$\psi_s(1) = \operatorname*{argmax}_i \left[\delta_i(0) a_{is} \right]$$

$$\delta_h(1) = \max_i \left[\delta_i(0) a_{ih} \right] b_h(\sigma_1)$$
$$\psi_h(1) = \operatorname*{argmax}_i \left[\delta_i(0) a_{ih} \right]$$

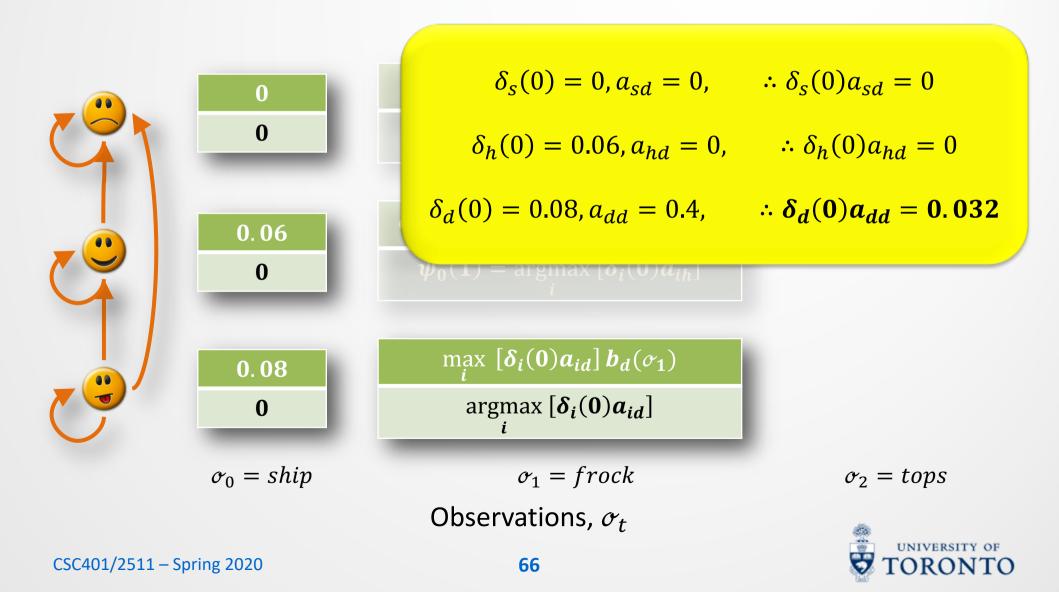
$\delta_d(1) = \max_i \left[\delta_i(0) a_{id} \right] b_d(\sigma_1)$
$\psi_d(1) = \underset{i}{\operatorname{argmax}} \left[\delta_i(0) a_{id} \right]$

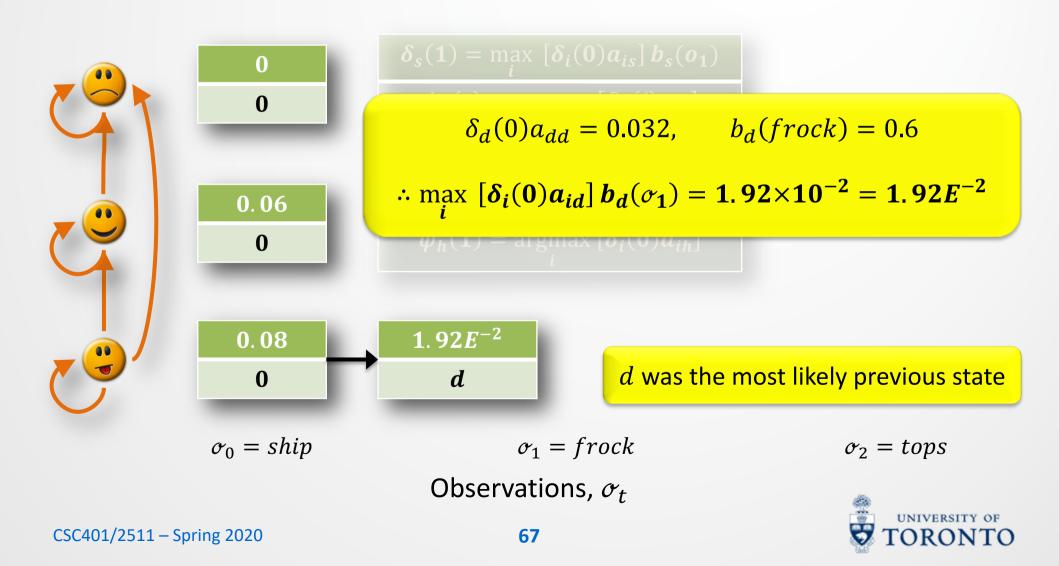
 $\sigma_1 = frock$

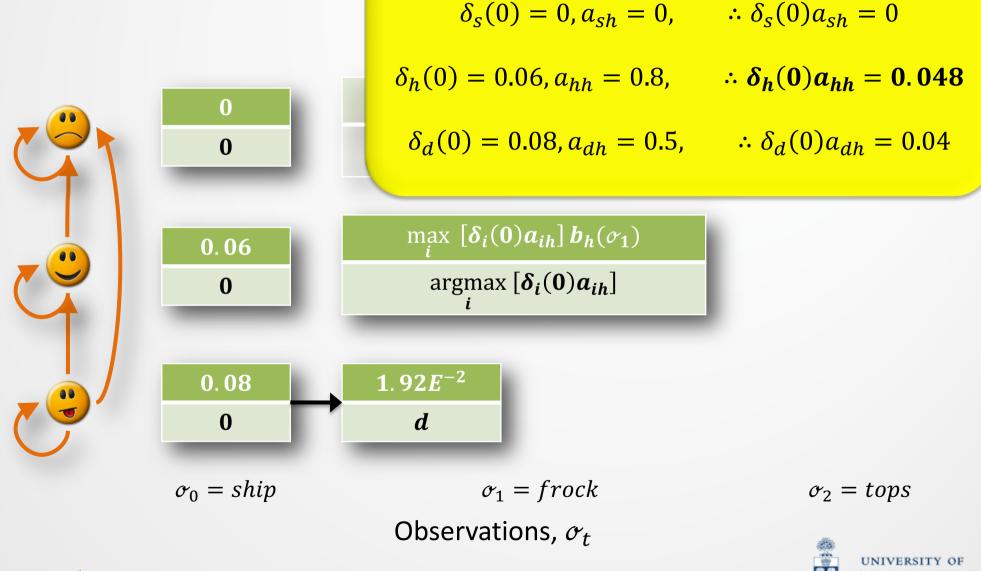
 $\sigma_0 = ship$

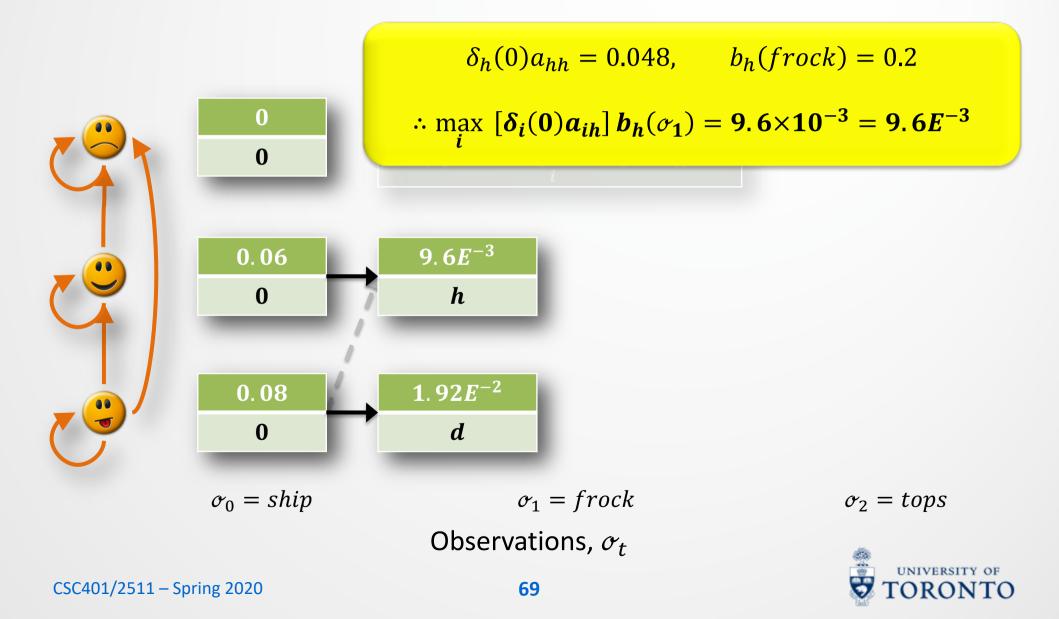
 $\sigma_2 = tops$

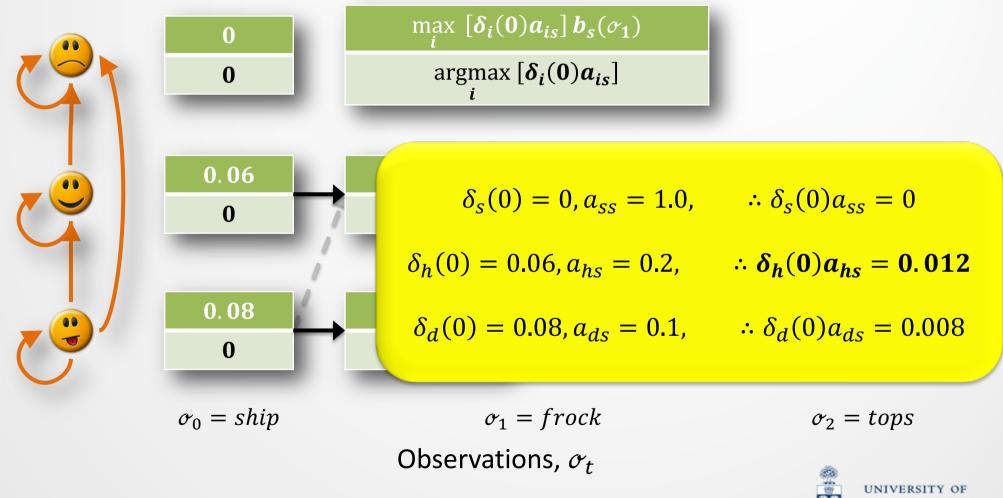
Observations, σ_t



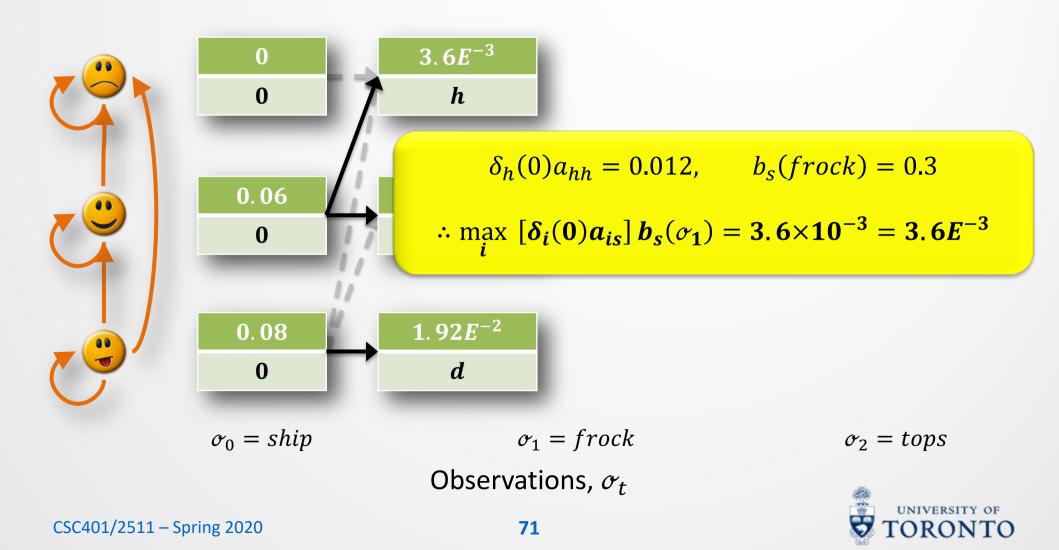


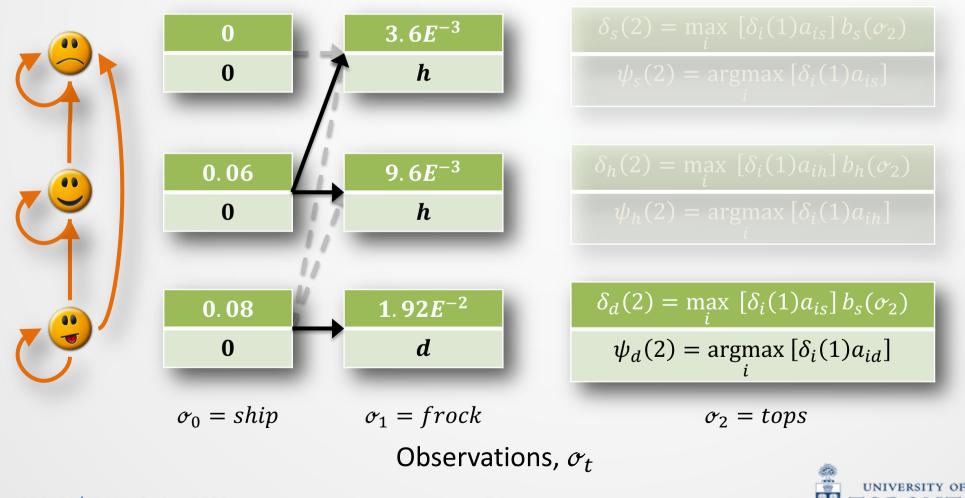


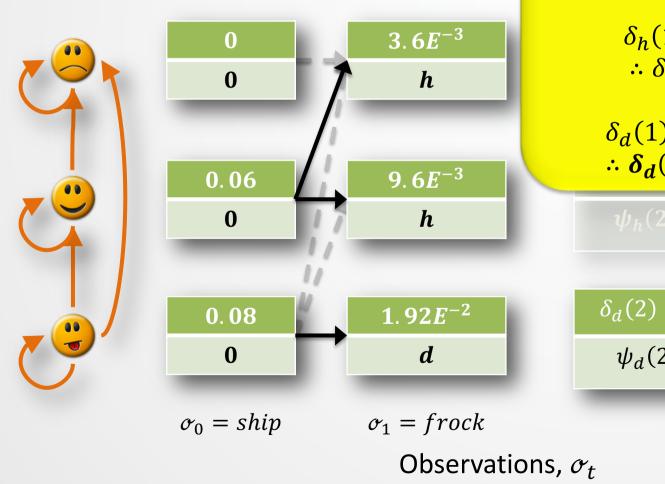




CSC401/2511 – Spring 2020







 $\delta_s(1) = 3.6E^{-3}, a_{sd} = 0,$ $\therefore \delta_s(1)a_{sd} = 0$

$$\delta_h(1) = 9.6E^{-3}, a_{hd} = 0,$$

$$\therefore \delta_h(1)a_{hd} = 0$$

$$\delta_d(1) = 1.92E^{-2}, a_{dd} = 0.4,$$

 $\therefore \delta_d(1)a_{dd} = 0.00768$

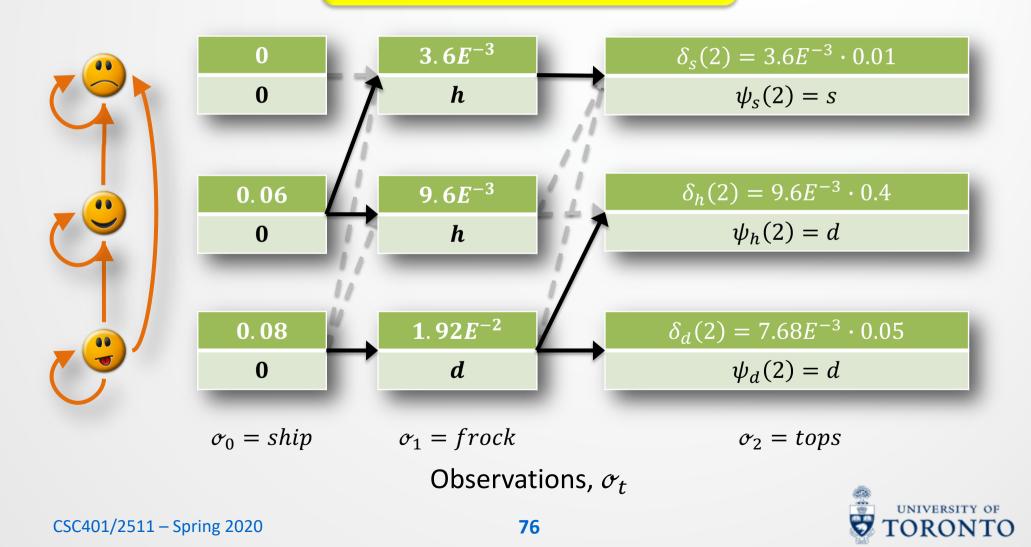
 $\boldsymbol{\psi}_{h}(2) = \operatorname{argmax} \left[\boldsymbol{\delta}_{i}(1) \boldsymbol{a}_{ih} \right]$

$$\delta_d(2) = \max_i \left[\delta_i(1) a_{is} \right] b_s(\sigma_2)$$

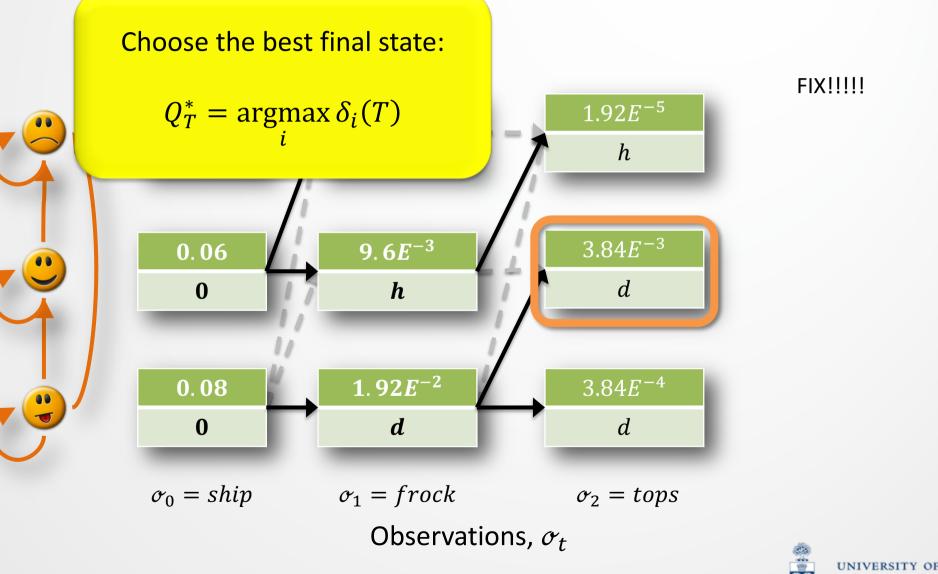
$$\psi_d(2) = \operatorname*{argmax}_i \left[\delta_i(1) a_{id} \right]$$

 $\sigma_2 = tops$

Continuing...

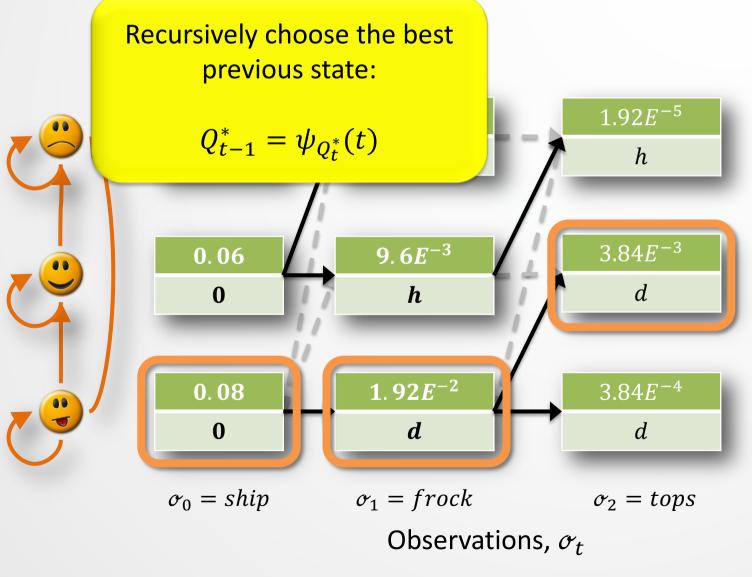


Step 3: Conclusion of Viterbi

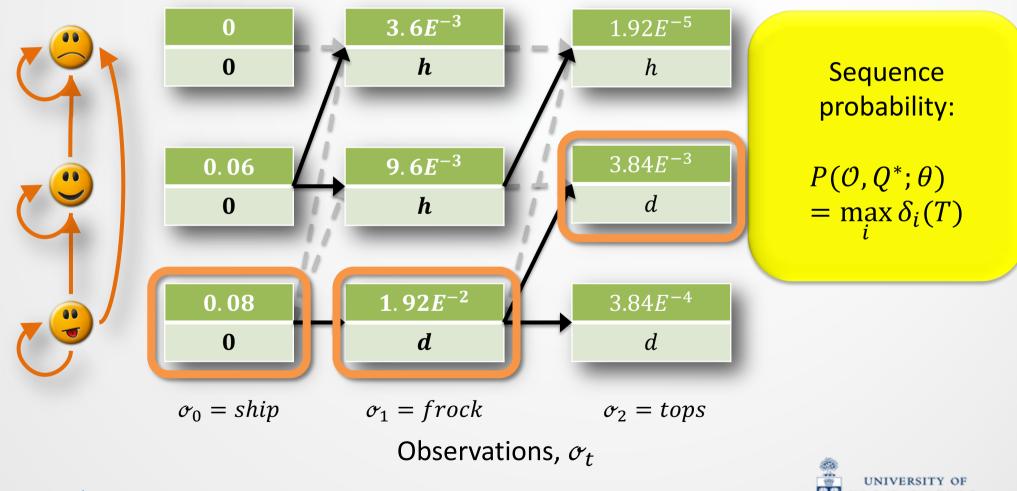


CSC401/2511 – Spring 2020

Step 3: Conclusion of Viterbi



Step 3: Conclusion of Viterbi



ORON

Aside - Working in the log domain

Our formulation was

$$Q^* = \operatorname{argmax}_Q P(\mathcal{O}, Q; \theta)$$

his is equivalent to
$$Q^* = \operatorname{argmin}_Q - \log_2 P(\mathcal{O}, Q; \theta)$$

where

t

$$-\log_2 P(\mathcal{O}, Q; \theta) = -\log_2 \left(\pi_{q_0} b_{q_0}(\sigma_0) \right) - \sum_{t=1}^{T-1} \log_2 \left(a_{q_{t-1}q_t} b_{q_t}(\sigma_t) \right)$$

Fundamental tasks for HMMs

3. Given a large **observation sequence** \mathcal{O} for **training**, but *not* the state sequence, how do we choose the 'best' parameters $\theta = \langle \Pi, A, B \rangle$ that explain the data \mathcal{O} ?

This is the task of **training**.

As with observable Markov models and **MLE**, we want our parameters to be set so that **the available training data is maximally likely**, But doing so will involve **guessing unseen information**...

Task 3: Choosing $\theta = \langle \Pi, A, B \rangle$

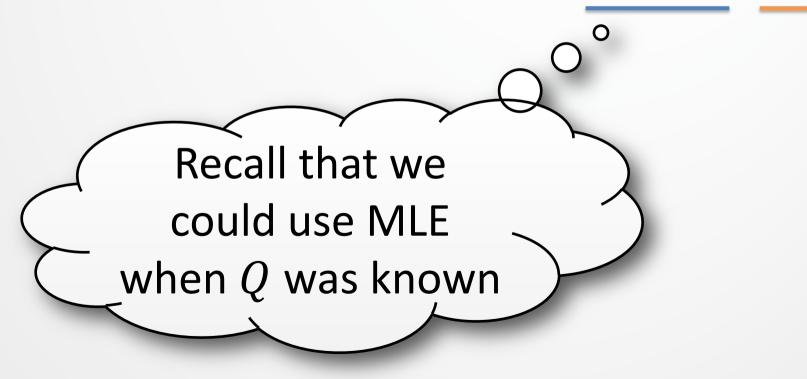
We want to modify the parameters of our model
 θ = (Π, A, B) so that P(O; θ) is maximized for some
 training data O:

$$\hat{\theta} = \operatorname*{argmax}_{\theta} \frac{P(\mathcal{O}; \theta)}{P(\mathcal{O}; \theta)}$$

 Why? E.g., if we later want to choose the best state sequence Q* for previously unseen test data, the parameters of the HMM should be tuned to similar training data.

Task 3: Choosing $\theta = \langle \Pi, A, B \rangle$

- $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} P(\mathcal{O}; \theta) = \underset{\theta}{\operatorname{argmax}} \sum_{Q} P(\mathcal{O}, Q; \theta)$
- $P(\mathcal{O}, Q; \theta) = P(q_{0:T-1})P(w_{0:t}|q_{0:t}) \approx \prod_{i=0}^{t} P(q_i|q_{i-1})P(w_i|q_i)$



Can we do

this?

Task 3: Choosing $\theta = \langle \Pi, A, B \rangle$

- $P(\mathcal{O}, Q; \theta) = P(q_{0:t})P(w_{0:t}|q_{0:t}) \approx \prod_{i=0}^{t} P(q_i|q_{i-1})P(w_i|q_i)$
- If the training data contained state sequences, we could simply do maximum likelihood estimation, as before:

•
$$P(q_i|q_{i-1}) = \frac{Count(q_{i-1}q_i)}{Count(q_{i-1})}$$
 $P(w_i|q_i) = \frac{Count(w_i \land q_i)}{Count(q_i)}$

- But we <u>don't</u> know the states; we <u>can't</u> count them.
- However, we can use an iterative hill-climbing approach if we can guess the counts using a "good" pre-existing model

Expecting and maximizing

• If we knew θ , we could make **expectations** such as

- Expected number of times in state s_i,
- Expected number of transitions $s_i \rightarrow s_j$
- If we knew:
 - Expected number of times in state s_i,
 - Expected number of transitions $s_i \rightarrow s_j$

then we could compute the maximum likelihood estimate of

 $\theta = \left\langle \pi_i, \left\{ a_{ij} \right\}, \left\{ b_i(w) \right\} \right\rangle$

Expectation-maximization

 Expectation-maximization (EM) is an iterative training algorithm that alternates between two steps:

guesses the **expected** counts for the hidden sequence using the current model θ_k .

• Maximization (M): computes a new θ that maximizes the likelihood of the data, given the guesses of the E-step. This θ_{k+1} is then used in the next E-step.

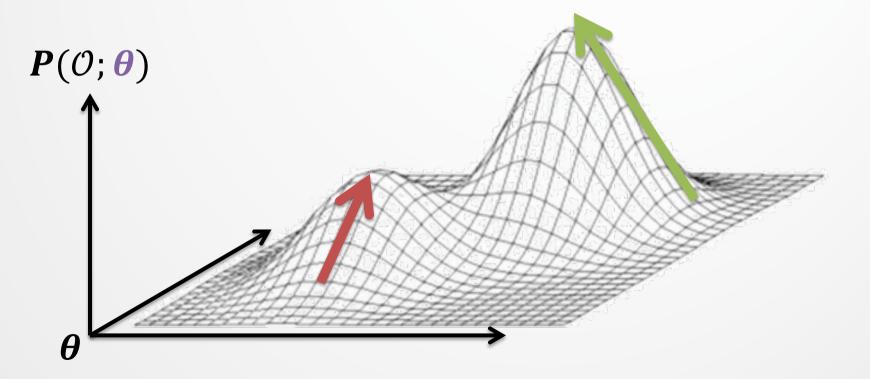
Continue until convergence or stopping condition...

Baum-Welch re-estimation

- Baum-Welch (BW): *n.* a specific version of EM for HMMs. a.k.a. 'forward-backward' algorithm.
 - **1.** Initialize the model.
 - 2. Compute **expectations** for $Count(q_{t-1}q_t)$ and $Count(q_t \land w_t)$ given model, training data \mathcal{O} .
 - 3. Adjust our start, transition, and observation probabilities to maximize the likelihood of O.
 - 4. Go to 2. and repeat until convergence or stopping condition...

Local maxima

- Baum-Welch changes θ to climb a `hill' in $P(\mathcal{O}; \theta)$.
 - How we initialize θ can have a big effect.

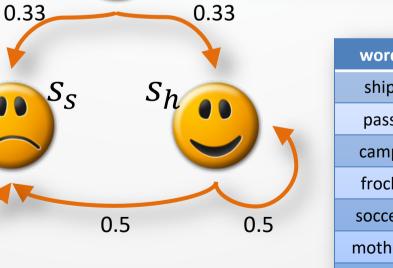


Step 1: BW initialization

- Our **initial guess** for the parameters, θ_0 , can be:
 - a) All probabilities are **uniform** (e.g., $b_i(w_a) = b_i(w_b)$ for all states *i* and words *w*) 0.33

word	P(word)
ship	0.143
pass	0.143
camp	0.143
frock	0.143
soccer	0.143
mother	0.143
tops	0.143

word	P(word)	
ship	0.143	
pass	0.143	
camp	0.143	
frock	0.143	
soccer	0.143	
mother	0.143	
tops	0.143	



 S_d

word	P(word)	
ship	0.143	
pass	0.143	
camp	0.143	
frock	0.143	
soccer	0.143	
mother	0.143	
tops	0.143	
UNIVERSITY OF TORONTO		

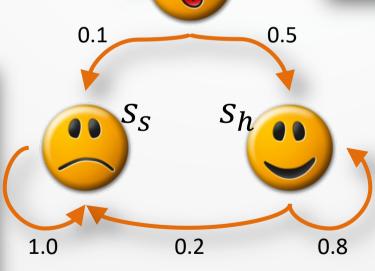
1.0

Step 1: BW initialization

• Our initial guess for the parameters, θ_0 , can be: b) All probabilities are drawn randomly (subject to the condition that $\sum_i P(i) = 1$) $0.4 \bigcirc S_d$

word	P(word)
ship	0.1
pass	0.05
camp	0.05
frock	0.6
soccer	0.05
mother	0.1
tops	0.05

word	P(word)
ship	0.25
pass	0.25
camp	0.05
frock	0.3
soccer	0.05
mother	0.09
tops	0.01

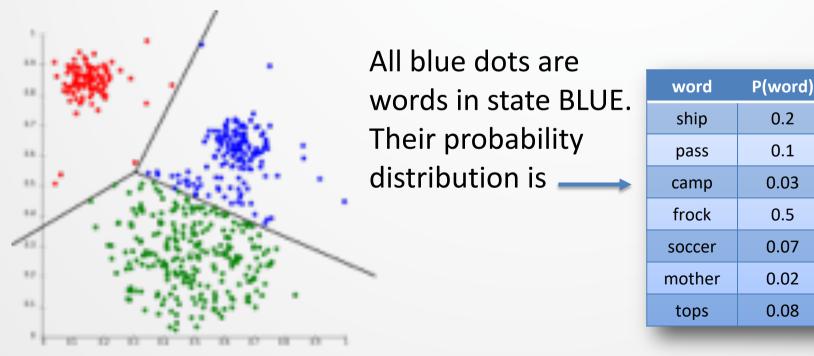


word	P(word)		
ship	0.3		
pass	0		
camp	0		
frock	0.2		
soccer	0.05		
mother	0.05		
tops	0.4		
UNIVERSITY OF			
TORONTO			

Step 1: BW initialization

• Our **initial guess** for the parameters, θ_0 , can be:

c) Observation distributions are drawn from prior distributions: e.g., $b_i(w_a) = P(w_a)$ for all states *i*. *sometimes* this involves pre-clustering, e.g. *k*-means



What to expect when you're expecting

- If we knew θ , we could estimate **expectations** such as
 - Expected number of times in state s_i,
 - Expected number of transitions $s_i \rightarrow s_j$
- If we knew:
 - Expected number of times in state s_i,
 - Expected number of transitions $s_i \rightarrow s_j$

then we could compute the **maximum likelihood estimate** of $\theta = \langle \{a_{ij}\}, \{b_i(w)\}, \pi_i \rangle$

BW E-step (occupation)

• We define

$$\gamma_i(t) = P(q_t = i | \mathcal{O}; \theta_k)$$

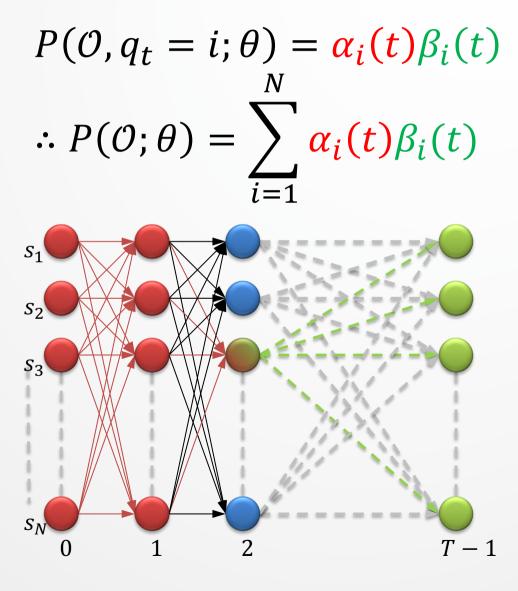
as the probability of **being** in state *i* at time *t*, based on our current model, θ_k , **given** the <u>entire</u> observation, O.

and rewrite as:

$$\gamma_{i}(t) = \frac{P(q_{t} = i, \mathcal{O}; \theta_{k})}{P(\mathcal{O}; \theta_{k})}$$
$$= \frac{\alpha_{i}(t)\beta_{i}(t)}{P(\mathcal{O}; \theta_{k})}$$

Remember, $\alpha_i(t)$ and $\beta_i(t)$ depend on values from $\theta = \langle \pi_i, a_{ij}, b_i(w) \rangle$

Combining α and β



CSC401/2511 – Spring 2020

BW E-step (transition)

• We define

$$\xi_{ij}(t) = P(q_t = i, q_{t+1} = j | \mathcal{O}; \theta_k)$$

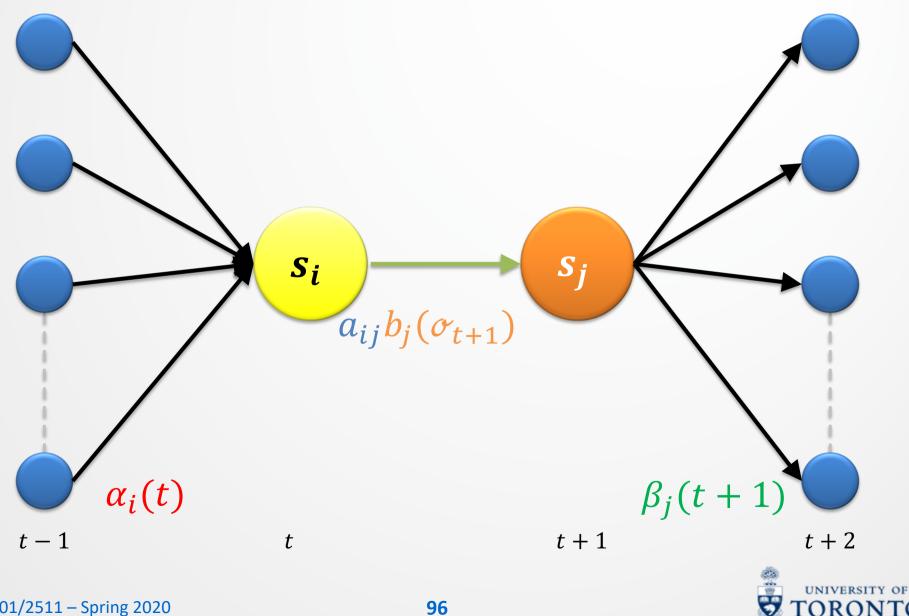
as the probability of **transitioning** from state *i* at time *t* to state *j* at time t + 1 **based on** our current model, θ_k , and **given** the <u>entire</u> observation, O. This is:

$$\xi_{ij}(t) = \frac{P(q_t = i, q_{t+1} = j, 0; \theta_k)}{P(0; \theta_k)}$$

=
$$\frac{\alpha_i(t)a_{ij}b_j(\sigma_{t+1})\beta_j(t+1)}{P(0; \theta_k)}$$
Again, these estimates come from our model at

iteration k, θ_k .

BW E-step (transition)



Expecting and maximizing

• If we knew θ , we could estimate **expectations** such as

- Expected number of times in state s_i,
- Expected number of transitions $s_i \rightarrow s_j$
- If we knew:
 - Expected number of times in state s_i,
 - Expected number of transitions $s_i \rightarrow s_j$

then we could compute the **maximum likelihood estimate** of $\theta = \langle \{a_{ij}\}, \{b_i(w)\}, \pi_i \rangle$

BW M-step

We update our parameters as if we were doing MLE:

Initial-state probabilities: for $i \coloneqq 1..N$ $\hat{\pi}_i = \gamma_i(0)$ $P(q_j|q_i)$ $Count(q_i q_j)$ $Count(q_i)$ II. State-transition probabilities: \circ O C $\hat{a}_{ij} = \frac{\sum_{t=0}^{T-2} \xi_{ij}(t)}{\sum_{t=0}^{T-2} \gamma_i(t)}$ for $i, j \coloneqq 1..N$ $P(w_i|q_i)$ $Count(w_i \wedge q_i)$ III. Discrete observation probabilities: ° O $\widehat{b}_{j}(w) = \frac{\sum_{t=0}^{T-1} \gamma_{j}(t)|_{\sigma_{t}=w}}{\sum_{t=0}^{T-1} \gamma_{i}(t)} \text{ for } j \coloneqq 1..N \text{ and } w \in \mathcal{V}$

Baum-Welch iteration

• We update our parameters after **each iteration** $\theta_{k+1} = \left\langle \hat{\pi}_i, \hat{a}_{ij}, \hat{b}_j(w) \right\rangle$

rinse, and repeat until $\theta_k \approx \theta_{k+1}$ (until change almost stops).

• Baum proved that $P(\mathcal{O}; \theta_{k+1}) \ge P(\mathcal{O}; \theta_k)$

although this method does *not* guarantee a *global maximum*.

Features of Baum-Welch

- Although we're not guaranteed to achieve a global optimum, the local optima are often 'good enough'.
- BW does not estimate the number of states, which must be 'known' beforehand.
 - Moreover, some constraints on topology are often imposed beforehand to assist training.

Discrete vs. continuous

- If our observations are drawn from a continuous space (e.g., speech acoustics), the probabilities *b_i(X)* must also be continuous.
- HMMs generalize to continuous distributions, or multivariate observations,

e.g., $b_i([-14.28, 0.85, 0.21])$.

Adaptation

- It can take a <u>LOT</u> of data to train HMMs.
- Imagine that we're given a **trained** HMM but not the data.
 - Also imagine that this HMM has been trained with data from many sources (e.g., many speakers).
- We want to use this HMM with a particular new source for whom we have some data (but not enough to fully train the HMM properly from scratch).
 - To be more accurate for that source, we want to change the original HMM parameters *slightly* given the new data.

HMM interpolation

For added robustness, we can combine estimates of a generic HMM, *G*, trained with lots of data from many sources with a specific HMM, *S*, trained with a little data from a single source.

$$P_{Interp}(\sigma) = \lambda P(\sigma; \theta_G) + (1 - \lambda) P(\sigma; \theta_S)$$

- This gives us a model tuned to our target source (S), but with some general 'knowledge' (G) built in.
 - How do we pick $\lambda \in [0..1]$?

EM for interpolated models

- Strategy can be used for any $P(\mathcal{O}; \lambda) = \sum_i \lambda_i P_i(\mathcal{O})$
- Introduce latent states s such that $P(s = i; \lambda) = \lambda_i$
- Once in state i, $P(\mathcal{O}|s = i; \lambda) = P_i(\mathcal{O})$
- Like with HMMs, we estimate Count(s = i) using EM:

$$\lambda_{i}^{new} = \frac{P(s = i, \mathcal{O}; \lambda^{old})}{P(\mathcal{O}; \lambda^{old})}$$

 This is a (simplified) version of what is done for Jelinek-Mercer interpolation, as well as Gaussian Mixture Models (covered in ASR lecture)

Held-out data

- Let $T_{\lambda} = \{O\}$ be the data used to learn λ , T_i for $P_i(\cdot)$
- If for most $\mathcal{O} \in T_{\lambda}$, $j \cdot P_i(\mathcal{O}) \ge P_j(\mathcal{O})$, then $\lambda_i \to 1$
- This can easily occur when $T_i = T_{\lambda}$, e.g.:
 - If $P_i(\cdot)$ is an MLE *i*-gram model trained on T_{λ} , it will outperform $P_{\langle i}(\cdot)$ (even if also trained on T_{λ})
 - If $P(\sigma; \theta_S)$ was trained on T_{λ} but not $P(\sigma; \theta_G)$
- Less likely to happen when $T_i \cap T_\lambda = \emptyset$
- A disjoint T_{λ} is often called **held-out** or **development data**

Aside – Maximum a Posteriori (MAP)

- Given adaptation data \mathcal{O}_a , the MAP estimate is $\hat{\theta} = \operatorname{argmax}_{\theta} P(\mathcal{O}_a | \theta) P(\theta)$
- If we can guess some structure for $P(\theta)$, we can use EM to estimate new parameters (or Monte Carlo).
- For continuous $b_i(\sigma)$, we use **Dirichlet distribution** that defines the hyper-parameters of the model and the **Lagrange method** to describe the change in parameters $\theta \Rightarrow \hat{\theta}$.

Summary

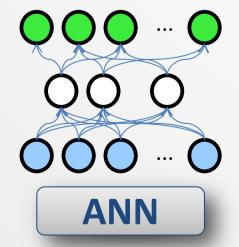
• Important ideas to know:

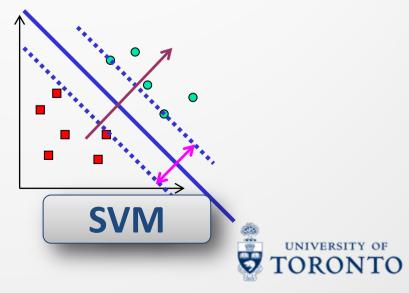
- The definition of an HMM (e.g., its parameters).
- The purpose of the Forward algorithm.
 - How to compute $\alpha_i(t)$ and $\beta_i(t)$
- The purpose of the Viterbi algorithm.
 - How to compute $\delta_i(t)$ and $\psi_i(t)$.
- The purpose of the **Baum-Welch algorithm**.
 - Some understanding of EM.
 - Some understanding of the equations.

Generative vs. discriminative

- HMMs are generative classifiers. You can generate synthetic samples from because they model the phenomenon itself.
 (e.g. P(O,Q; θ) or P(O; θ))
- Other classifiers (e.g., artificial neural networks and support vector machines) are discriminative in that their probabilities are trained specifically to reduce the error in classification.
 (e.g. P(Q|O; θ))

108





CSC401/2511 – Spring 2020

Reading

- (optional) Manning & Schütze: Section 9.2—9.4.1
 - Note that they use another formulation...
- Rabiner, L. (1990) A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In: *Readings in speech recognition*. Morgan Kaufmann. (posted on course website)
- Optional software:
 - Hidden Markov Model Toolkit (<u>http://htk.eng.cam.ac.uk/</u>)
 - Sci-kit's HMM (<u>http://scikit-learn.sourceforge.net/stable/modules/hmm.html</u>)

