

Neural models of language

CSC401/2511 – Natural Language Computing – Spring 2021 Lecture 5 University of Toronto

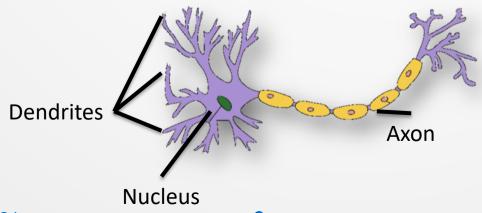
Neural networks

- Introduction
- Word-level representations
- Neural language models
- Recurrent neural networks
- Sequence-to-sequence modelling
- Some recent developments

With material from Phil Blunsom, Piotr Mirowski, Adam Kalai, and James Zou

Artificial neural networks

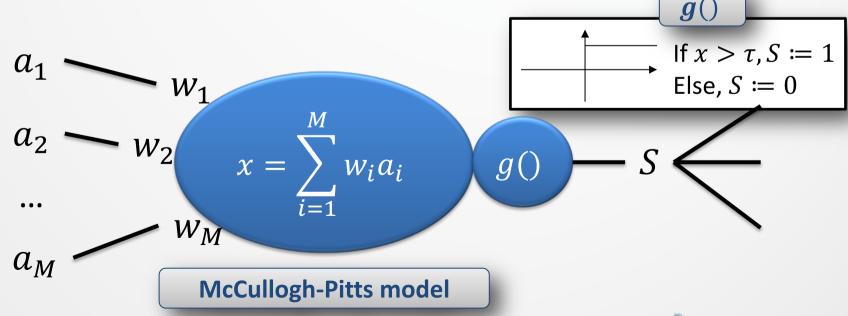
- Artificial neural networks (ANNs) were (kind of) inspired from neurobiology (Widrow and Hoff, 1960).
 - Each unit has many inputs (dendrites), one output (axon).
 - The nucleus fires (sends an electric signal along the axon) given input from other neurons.
 - 'Learning' occurs at the synapses that connect neurons, either by amplifying or attenuating signals.



Perceptron: an artificial neuron

• Each neuron calculates a **weighted sum** of its inputs and compares this to a threshold, τ . If the sum exceeds the threshold, the neuron fires.

• Inputs a_i are activations from adjacent neurons, each weighted by a parameter w_i .

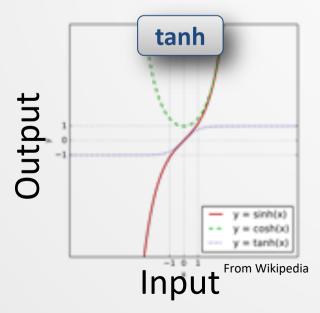


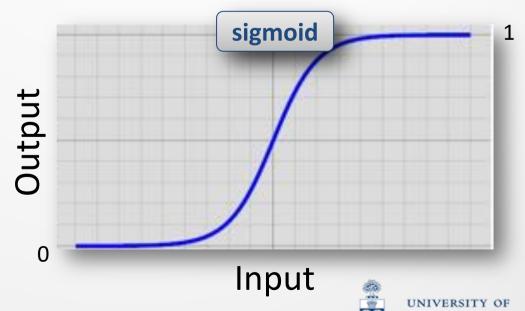
Perceptron output

- Perceptron output is determined by activation functions, g(), which can be non-linear functions of weighted input.
- Popular activation functions include tanh and the sigmoid:

$$g(x) = \sigma(x) = \frac{1}{1 + e^{\rho x}}$$

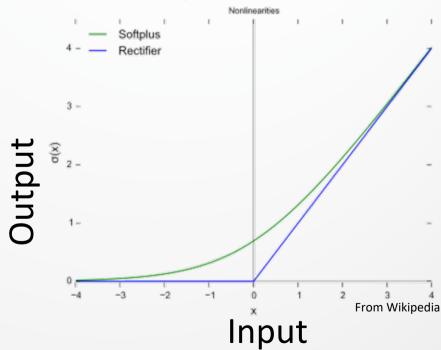
• The sigmoid's derivative is the easily computable $\sigma' = \sigma \cdot (1 - \sigma)$





Rectified Linear Units (ReLUs)

- Since 2011, the ReLU $S = g(x) = \max(0, x)$ has become more popular.
 - More biologically plausible, sparse activation, limited (vanishing or exploding) gradient problems, efficient computation.
- A smooth approximation is the **softplus** $log(1 + e^x)$, which has a simple derivative $1/(1 + e^{-x})$
- Why do we care about the derivatives?



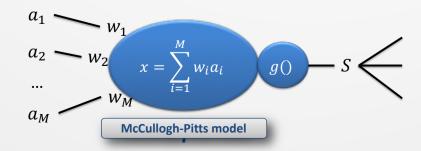
X Glorot, A Bordes, Y Bengio (2011). Deep sparse rectifier neural networks. AISTATS.

Perceptron learning

- Weights are adjusted in proportion to the error (i.e., the difference between the desired, y, and the actual output, S.
- The derivative g' allows us to assign blame proportionally.
- Given a small learning rate, α (e.g., 0.05), we can repeatedly adjust each of the weight parameters by

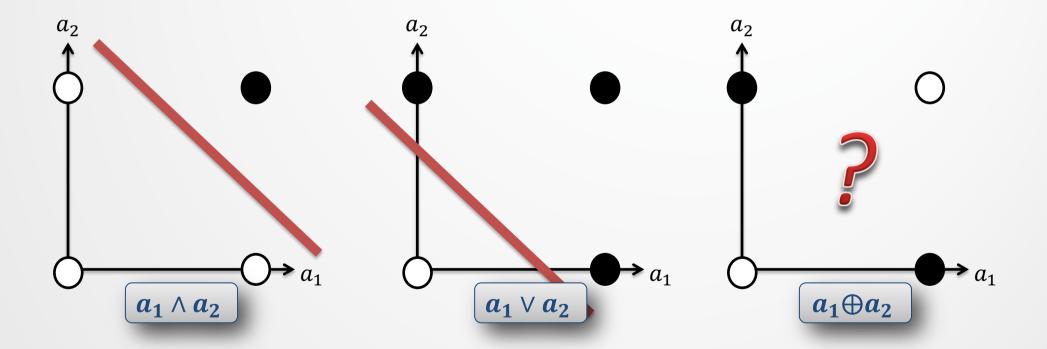
$$w_j \coloneqq w_j + \alpha \cdot \sum_{i=1}^R Err_i \cdot g'(x_i) \cdot a_j[i]$$
Assumes mean-square error objective

where $Err_i = (y_i - S_i)$, among R training examples.



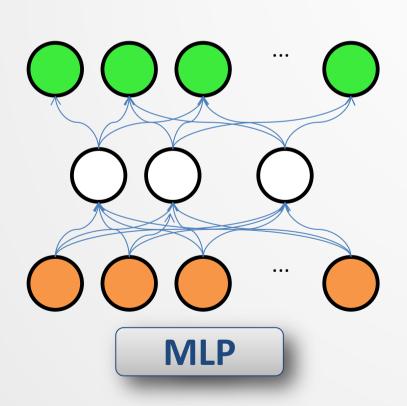
Threshold perceptra and XOR

 Some relatively simple logical functions cannot be learned by threshold perceptra (since they are not linearly separable).



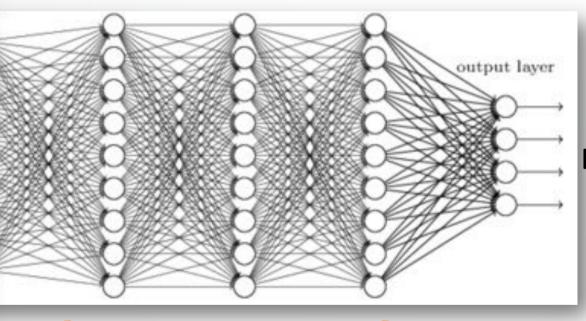
Artificial neural networks

 Complex functions can be represented by layers of perceptra (multi-layer perceptra, MLPs).



- Inputs are passed to the input layer.
- Activations are propagated through hidden layers to the output layer.
- MLPs are quite robust to noise, and are trained specifically to reduce error.

Deep



Deptressicent.

'hidden' representations are learned here Can we find hidden patterns in words?

Words

• Given a corpus with D (e.g., = 100K) unique words, the **classical approach** is to uniquely assign **each word** with an index in D-dimensional vectors ('one-hot' representation).

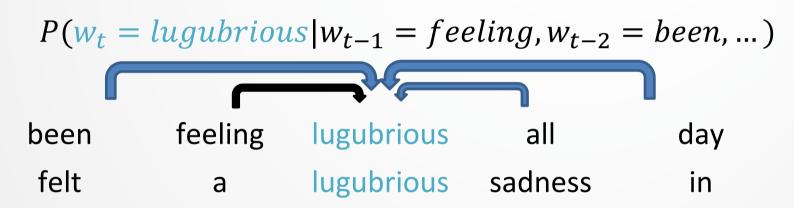
- Classic word-feature representation assigns features to each index in a much denser vector.
 - E.g., 'VBG', 'negative', 'age-of-acquisition'.

Can we learn a dense representation? What will it give us?

Learning word semantics

"You shall know a word by the company it keeps."

— J.R. Firth (1957)

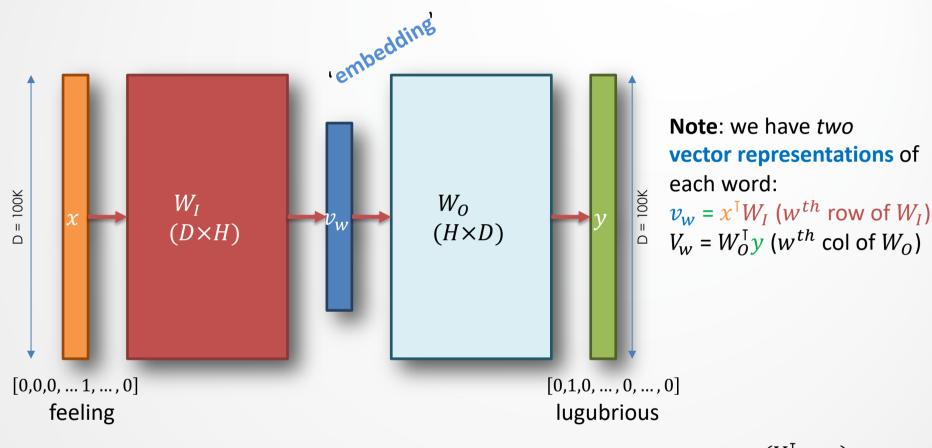


• • •

Here, we're predicting the *center* word given the context. This is called the 'continuous bag of words' (CBOW) model.

https://code.google.com/p/word2vec/

Continuous bag of words (1 word context)



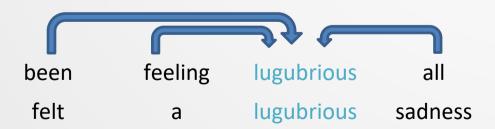
'softmax': $P(w_o|w_i) = \frac{\exp(V_{w_o}^{\intercal} v_{w_i})}{\sum_{w=1}^{W} \exp(V_w^{\intercal} v_{w_i})}$ Where

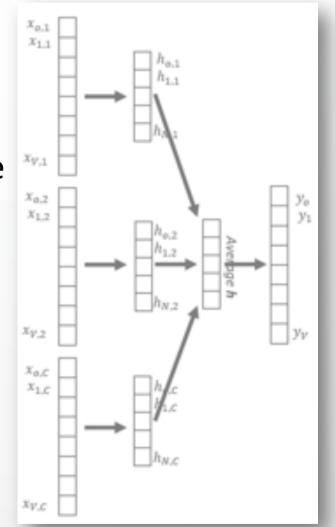
 v_w is the 'input' vector for word w, V_w is the 'output' vector for word w,

13

Continuous bag of words (C words context)

- If we want to use more context, C, we need to change the network architecture somewhat.
 - Each input word will produce one of C embeddings
 - We just need to add an
 intermediate layer, usually this
 just averages the embeddings.



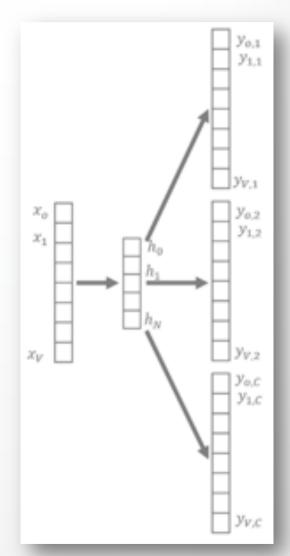


Skip-grams

- **Skip-grams** invert the task we predict context words given the current word.
- According to Mikolov,
 Skip-gram: works well with small amounts of training data, represents rare words.

CBOW: several times faster to train, slightly better accuracy for frequent words

Mikolov T, Corrado G, Chen K, et al. Efficient Estimation of Word Representations in Vector Space. *Proc (ICLR 2013)* 2013;:1–12. https://arxiv.org/pdf/1301.3781.pdf



Actually doing the learning

• Given H-dimensional embeddings, and V word types, our parameters, θ , are:

$$heta = egin{bmatrix} v_a \\ v_{aardvark} \\ \vdots \\ v_{zymurgy} \\ V_a \\ V_{aardvark} \\ \vdots \\ V_{zymurgy} \end{bmatrix} \in \mathbb{R}^{2V imes H}$$

Actually doing the learning

We have many options. Gradient descent is popular. We want to optimize, given T tokens of training data,

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-c < j < c, j \neq 0} \log P(w_{t+j} | w_t)$$

And we want to update vectors $V_{w_{t+j}}$ then v_{w_t} within θ

$$\theta^{(new)} = \theta^{(old)} - \alpha \nabla_{\theta} J(\theta)$$

so we'll need to take the derivative of the (log of the) softmax function:

$$P(w_o|w_i) = \frac{\exp(V_{w_o}^{\top} v_{w_i})}{\sum_{w=1}^{W} \exp(V_{w}^{\top} v_{w_i})}$$

Where v_w is the 'input' vector for word w, and v_w is the 'output' vector for word w,

Actually doing the learning

We need the derivative of the (log of the) softmax function:

$$\frac{\delta}{\delta v_{w_t}} \log P(w_{t+j}|w_t) = \frac{\delta}{\delta v_{w_t}} \log \frac{\exp(V_{w_{t+j}}^{\mathsf{T}} v_{w_t})}{\sum_{w=1}^{W} \exp(V_{w}^{\mathsf{T}} v_{w_t})}$$

$$= \frac{\delta}{\delta v_{w_t}} \left[\log \exp\left(V_{w_{t+j}}^{\mathsf{T}} v_{w_t}\right) - \log \sum_{w=1}^{W} \exp(V_{w}^{\mathsf{T}} v_{w_t}) \right]$$

$$= V_{w_{t+j}} \qquad -\frac{\delta}{\delta v_{w_t}} \log \sum_{w=1}^{W} \exp(V_{w}^{\mathsf{T}} v_{w_t})$$

$$\left[\text{apply the chain rule } \frac{\delta f}{\delta v_{w_t}} = \frac{\delta f}{\delta z} \frac{\delta z}{\delta v_{w_t}} \right]$$

$$= V_{w_{t+j}} - \sum_{w=1}^{W} p(w|w_t) V_{w}$$

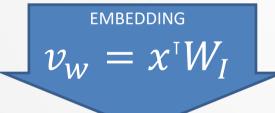
More details: http://arxiv.org/pdf/1411.2738.pdf

Using word representations

Without a latent space,

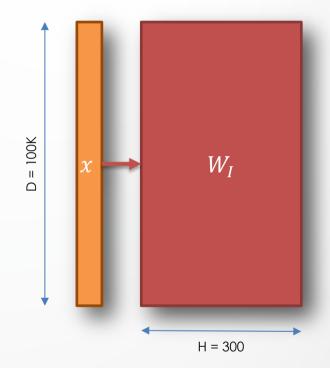
lugubrious =
$$[0,0,0,...,0,1,0,...,0]$$
, & sad = $[0,0,0,...,0,0,1,...,0]$ so

Similarity = cos(x, y) = 0.0



In latent space,

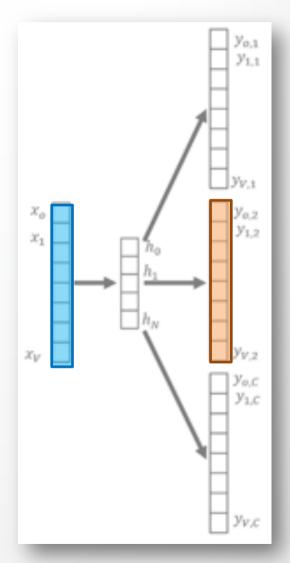
lugubrious =
$$[0.8,0.69,0.4,...,0.05]_H$$
, & sad = $[0.9,0.7,0.43,...,0.05]_H$ so
Similarity = $\cos(x,y) = 0.9$



Reminder: $\cos(u, v) = \frac{u \cdot v}{||u|| \times ||v||}$

Skip-grams with negative sampling

- The default process is inefficient.
 - For one what a waste of time! We don't want to update $H \times D$ weights!
 - For two we want to avoid confusion!
 'Hallucinated' contexts should be minimized.
- For the observed pair (*lugubrious*, *sadness*), only the output neuron for *sadness* should be 1, and all D-1 others should be 0.



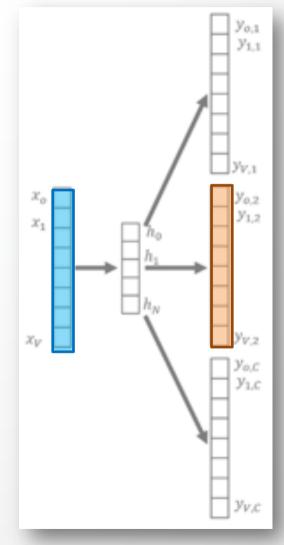
Skip-grams with negative sampling

 We want to maximize the association of observed (positive) contexts:

> lugubrious sad lugubrious feeling lugubrious tired

 We want to minimize the association of 'hallucinated' (negative) contexts:

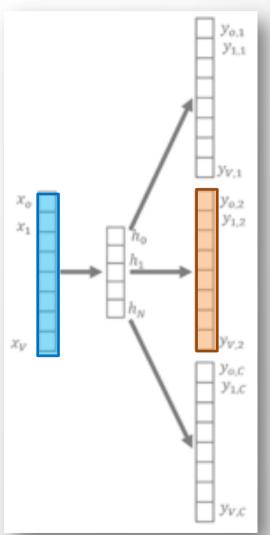
> lugubrious happy lugubrious roof lugubrious truth



Skip-grams with negative sampling

- Choose a small number η of 'negative' words, and just update the weights for the 'positive' word plus the η 'negative' words.
 - $5 \le \eta \le 20$ can work in practice for fewer data.
 - For D = 100K, we only update 0.006% of the weights in the output layer.
- Mimno and Thompson (2017) choose the top η words by modified unigram probability:

$$P^*(w_{t+1}) = \frac{C(w_{t+1})^{\frac{3}{4}}}{\sum_{w} C(w)^{\frac{3}{4}}}$$



Mimno, D., & Thompson, L. (2017). The strange geometry of skip-gram with negative sampling. EMNLP 2017, 2873–2878. https://doi.org/10.18653/v1/d17-1308

Smell the GloVe

- GloVe ('Global Vectors') is an alternative method of obtaining word embeddings.
 - Instead of predicting words at particular positions, look at the co-occurrence matrix.

		I	like	enjoy	deep	learning	NLP	flying	
	I	0	2	1	0	0	0	0	0]
	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
X =	deep	0	1	0	0	1	0	0	0
A -	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
		0	0	0	0	1	1	1	0

Word w_i occurs $X_{i,j} (= X_{j,i})$ times with word w_j , within some context window (e.g., 10 words, a sentence, ...).

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. *Proc EMNLP 2014*:1532–43. doi:10.3115/v1/D14-1162 https://nlp.stanford.edu/projects/glove/

Smell the GloVe

- Populating the co-occurrence matrix requires a complete pass through the corpus, but needs only be done once.
- Let $P_{i,j} = P(w_j | w_i) = X_{i,j}/X_i$,

Table 1: Co-occurrence probabilities for target words *ice* and *steam* with selected context words from a 6 billion token corpus. Only in the ratio does noise from non-discriminative words like *water* and *fashion* cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio	k = solid	k = gas	k = water	k=fashion
P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96

Pennington J, Socher R, Manning CD. (2014) GloVe: Global Vectors for Word Representation. *Proc EMNLP 2014*:1532–43. doi:10.3115/v1/D14-1162 https://nlp.stanford.edu/projects/glove/

Aside - smell the GloVe

• Minimize $J = \sum_{i,j=1}^{V} f(X_{i,j}) \left(v_{w_i} V_{w_j} + b_i + \widetilde{b_j} - \log X_{i,j} \right)^2$ where b_i and $\widetilde{b_j}$ are input and output bias terms associated with w_i and w_j , respectively

- 1. f(0) = 0. If f is viewed as a continuous function, it should vanish as $x \to 0$ fast enough that the $\lim_{x\to 0} f(x) \log^2 x$ is finite.
- 2. f(x) should be non-decreasing so that rare co-occurrences are not overweighted.
- 3. f(x) should be relatively small for large values of x, so that frequent co-occurrences are not overweighted.

Of course a large number of functions satisfy these properties, but one class of functions that we found to work well can be parameterized as,

$$f(x) = \begin{cases} (x/x_{\text{max}})^{\alpha} & \text{if } x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}$$
 (9)

Aside - smell the GloVe

• Intrinsic evaluation: popular method is to cherry-pick a few *k*-nearest neighbours examples that match expectations.

O. frog

- 1. frogs
- 2 toad
- z litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- eleutherodactylus

3. litoria

4. leptodactylidae

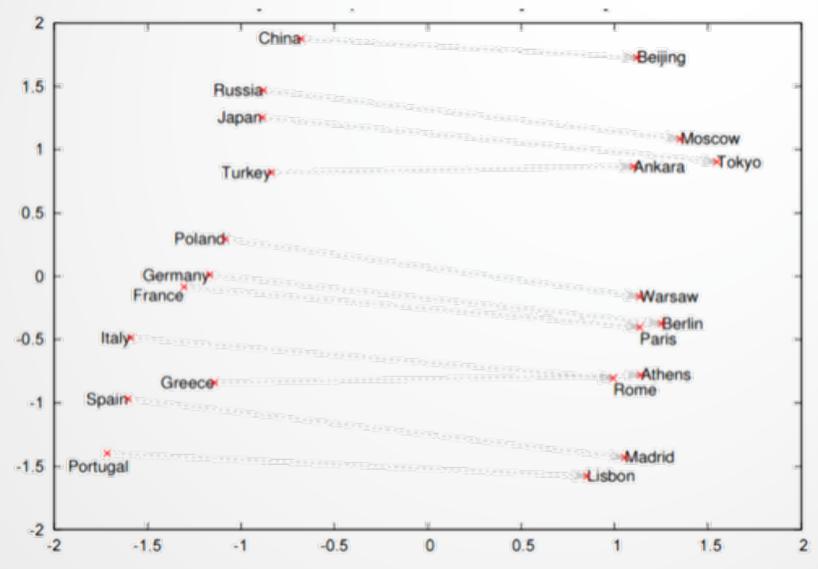
rana

7. eleutherodactylus

 Extrinsic evaluation: embed resulting vectors into a variety of tasks.

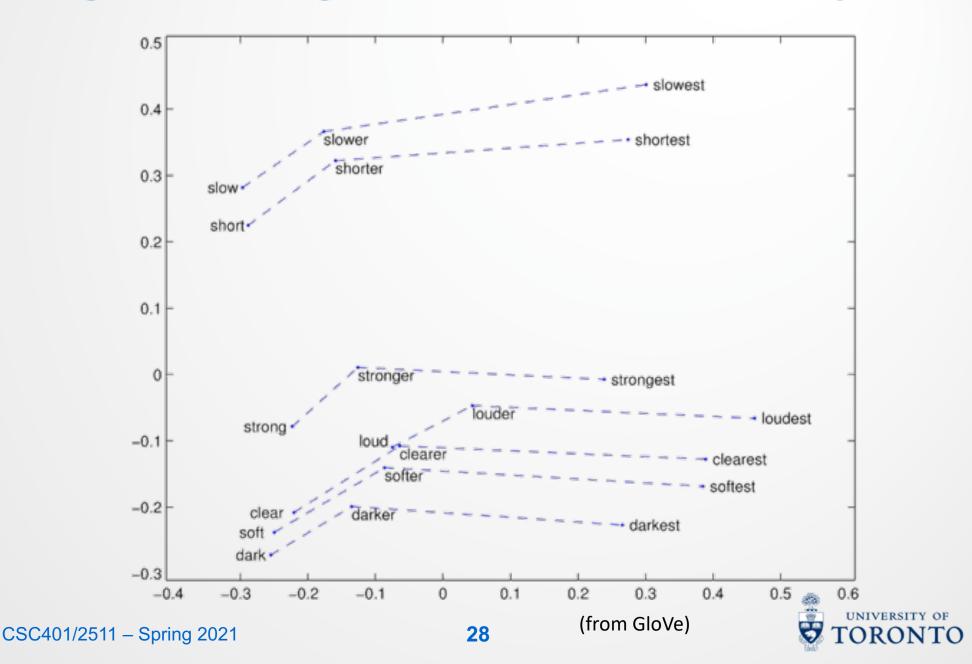
Redacted. See https://github.com/sebastianruder/NLP-progress

Linguistic regularities in vector space



Trained on the Google news corpus with over 300 billion words.

Linguistic regularities in vector space



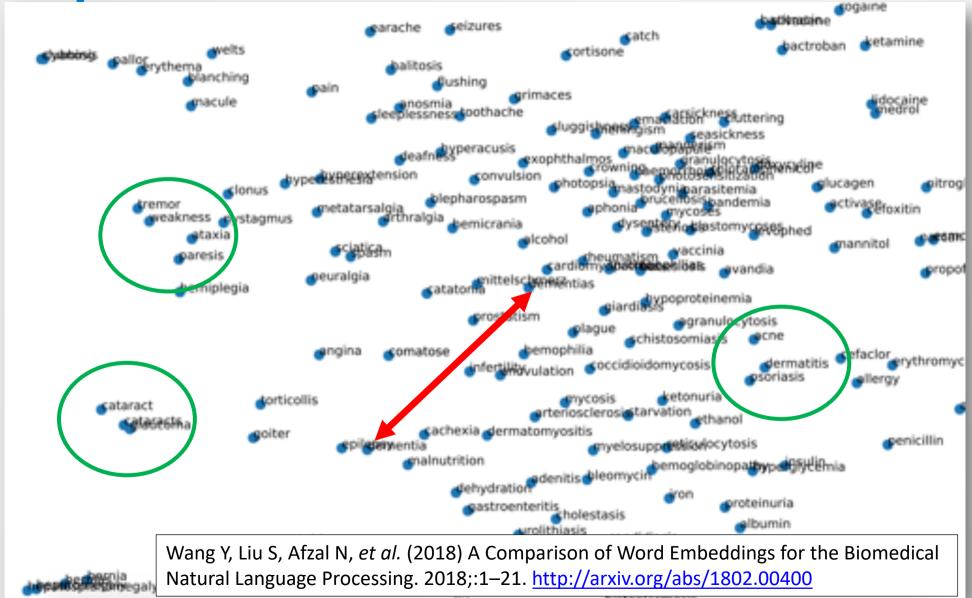
Linguistic regularities in vector space

Expression	Nearest token	
Paris – France + Italy	Rome	
Bigger – big + cold	Colder	
Sushi – Japan + Germany	bratwurst	
Cu – copper + gold	Au	
Windows – Microsoft + Google	Android	

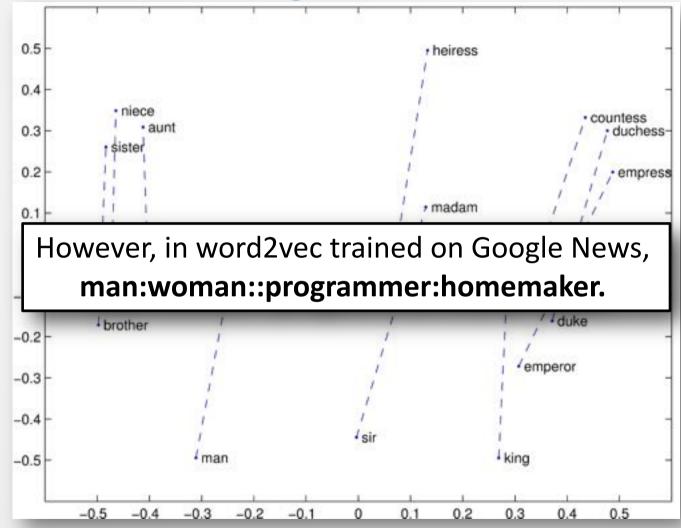
Analogies: apple:apples :: octopus:octopodes

Hypernymy: shirt:clothing :: chair:furniture

Importance of in-domain data



Let's talk about gender at the UofT



Bolukbasi T, Chang K, Zou J, et al. Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings. In: NIPS. 2016. 1–9.

Let's talk about gender at the UofT

Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings

Tolga Bolukbasi¹, Kai-Wei Chang², James Zou², Venkatesh Saligrama^{1,2}, Adam Kalai²

¹Boston University, 8 Saint Mary's Street, Boston, MA

²Microsoft Research New England, 1 Memorial Drive, Cambridge, MA
tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Abstract

The blind application of machine learning runs the risk of amplifying biases present in data. Such a danger is facing us with word embedding, a popular framework to represent text data as vectors which has been used in many machine learning and

Extreme she	Extreme he
 homemaker 	1. maestro
nurse	skipper
receptionist	protege
librarian	philosopher
socialite	captain
hairdresser	6. architect
7. nanny	financier
bookkeeper	8. warrior
stylist	broadcaster
housekeeper	magician

sewing-carpentry nurse-surgeon interior designer-architect blond-burly giggle-chuckle vocalist-guitarist volleyball-football cupcakes-pizzas Gender stereotype she-he analogies houseward interior designer-architect softbal cosmet cosmet petite-lessesy-snappy diva-superstar charminal lovely-

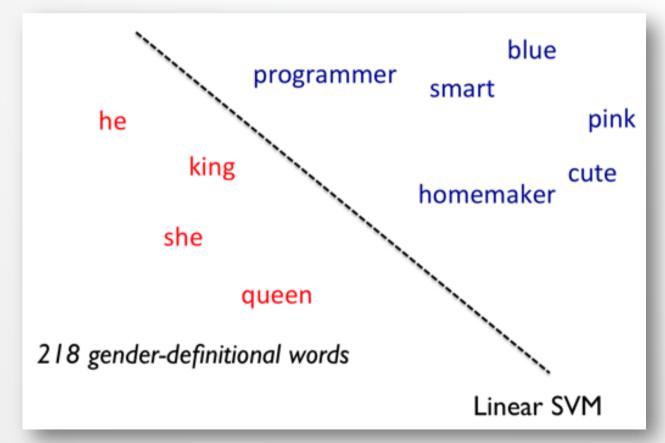
housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant

Gender appropriate she-he analogies sister-brother mother-father ovarian cancer-prostate cancer convent-monastery

queen-king waitress-waiter

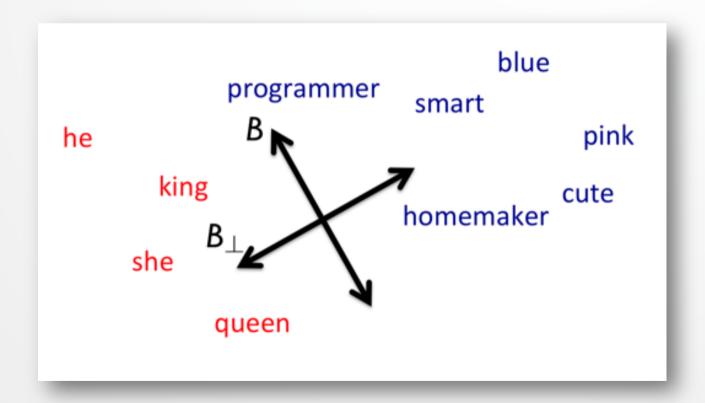
Solution?

1. Hand-pick words S_0 that are 'gender definitional'. 'Neutral' words are the complement, $N = V \setminus S_0$.



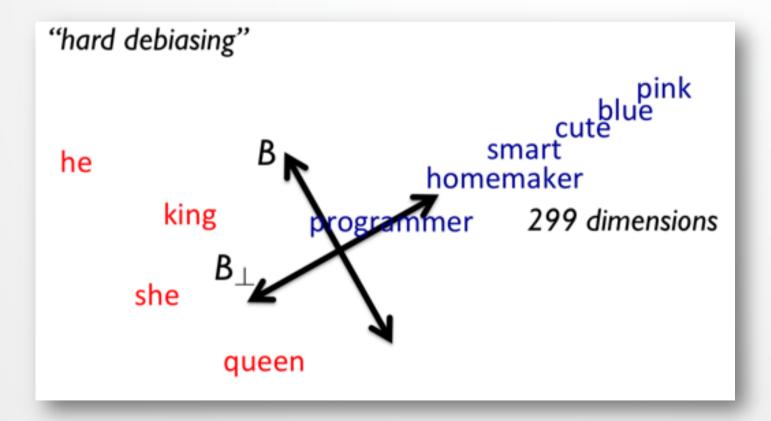
Solution?

2. Project away gender subspace from gender-neutral words, $w := w - w \cdot B$ for $w \in N$, where B is the gender subspace.



Solution?

2. Project away gender subspace from gender-neutral words, $w := w - w \cdot B$ for $w \in N$, where B is the gender subspace.



Results

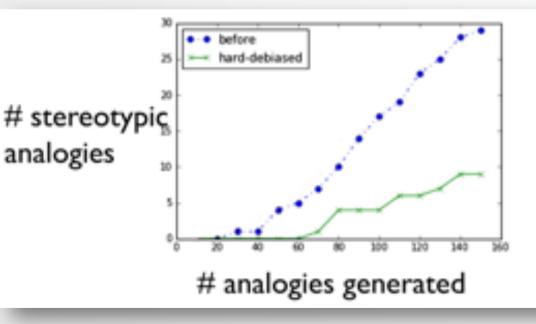
Generate many analogies, see which ones preserve gender

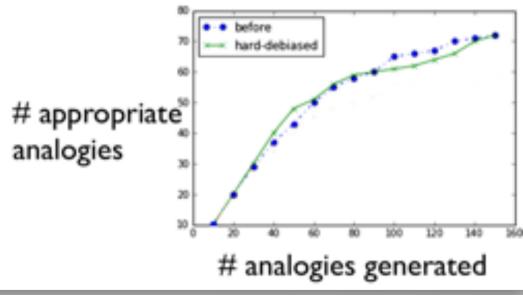
stereotypes.

He:Blue :: She: ?

He:Doctor :: She: ?

He:Brother :: She: ?

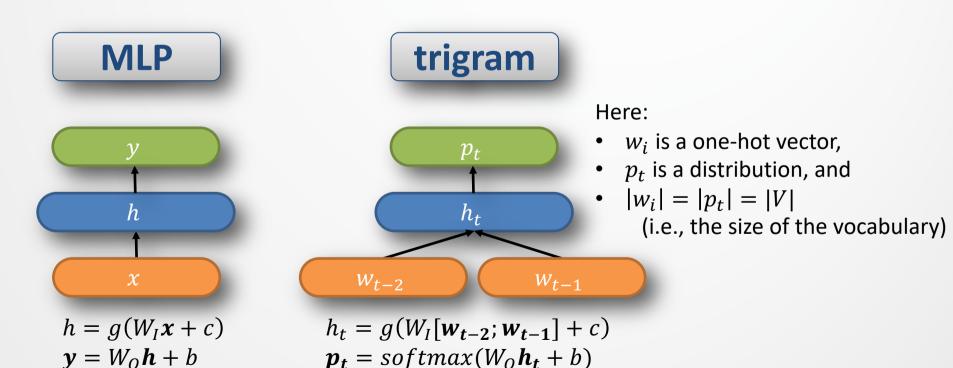




NEURAL LANGUAGE MODELS

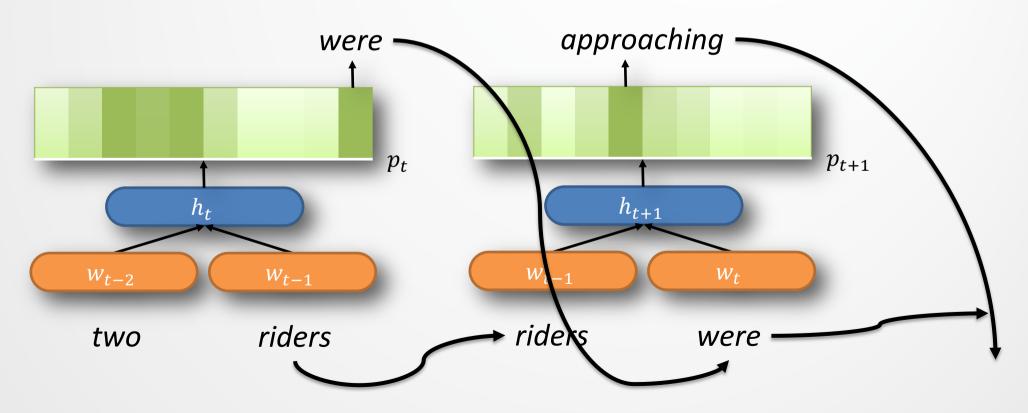
Trigram models

- CBOW: prediction of current word w_t given w_{t-1} .
- Let's reconsider predicting w_t given multiple w_{t-i} ?
 - I.e., let's think about language modelling.



Sampling from trigram models

• Since $p_t \sim P(w_t|w_{t-2}|w_{t-1})$, we just feed forward and sample from the output vector.

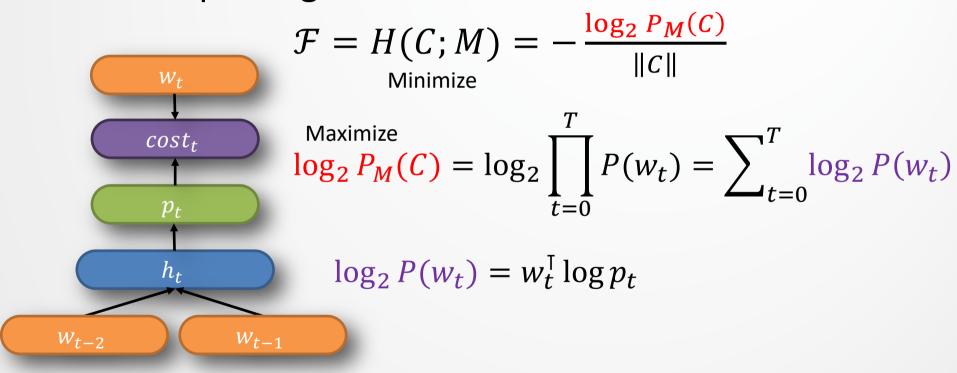


Training trigram models

- Here's one approach:
- 1. Randomly choose a batch (e.g., 10K consecutive words)
- 2. Propagate words through the current model
- 3. Obtain word likelihoods (loss)
- 4. Back-propagate loss
- 5. Gradient step to update model
- 6. Go to (1)

Training trigram models

• The typical training objective is the cross entropy (see Lecture 3) of the corpus C given the model M:



$$h_t = g(W_I[\mathbf{w_{t-2}}; \mathbf{w_{t-1}}] + c)$$

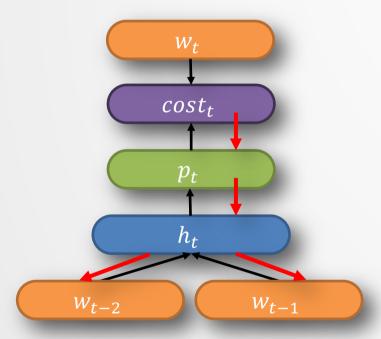
$$\mathbf{p_t} = softmax(W_O \mathbf{h_t} + b)$$

Here:

- w_i is a one-hot vector, and
- p_t is a distribution.

Training trigram models

• Compute our gradients, using $\mathcal{F} = -\frac{\log_2 P_M(C)}{\|C\|}$ and $\log_2 P(w_t) = w_t^\intercal \log p_t$ and backpropagate.



$$\begin{split} \frac{\delta \mathcal{F}}{\delta \mathbf{W}_{O}} &= -\frac{1}{\|C\|} \sum_{t} \frac{\delta cost_{t}}{\delta p_{t}} \frac{\delta p_{t}}{\delta W_{O}} \\ \frac{\delta \mathcal{F}}{\delta \mathbf{W}_{I}} &= -\frac{1}{\|C\|} \sum_{t} \frac{\delta cost_{t}}{\delta p_{t}} \frac{\delta p_{t}}{\delta h_{t}} \frac{\delta h_{t}}{\delta W_{I}} \end{split}$$

$$h_t = g(W_I[\mathbf{w_{t-2}}; \mathbf{w_{t-1}}] + c)$$

$$\mathbf{p_t} = softmax(W_O \mathbf{h_t} + b)$$

Here:

- w_i is a one-hot vector, and
- p_t is a distribution.

So what?

- ② Neural language models of this type:
 - Can generalize better than MLE LMs to unseen n-grams,
 - Can be modified to use semantic information as in word2vec.

 $P(\text{the cat sat on the } mat) \approx P(\text{the cat sat on the } rug)$

- - Can take relatively long to train. "GPUs kill the Earth."
 - Number of parameters scale poorly with increasing context.

Let's improve both of these issues...

Dealing with that bottleneck

- Traditional datasets for neural language modeling include:
 - AP News (14M tokens, 17K types)
 - HUB-4 (1M tokens, 25K types)
 - Google News (6B tokens, 1M types)
 - Wikipedia (3.2B tokens, 2M types)
- Datasets for medical/clinical LM include:
 - EMRALD/ICES (3.5B tokens, 13M types)
- Much of the computational effort is in the initial embedding, and in the softmax.
 - Can we simplify and speed up the process?

Dealing with that bottleneck

- Replace rare words with <out-of-vocabulary> token.
- Subsample frequent words.
- Hierarchical softmax.

- Noise-contrastive estimation.
- Negative sampling.

[Morin & Bengio, 2005, Mikolov et al, 2011, 2013b; Mnih & Teh 2012, Mnih & Kavukcuoglu, 2013]

Hierarchical softmax with grouping

- Group words into distinct classes, c, e.g., by frequency.
 - E.g., c_1 is top 5% of words by frequency, c_2 is the next 5%, ...
- Factorize $p(\mathbf{w}_o|\mathbf{w}_i) = p(\mathbf{c}|\mathbf{w}_i)p(\mathbf{w}_o|\mathbf{w}_i,\mathbf{c})$

$$\text{`softmax'}: P(w_o|w_i) = \frac{\exp(V_{w_o}^\intercal v_{w_i})}{\sum_{w=1}^W \exp(V_w^\intercal v_{w_i})} \qquad \qquad \frac{\exp(c_j v_{w_i})}{\sum_c \exp(c v_{w_i})} \times \frac{\exp(V_{w_o}^\intercal v_{w_i})}{\sum_{w \in c} \exp(V_w^\intercal v_{w_i})}$$
Where

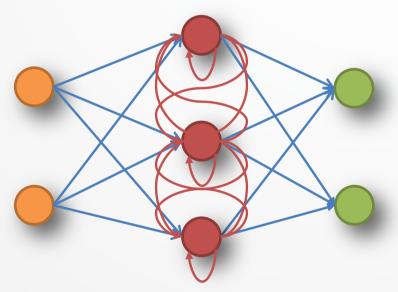
 v_w is the 'input' vector for word w, V_w is the 'output' vector for word w,

[Mikolov et al, 2011, Auli et al, 2013]

RECURRENT NEURAL NETWORKS

Recurrent neural networks (RNNs)

- An RNN has feedback connections in its structure so that it 'remembers' previous states, when reading a sequence.
 - i.e., it passes information from one step to the next.

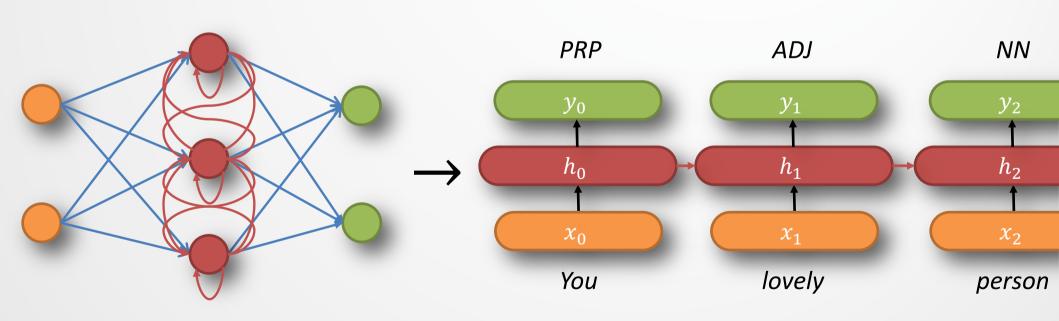


Elman network feed hidden units back

Jordan network (not shown) feed output units back

Unrolling the h_i

- Copies of the same network can be applied (i.e., unrolled) at each point in a time series.
 - These can be applied to various tasks.

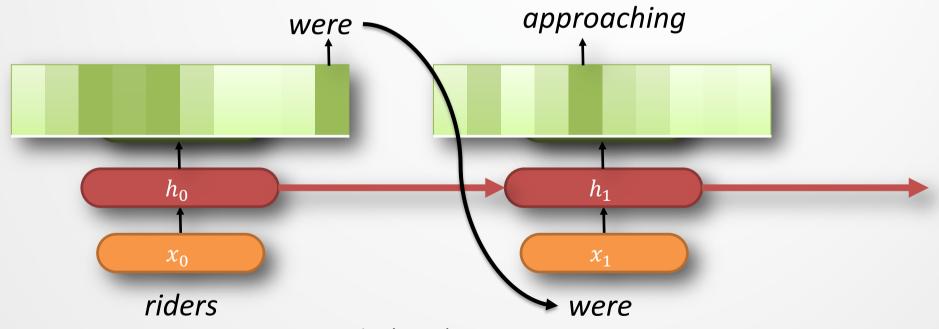


$$h_t = g(W_I[\mathbf{x}; \mathbf{h_{t-1}}] + c)$$

$$\mathbf{y_t} = W_O \mathbf{h_t} + b$$

Sampling from a RNN LM

- If $|h_i| < |V|$, we've already reduced the number of parameters from the trigram NN.
 - In 'theory', information is maintained in h_i across arbitrary lengths of time...



 $h_t = g(W_I[\mathbf{x}; \mathbf{h_{t-1}}] + c)$ $\mathbf{y_t} = W_O \mathbf{h_t} + b$ Karpathy (2015),

The Unreasonable Effectiveness of Recurrent Neural Networks

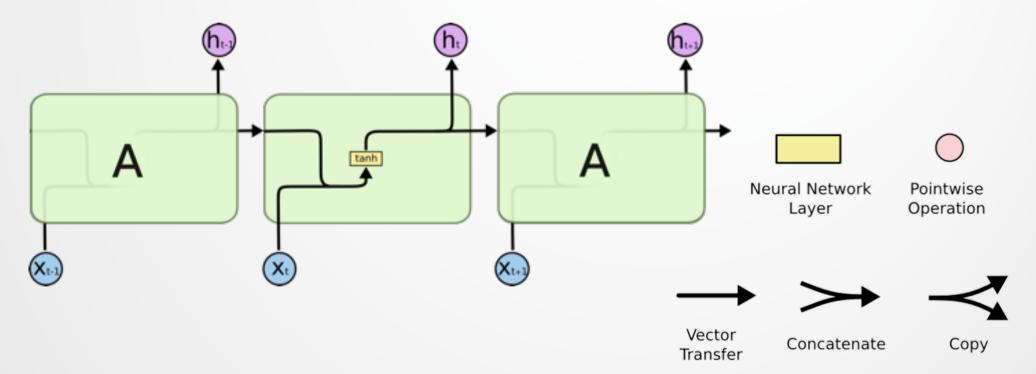
RNNs and retrograde amnesia

- Unfortunately, catastrophic forgetting is common.
 - E.g., the **relevant** context in "The sushi the sister of your friend's programming teacher told you about was…" has likely been **overwritten** by the time h_{13} is produced.

Bengio Y, Simard P, Frasconi P. (1994) Learning Long-Term Dependencies with Gradient Descent is Difficult. IEEE Trans. Neural Networks.;5:157–66. doi:10.1109/72.279181

RNNs and retrograde amnesia

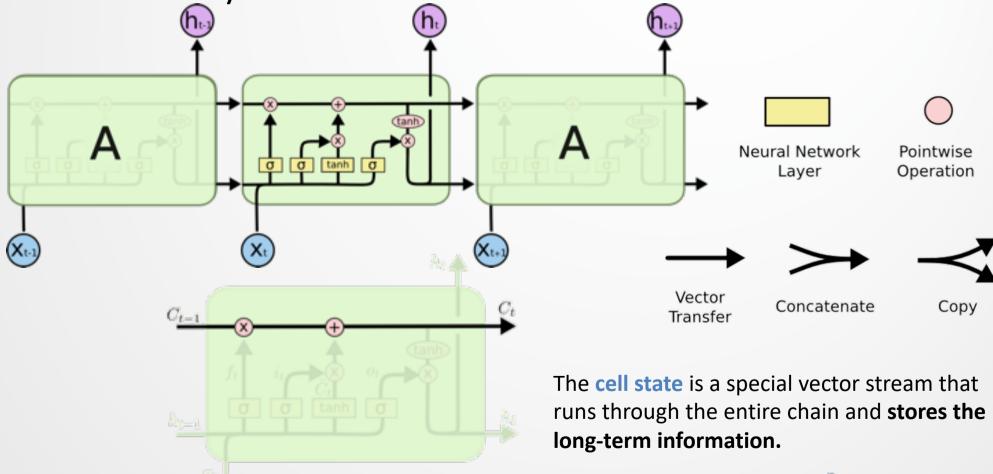
 The challenge with RNNs is that the gradient decays quickly as one pushes it back in time. Can we store relevant information?



Imagery and sequence from http://colah.github.io/posts/2015-08-Understanding-LSTMs/

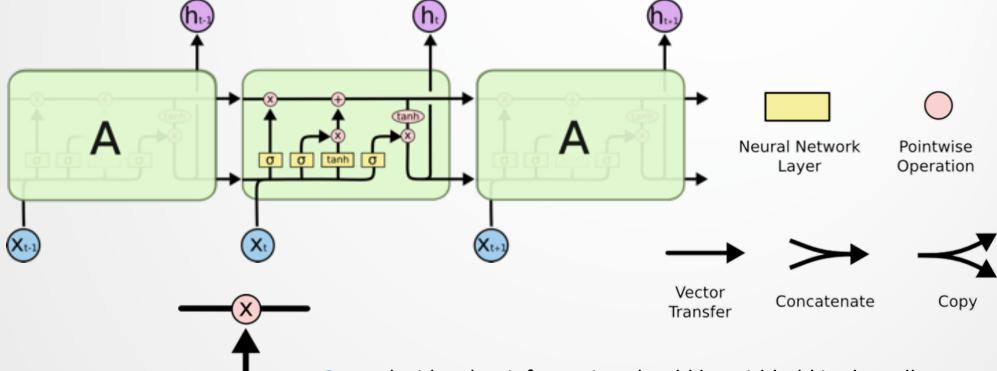
Long short-term memory (LSTM)

 In each module, in an LSTM, there are four interacting neural network layers.



Long short-term memory (LSTM)

 In each module, in an LSTM, there are four interacting neural network layers.

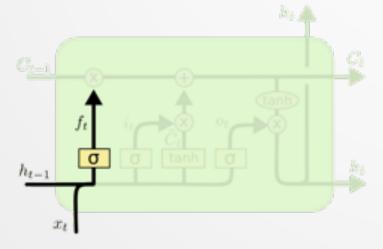


Gates decide what information should be withheld in the cell state. They are a **sigmoid** followed by a pointwise \times .

Values near 0 block information; values near 1 pass information.

LSTM step 1: decide what to forget

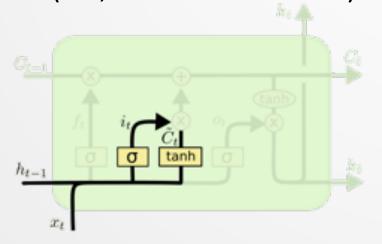
- The **forget gate layer** compares h_{t-1} and the current input x_t to decide which elements in cell state C_{t-1} to keep and which to turn off.
 - E.g., the cell state might 'remember' the number (sing./plural) of the current subject, in order to predict appropriately conjugated verbs, but decide to forget it when a new subject is mentioned at x_t .
 - (There's scanty evidence that such information is so explicit.)



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

LSTM step 2: decide what to store

- The input gate layer has two steps.
 - First, a sigmoid layer σ decides which cell units to update.
 - Next, a tanh layer creates new candidate values \widetilde{C}_t .
 - E.g., the σ can turn on the 'number' units, and the tanh can push information on the current subject.
 - The σ layer is important we don't want to push information on units (i.e., latent dimensions) for which we have no information.

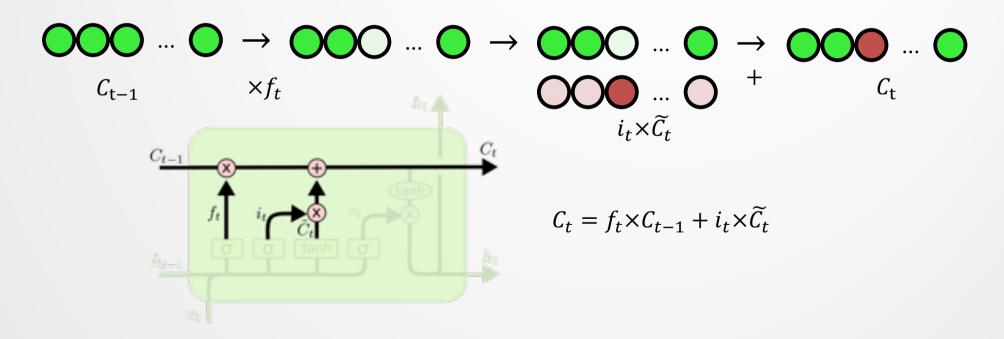


$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

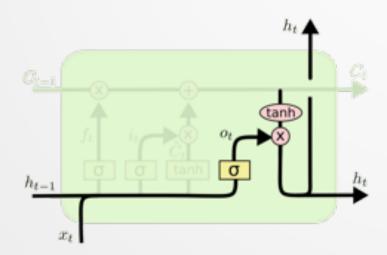
LSTM step 3: update the cell state

- Update C_{t-1} to C_t .
 - First, forget what we want to forget: multiply C_{t-1} by f_t .
 - Then, create a 'mask vector' of information we want to store, $i_t \times \widetilde{C}_t$.
 - Finally, write this information to the new cell state C_t .



LSTM step 4: output and feedback

- Output something, o_t , based on the current x_t and h_{t-1} .
- Combine the output with the cell to give your h_t .
 - ullet Normalize cell C_t on [-1,1] using tanh and combine with o_t
- In some sense, C_t is long-term memory and h_t is the short-term memory (hence the name).

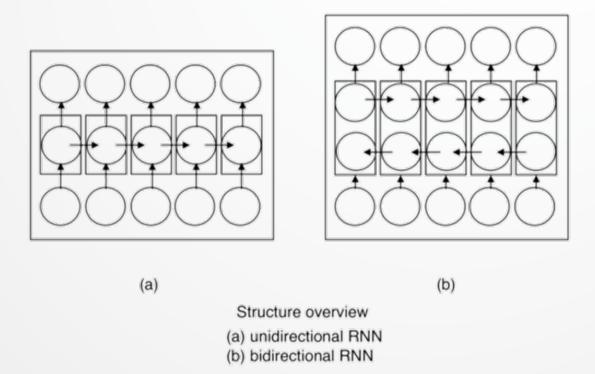


$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$

$$h_t = o_t \times \tanh(C_t)$$

Variants of LSTMs

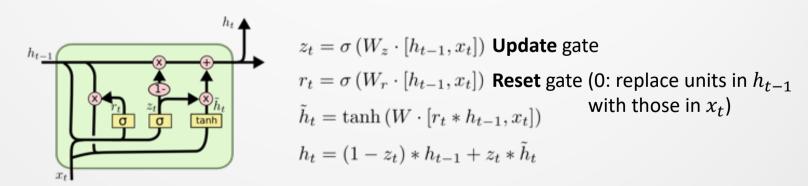
- There are various variations on LSTMs.
 - 'Bidirectional LSTMs' (and bidirectional RNNs generally), learn



Schuster, Mike, and Kuldip K. Paliwal. (1997) Bidirectional recurrent neural networks. *Signal Processing, IEEE Transactions on* **45(**11) (1997): 2673-2681.2.

Variants of LSTMs

- There are various variations on LSTMs.
 - Gers & Schmidhuber (2000) add 'peepholes' that allow all sigmoids to read the cell state.
 - We can couple the 'forget' and 'input' gates.
 - E.g., it's a bit of a waste to decide to forget number, then decide to store a new number.
 - Gated Recurrent units (GRUs; Cho et al (2014)) go a step further and also merge the cell and hidden states.



Are there examples where GRUs are used instead of LSTMs?

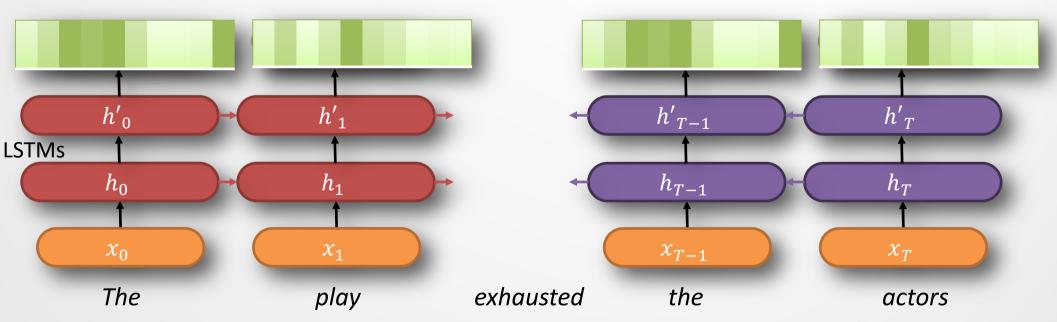
RECENT-ISH BREAKTHROUGHS

Deep contextualized representations

• What does the word play mean?

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

- Instead of a fixed embedding for each word type, ELMo considers the entire sentence before embedding each token.
 - It uses a bi-directional LSTM trained on a specific task.
 - Outputs are softmax probabilities on words, as before.

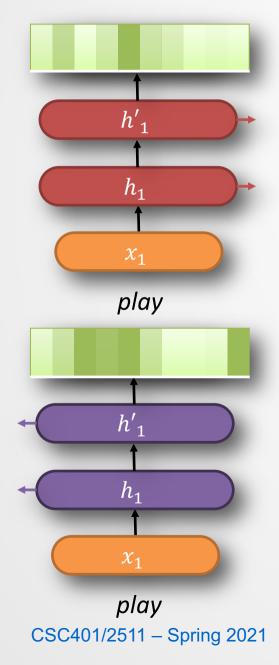


• Producing the final embedding for word token k.

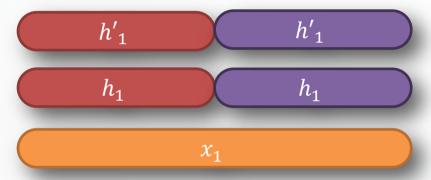
$$\mathbf{ELMo}_{k}^{task} = E(R_{k}; \Theta^{task}) = \gamma^{task} \sum_{j=0}^{L} s_{j}^{task} \mathbf{h}_{k,j}^{LM}$$

where

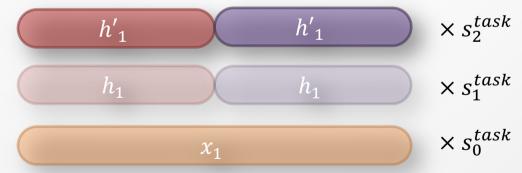
 R_K is the set of all L hidden layers, $\mathbf{h}_{k,j}$ s_j^{task} is the task's weight on the layer, and γ^{task} is a weight on the entire task



1. Concatenate



2. Multiply by weight vectors



3. Sum

 $ELMO_{k=1}^{task}$

• What does the word play mean?

	Source	Nearest Neighbors
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer
LITM	Chico Ruiz made a spec- tacular play on Alusik 's grounder {}	Kieffer, the only junior in the group, was commended for his ability to hit in the clutch, as well as his all-round excellent play.
biLM	Olivia De Havilland signed to do a Broadway play for Garson {}	{} they were actors who had been handed fat roles in a successful play, and had talent enough to fill the roles competently, with nice understatement.

Table 4: Nearest neighbors to "play" using GloVe and the context embeddings from a biLM.

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

	TASK	PREVIOUS SOTA		OUR BASELINE	ELMo + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
Q&A	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
Textual entailment	SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
Semantic role labelling	SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coreference resolution	Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
Name entity resolution	NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
Sentiment analysis	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

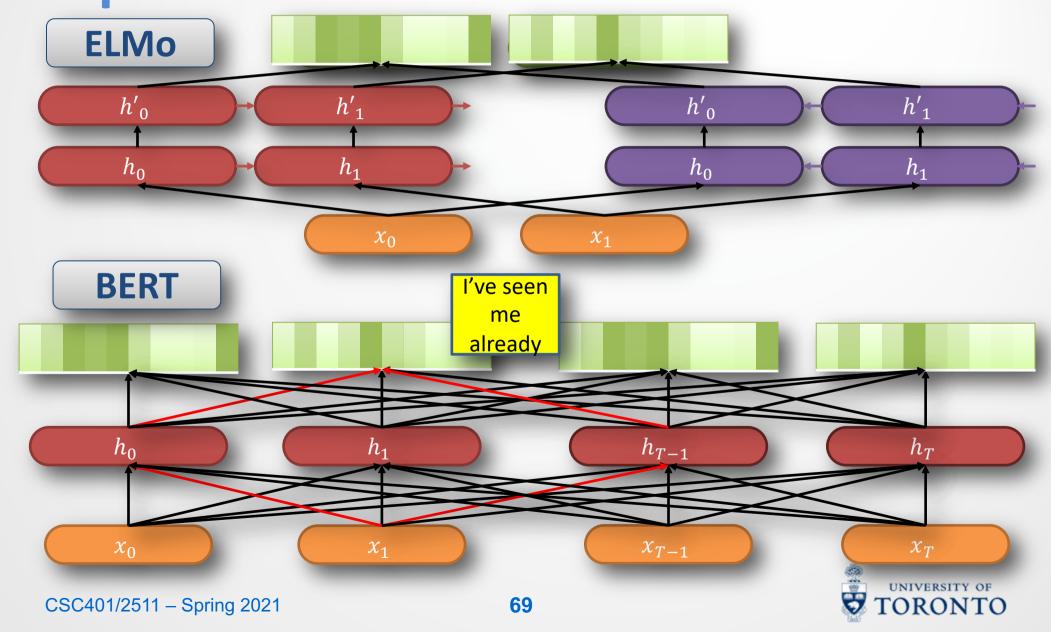
Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F₁ for SQuAD, SRL and NER; average F₁ for Coref. Due to the small test sizes for NER and SST-5, we report the mean and standard deviation across five runs with different random seeds. The "increase" column lists both the absolute and relative improvements over our baseline.

Peters ME, Neumann M, Iyyer M, et al. (2018) Deep contextualized word representations. Published Online First: 2018. doi:10.18653/v1/N18-1202; http://arxiv.org/abs/1802.05365

- Unlike ELMo, BERT is deeply bidirectional.
 - i.e., every embedding conditions every other in the next layer.
- This is difficult, because when predicting word x_t , you would already have 'seen' that word in modelling its own contexts.

Code and models: https://github.com/google-research/bert

Devlin J, Chang M-W, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. http://arxiv.org/abs/1810.04805



This can be solved by masking the word being predicted.

```
<code>Input</code>: The man went to the [MASK]_1 . He bought a [MASK]_2 of milk . <code>Labels: [MASK]_1 = store; [MASK]_2 = gallon</code>
```

- (actually, 80% we use [MASK]. 10% we replace the target word with another actual word; 10% we keep the word as-is, to bias 'towards the observation'.)
- We can also predict other relationships, like whether one sentence follows another.

```
Sentence A = The man went to the store.

Sentence B = He bought a gallon of milk.

Label = IsNextSentence

Sentence A = The man went to the store.

Sentence B = Penguins are flightless.

Label = NotNextSentence
```

(actually, you can fine-tune on many different tasks)

Aroca-Ouellette S, Rudzicz F (2020) On Losses for Modern Language Models, EMNLP.

(From http://jalammar.github.io/illustrated-bert/)

• The age of humans is over?

Rank	Model	EM	F1
	Human Performance Stanford University (Rajpurkar et al. '16)	82.304	91.221
1 0:1 05, 2018	BERT (ensemble) Google Al Language https://arxiv.org/abs/1810.04805	87.433	93.160
2 Sp 09, 2016	ninet (ensemble) Microsoft Research Asia	85.356	91.202
3	QANet (ensemble) Google Brain & CMU	84,454	90.490

Aside - ClosedAl

There are, of course, alternatives.

FastText: Represent each word as a bag of character-grams

Paper: https://arxiv.org/abs/1607.04606

Code: https://fasttext.cc

ULMFit: Model fine-tuning for classification tasks

Paper: https://arxiv.org/abs/1801.06146

Code: Here

GPT-2/3: Spooky, closed uni-directional model

Paper: <u>Here</u>

Blog: Here

OTHER APPLICATIONS

Sentiment analysis

 The traditional bag-of-words approach to sentiment analysis used dictionaries of happy and sad words, simple counts, and either regression or binary classification.

But consider these:

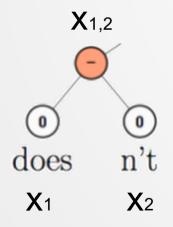
Best movie of the year

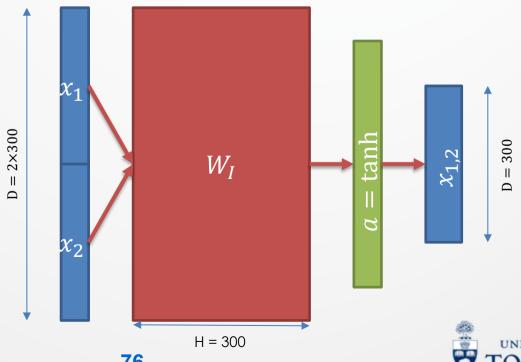
Slick and entertaining, despite a weak script

Fun and sweet but ultimately unsatisfying

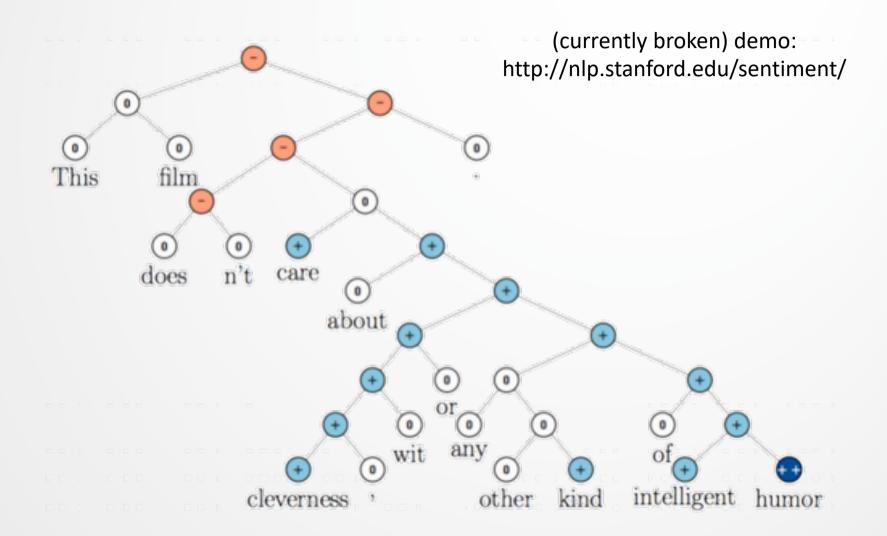
Tree-based sentiment analysis

- We can combine pairs of words into phrase structures.
- Similarly, we can combine phrase and word structures hierarchically for classification.





Tree-based sentiment analysis



Neural networks

- Research in neural networks is exciting, expansive, and explorative.
- We have many hyperparameters we can tweak (e.g., activation functions, number and size of layers).
- We have many architectures we can use (e.g., deep networks, LSTMs, attention mechanisms).
- Given the fevered hype, it's important to retain our scientific skepticism.
 - What are our biases and expectations?
 - When are neural networks the wrong choice?
 - How are we actually evaluating these systems?