

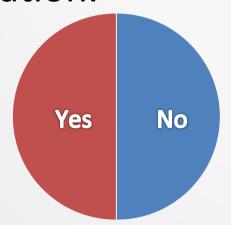

Entropy and decisions

CSC401/2511 – Natural Language Computing – Winter 2021 Lecture 5, Serena Jeblee, Frank Rudzicz and Sean Robertson University of Toronto

This lecture

- Information theory and entropy.
- Decisions.
 - Classification.
 - Significance and hypothesis testing.

Can we quantify the statistical structure in a model of communication? Can we quantify the <u>meaningful</u> difference between statistical models?



Information

- Imagine Darth Vader is about to say either "yes" or "no" with equal probability.
 - You don't know what he'll say.

You have a certain amount of uncertainty – a lack of

information.

Information

- Imagine you then observe Darth Vader saying "no"
- Your uncertainty is gone; you've received information.
- How much information do you receive about event E when you observe it?

$$I(E) = \log_2 \frac{1}{P(E)}$$
For the units of measurement
$$I(no) = \log_2 \frac{1}{P(no)} = \log_2 \frac{1}{1/2} = 1 \text{ bit}$$

Information

- Imagine Darth Vader is about to roll a fair die.
- You have more uncertainty about an event because there are more possibilities.
 - You receive more information when you observe it.

$$I(5) = \log_2 \frac{1}{P(5)}$$

= $\log_2 \frac{1}{1/6} \approx 2.59 \text{ bits}$

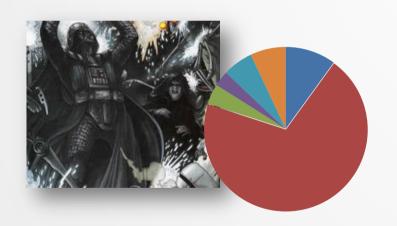
Information is additive

• From k independent, equally likely events E,

$$I(E^k) = \log_2 \frac{1}{P(E^k)} = \log_2 \frac{1}{P(E)^k}$$
 $I(k \text{ binary decisions}) = \log_2 \frac{1}{\left(\frac{1}{2}\right)^k} = k \text{ bits}$

For a unigram model, with each of 50K words w equally likely,

$$I(w) = \log_2 \frac{1}{1/50000} \approx 15.61 \text{ bits}$$


and for a sequence of 1K words in that model,

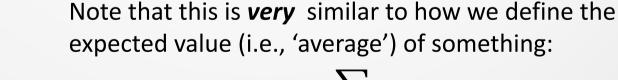
$$I(w^k) = \log_2 \frac{1}{\left(\frac{1}{50000}\right)^{1000}} \approx ???$$

Information with unequal events

 An information source S emits symbols without memory from a vocabulary $\{w_1, w_2, ..., w_n\}$. Each symbol has its own probability $\{p_1, p_2, ..., p_n\}$

- Yes (0.1)
- No (0.7)
- Maybe (0.04) Sure (0.03)
- Darkside (0.06) Destiny (0.07)

- What is the <u>average</u> amount of information we get in **observing** the **output** of source S?
 - You still have 6 events that are possible – **but** you're fairly sure it will be 'No'.



Entropy

• Entropy: n. the average amount of information we get in observing the output of source S.

$$H(S) = \sum_{i} p_i I(w_i) = \sum_{i} p_i \log_2 \frac{1}{p_i}$$

ENTROPY

$$E[X] = \sum_{x \in X} p(x) x$$

Entropy – examples

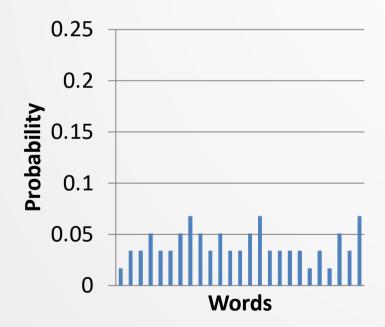
- Yes (0.1)
- No (0.7)
- Maybe (0.04)
 Sure (0.03)
- Darkside (0.06) Destiny (0.07)

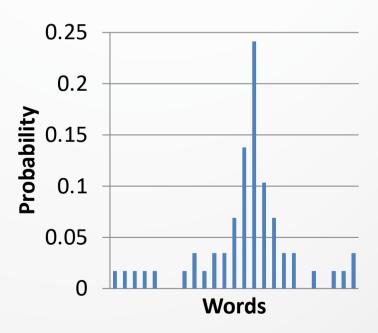
$$H(S) = \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}}$$

$$= 0.7 \log_{2} (1/0.7) + 0.1 \log_{2} (1/0.1) + \cdots$$

$$= 1.542 \text{ bits}$$

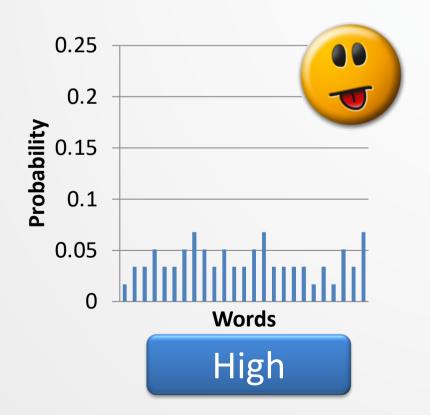
There is **less** average uncertainty when the probabilities are 'skewed'.

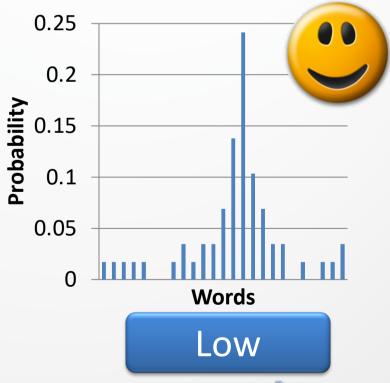



$$H(S) = \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}} = 6 \left(\frac{1}{6} \log_{2} \frac{1}{1/6} \right)$$
= 2.585 bits

Entropy characterizes the distribution

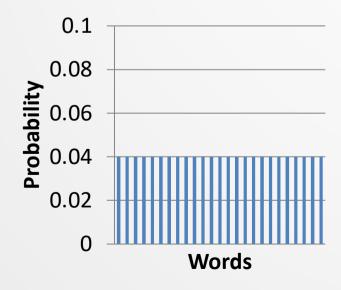
- 'Flatter' distributions have a higher entropy because the choices are more equivalent, on average.
 - So which of these distributions has a lower entropy?

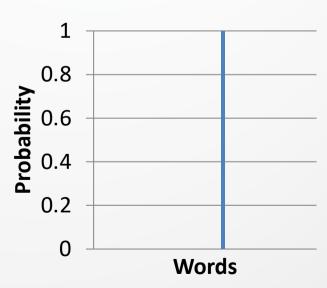




Low entropy makes decisions easier

- When predicting the next word, e.g., we'd like a distribution with lower entropy.
 - Low entropy ≡ less uncertainty




Bounds on entropy

• Maximum: uniform distribution S_1 . Given M choices,

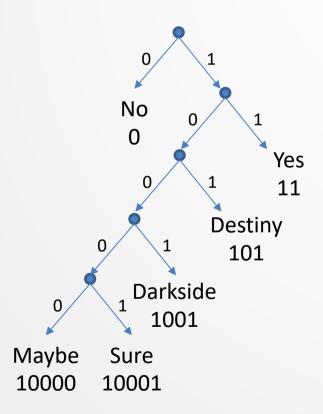
$$H(S_1) = \sum_{i} p_i \log_2 \frac{1}{p_i} = \sum_{i} \frac{1}{M} \log_2 \frac{1}{1/M} = \log_2 M$$

• Minimum: only one choice, $H(S_2) = p_i \log_2 \frac{1}{p_i} = 1 \log_2 \frac{1}{2} = 0$



Coding symbols efficiently

- If we want to transmit Vader's words efficiently, we can encode them so that more probable words require fewer bits.
 - On average, fewer bits will need to be transmitted.



Word (sorted)	Linear Code	Huffman Code
No	000	0
Yes	001	11
Destiny	010	101
Darkside	011	1001
Maybe	100	10000
Sure	101	10001

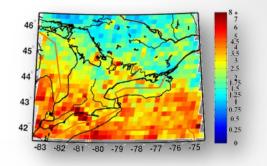
Coding symbols efficiently

 Another way of looking at this is through the (binary) Huffman tree (r-ary trees are often flatter, all else being equal):

Word (sorted)	Linear Code	Huffman Code
No	000	0
Yes	001	11
Destiny	010	101
Darkside	011	1001
Maybe	100	10000
Sure	101	10001

Alternative notions of entropy

- Entropy is equivalently:
 - The average amount of information provided by symbols in a vocabulary,
 - The average amount of uncertainty you have before observing a symbol from a vocabulary,
 - The average amount of 'surprise' you receive when observing a symbol,
 - The number of bits needed to communicate that alphabet
 - Aside: Shannon showed that you cannot have a coding scheme that can communicate the vocabulary more efficiently than H(S)


Entropy of several variables

- Joint entropy
- Conditional entropy
- Mutual information

18

Entropy of several variables

- Consider the vocabulary of a meteorologist describing
 <u>Temperature and Wetness</u>.
 - <u>T</u>emperature = {hot, mild, cold}
 - <u>W</u>etness = {dry, wet}

$$P(W = dry) = 0.6,$$

$$P(W = wet) = 0.4$$

$$H(W) = 0.6 \log_2 \frac{1}{0.6} + 0.4 \log_2 \frac{1}{0.4} = 0.970951 \text{ bits}$$

$$P(T = hot) = 0.3,$$

 $P(T = mild) = 0.5,$
 $P(T = cold) = 0.2$

$$H(T) = 0.3 \log_2 \frac{1}{0.3} + 0.5 \log_2 \frac{1}{0.5} + 0.2 \log_2 \frac{1}{0.2} = 1.48548 \text{ bits}$$

But W and T are not independent, $P(W,T) \neq P(W)P(T)$

Joint entropy

 Joint Entropy: n. the average amount of information needed to specify multiple variables simultaneously.

$$H(X,Y) = \sum_{x} \sum_{y} p(x,y) \log_2 \frac{1}{p(x,y)}$$

 Hint: this is very similar to univariate entropy – we just replace univariate probabilities with joint probabilities and sum over everything.

Entropy of several variables

• Consider joint probability, P(W,T)

	cold	mild	hot	
dry	0.1	0.4	0.1	0.6
wet	0.2	0.1	0.1	0.4
	0.3	0.5	0.2	1.0

• Joint entropy, H(W,T), computed as a sum over the space of joint events (W=w,T=t)

$$H(W,T) = 0.1 \log_2 \frac{1}{0.1} + 0.4 \log_2 \frac{1}{0.4} + 0.1 \log_2 \frac{1}{0.1} + 0.2 \log_2 \frac{1}{0.2} + 0.1 \log_2 \frac{1}{0.1} + 0.1 \log_2 \frac{1}{0.1} = 2.32193 \text{ bits}$$

Notice $H(W,T) \approx 2.32 < 2.46 \approx H(W) + H(T)$

Entropy given knowledge

 In our example, joint entropy of two variables together is lower than the sum of their individual entropies

•
$$H(W,T) \approx 2.32 < 2.46 \approx H(W) + H(T)$$

- Why?
- Information is shared among variables
 - There are dependencies, e.g., between temperature and wetness.
 - E.g., if we knew exactly how wet it is, is there less confusion about what the temperature is ...?

Conditional entropy

- Conditional entropy:
- n. the **average** amount of information needed to specify one variable given that you know another.
- A.k.a 'equivocation'

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$

 Hint: this is very similar to how we compute expected values in general distributions.

Entropy given knowledge

• Consider **conditional** probability, P(T|W)

P(W,T)	T = cold	mild	hot	
W = dry	0.1	0.4	0.1	0.6
wet	0.2	0.1	0.1	0.4
	0.3	0.5	0.2	1.0

$$P(T|W) = P(W,T)/P(W)$$

P(T W)	T = cold	mild	hot	
W = dry	0.1/0.6	0.4/0.6	0.1/0.6	1.0
wet	0.2/0.4	0.1/0.4	0.1/0.4	1.0

Entropy given knowledge

• Consider **conditional** probability, P(T|W)

P(T W)	T = cold	mild	hot	
W = dry	1/6	2/3	1/6	1.0
wet	1/2	1/4	1/4	1.0

•
$$H(T|W = dry) = H\left(\left\{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}\right) = 1.25163 \text{ bits}$$

•
$$H(T|W = wet) = H(\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}) = 1.5 \text{ bits}$$

Conditional entropy combines these:

$$H(T|W)$$
 0.6
= $[p(W = dry)H(T|W = dry)] + [p(W = wet)H(T|W = wet)]$
= 1.350978 bits

Equivocation removes uncertainty

- Remember H(T) = 1.48548 bits
- H(W,T) = 2.32193 bits
- H(T|W) = 1.350978 bits

Entropy (i.e., confusion) about temperature is **reduced** if we **know** how wet it is outside.

- How much does W tell us about T?
 - $H(T) H(T|W) = 1.48548 1.350978 \approx 0.1345$ bits
 - Well, a little bit!

Perhaps T is more informative?

• Consider another conditional probability, P(W|T)

P(W T)	T = cold	mild	hot
W = dry	0.1/0.3	0.4/0.5	0.1/0.2
wet	0.2/0.3	0.1/0.5	0.1/0.2
	1.0	1.0	1.0

•
$$H(W|T = cold) = H(\left\{\frac{1}{3}, \frac{2}{3}\right\}) = 0.918295 \text{ bits}$$

•
$$H(W|T = mild) = H(\left\{\frac{4}{5}, \frac{1}{5}\right\}) = 0.721928 \text{ bits}$$

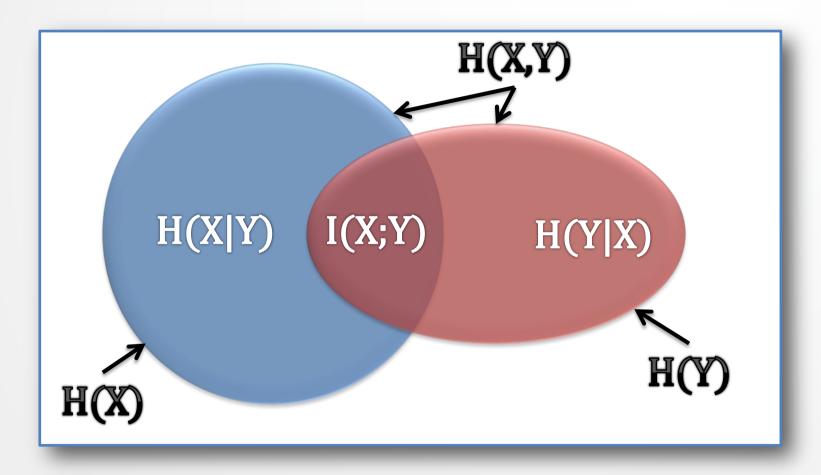
•
$$H(W|T = hot) = H(\left\{\frac{1}{2}, \frac{1}{2}\right\}) = 1 \text{ bit}$$

• H(W|T) = 0.8364528 bits

Equivocation removes uncertainty

- H(T) = 1.48548 bits
- H(W) = 0.970951 bits
- H(W,T) = 2.32193 bits
- H(T|W) = 1.350978 hits
- $H(T) H(T|W) \approx 0.1345$ bits

- How much does T tell us about W on average?
 - H(W) H(W|T) = 0.970951 0.8364528 $\approx 0.1345 \text{ bits}$
 - Interesting ... is that a coincidence?


Mutual information

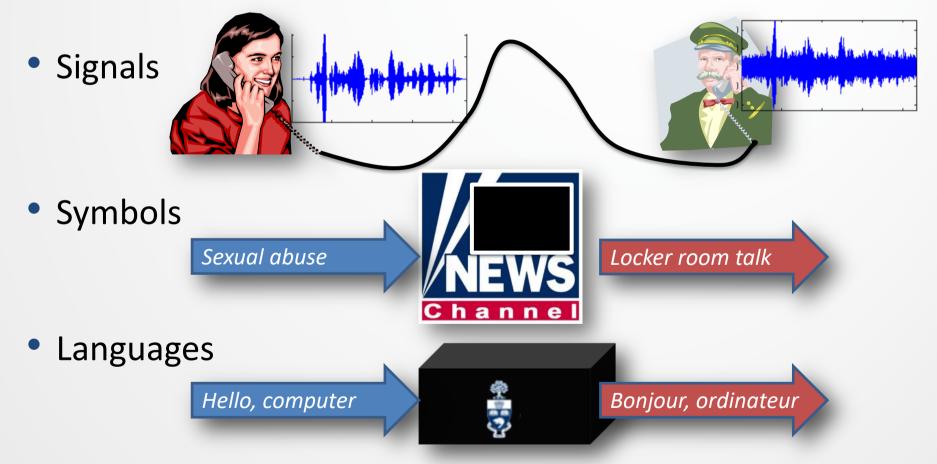
 Mutual information: n. the average amount of information shared between variables.

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

= $\sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$

- Hint: The amount of uncertainty removed in variable X if you know Y.
- Hint2: If X and Y are independent, p(x,y) = p(x)p(y), then $\log_2 \frac{p(x,y)}{p(x)p(y)} = \log_2 1 = 0 \ \forall x,y$ there is no mutual information!

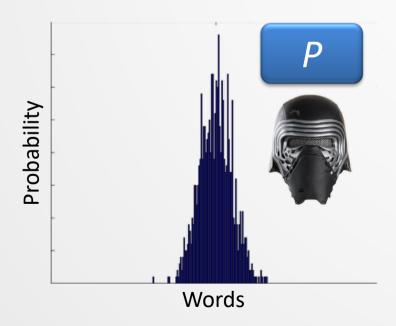
Relations between entropies

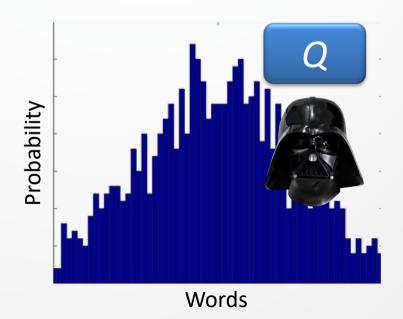


$$H(X,Y) = H(X) + H(Y) - I(X;Y)$$

Reminder – the noisy channel

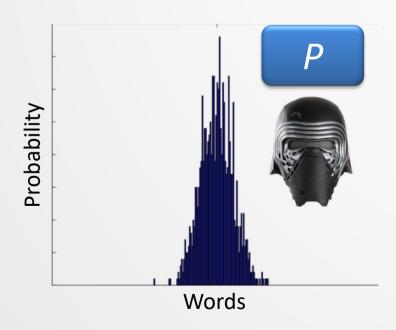
 Messages can get distorted when passed through a noisy conduit – <u>how much information is lost/retained</u>?

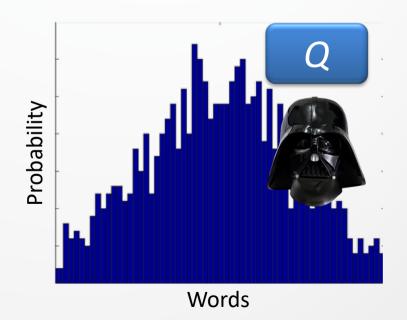



Relating corpora

Relatedness of two distributions

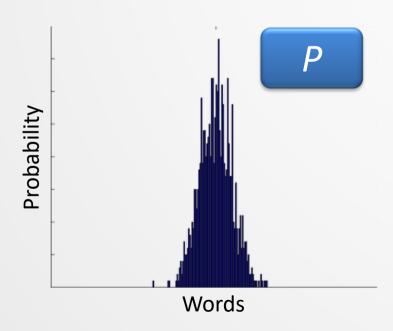
- How similar are two probability distributions?
 - e.g., Distribution *P* learned from *Kylo Ren*Distribution *Q* learned from *Darth Vader*

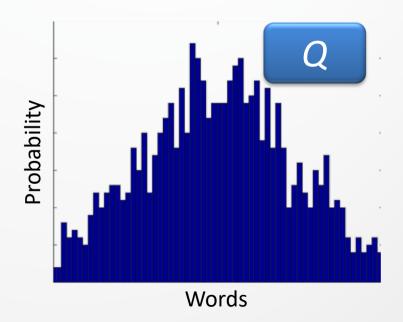




Relatedness of two distributions

- A Huffman code based on Vader (Q) instead of Kylo (P) will be less efficient at coding symbols that Kylo will say.
- What is the average number of extra bits required to code symbols from P when using a code based on Q?




• KL divergence:

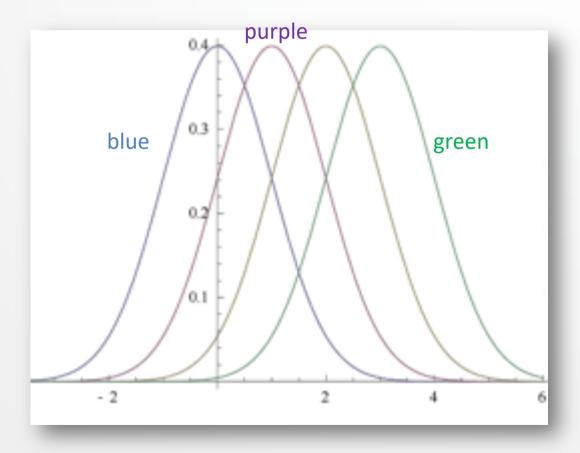
n. the average log difference between the distributions P and Q, relative to Q.

a.k.a. relative entropy.

caveat: we assume $0 \log 0 = 0$

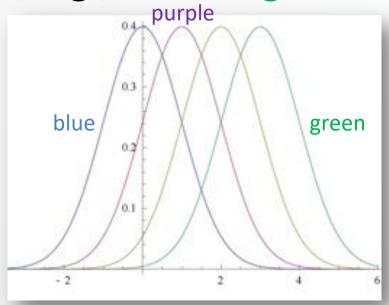
$$D_{KL}(P||Q) = \sum_{i} P(i) \log \frac{P(i)}{Q(i)}$$

- Why $\log \frac{P(i)}{Q(i)}$?
- $\log \frac{P(i)}{Q(i)} = \log P(i) \log Q(i) = \log \left(\frac{1}{Q(i)}\right) \log \left(\frac{1}{P(i)}\right)$
- If word w_i is less probable in Q than P (i.e., it carries more information), it will be Huffman encoded in more bits, so when we see w_i from P, we need $\log \frac{P(i)}{O(i)}$ more bits.


- KL divergence:
 - is somewhat like a 'distance' :
 - $D_{KL}(P||Q) \ge 0 \quad \forall P, Q$
 - $D_{KL}(P||Q) = 0$ iff P and Q are identical.
 - is not symmetric, $D_{KL}(P||Q) \neq D_{KL}(Q||P)$

Aside:

$$I(P;Q) = D_{KL}(P(X,Y)||P(X)P(Y))$$


- KL divergence generalizes to continuous distributions.
- Below, $D_{KL}(blue||green) > D_{KL}(blue||purple)$

Applications of KL divergence

- Often used towards some other purpose, e.g.,
 - In evaluation to say that purple is a better model than green of the true distribution blue.
 - In machine learning to adjust the parameters of purple to be, e.g., less like green and more like blue.

Entropy as intrinsic LM evaluation

- Cross-entropy measures how difficult it is to encode an event drawn from a *true* probability p given a model based on a distribution q.
- What if we don't know the true probability p?
 - We'd have to estimate the CE using a test corpus C:

$$H(p,q) \approx -\frac{\log_2 P_q(C)}{\|C\|}$$

• What's the probability of a corpus $P_q(C)$?

Probability of a corpus?

• The probability P(C) of a **corpus** C requires similar **assumptions** that allowed us to compute the probability $P(s_i)$ of a **sentence** s_i .

	Sentence	Corpus		
Chain rule	$P(s_i) = P(w_1) \prod_{t=2}^{n} P(w_t w_{1:(t-1)})$	$P(C) = P(w_1) \prod_{t=2}^{\ C\ } P(w_t w_{1:(t-1)})$		
Approx.	$P(s_i) \approx \prod_t P(w_t)$	$P(C) \approx \prod_{i} P(s_i)$		

• Regardless of the LM used for $P(s_i)$, we can assume complete independence between sentences.

Intrinsic evaluation - Cross-entropy

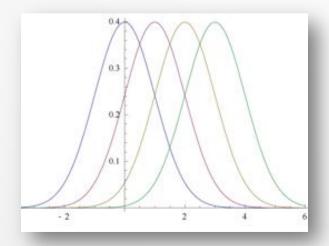
• Cross-entropy of a LM M and a new test corpus C with size ||C|| (total number of words), where sentence $s_i \in C$, is approximated by:

$$H(C; M) = -\frac{\log_2 P_M(C)}{\|C\|} = -\frac{\sum_i \log_2 P_M(s_i)}{\sum_i \|s_i\|}$$

Perplexity comes from this definition:

$$PP_M(C) = 2^{H(C;M)}$$

Decisions


Deciding what we know

- Anecdotes are often useless except as proofs by contradiction.
 - E.g., "I saw Google used as a verb" does not mean that Google is always (or even likely to be) a verb, just that it is not always a noun.
- Shallow statistics are often not enough to be truly meaningful.
 - E.g., "My ASR system is 95% accurate on my test data. Yours is only 94.5% accurate, you horrible knuckle-dragging idiot."
 - What if the test data was biased to favor my system?
 - What if we only used a very small amount of data?
- Given all this potential ambiguity, we need a test to see if our statistics actually mean something.

Differences due to sampling

- We saw that KL divergence essentially measures how different two distributions are from each other.
- But what if their difference is due to randomness in sampling?
- How can we tell that a distribution is really different from another?

Hypothesis testing

- Often, we assume a **null hypothesis**, H_0 , which states that the **two distributions are** <u>the same</u> (i.e., come from the same underlying model, population, or phenomenon).
- We reject the null hypothesis if the probability of it being true is too small.
 - This is often our goal e.g., if my ASR system beats yours by 0.5%,
 I want to show that this difference is **not** a random accident.
 - I assume it was an accident, then show how nearly impossible that is.
 - As scientists, we have to be very **careful** to not reject H_0 too hastily.
 - How can we ensure our diligence?

Confidence

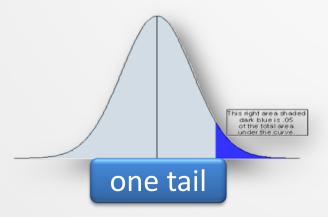
- We reject H_0 if it is too improbable.
 - How do we determine the value of 'too'?
- Significance level α ($0 \le \alpha \le 1$) is the maximum probability that two distributions are identical allowing us to disregard H_0 .
 - In practice, $\alpha \leq 0.05$. Usually, it's much lower.
 - Confidence level is $\gamma = 1 \alpha$
 - E.g., a confidence level of 95% ($\alpha = 0.05$) implies that we expect that our decision is correct 95% of the time, regardless of the test data.

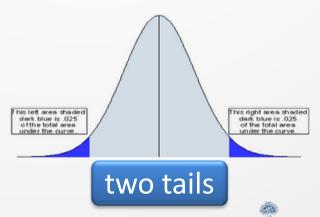
Confidence

- We will briefly see three types of statistical tests that can tell us how confident we can be in a claim:
 - A t-test, which usually tests whether the means of two
 models are the same. There are many types,
 but most assume Gaussian distributions.
 - 2. An analysis of variance (ANOVA), which generalizes the *t*-test to more than two groups.
 - 3. The χ^2 test, which evaluates categorical (discrete) outputs.

1. The t-test

- The t-test is a method to compute if distributions are significantly different from one another.
- It is based on the mean (\bar{x}) and variance (σ) of N samples.
- It compares \bar{x} and σ to H_0 which states that the samples are drawn from a distribution with a **mean** μ .
- If $t = \frac{\bar{x} \mu}{\sqrt{\sigma^2/N}}$ (the "t-statistic") is large enough, we can reject H_0 .


There are actually **several types** of *t*-tests for different situations...


An example would be nice...

Example of the t-test: tails

- Imagine the average tweet length of a McGill 'student' is $\mu=158$ chars.
- We sample N=200 UofT students and find that our average tweet is $\bar{x}=169$ chars (with $\sigma^2=2600$).
- Are UofT tweets significantly longer than much worse McGill tweets?
- We use a 'one-tailed' test because we want to see if UofT tweet lengths are significantly higher.
 - If we just wanted to see if UofT tweets were significantly different, we'd use a two-tailed test.

Example of the t-test: freedom

- Imagine the average tweet length of a McGill 'student' is $\mu=158$ chars.
- We sample N=200 UofT students and find that our average tweet is $\bar{x}=169$ chars (with $\sigma^2=2600$).
- Are UofT tweets significantly longer than much worse McGill tweets?
- Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the number of observations, minus 1 (the number of sample sets).
- In our example, we have $N_{UofT}=200$ for UofT students, meaning d.f.=199
 - (this example is adapted from Manning & Schütze)

Example of the t-test

- Imagine the average tweet length of a McGill 'student' is $\mu=158$ chars.
- We sample N=200 UofT students and find that our average tweet is $\bar{x}=169$ chars (with $\sigma^2=2600$).
- Are UofT tweets significantly longer than much worse McGill tweets?

• So
$$t = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/N}} = \frac{169 - 158}{\sqrt{2600/200}} \approx 3.05$$

• In a *t*-test table, we look up the minimum value of t necessary to reject H_0 at $\alpha=0.005$ (we want to be quite confident) for a 1-tailed test...

Example of the t-test

• So
$$t = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/N}} = \frac{169 - 158}{\sqrt{2600/200}} \approx 3.05$$

- In a *t*-test table, we look up the minimum value of t necessary to reject H_0 at $\alpha=0.005$, and find 2.576 (using $d.f.=199\approx\infty$)
 - Since 3.05 > 2.576, we can reject H_0 at the 99.5% level of confidence $(\gamma = 1 \alpha = 0.995)$; **UofT students are significantly more verbose**.

	lpha (one-tail)	0.05	0.025	0.01	0.005	0.001	0.0005
	1	6.314	12.71	31.82	63.66	318.3	636.6
4 t	10	1.812	2.228	2.764	3.169	4.144	4.587
d.f.	20	1.725	2.086	2.528	2.845	3.552	3.850
	∞	1.645	1.960	2.326	2.576	3.091	3.291

Example of the t-test

• Some things to observe about the t-test table:

• We need **more evidence**, t, if we want to be

more confident (left-right dimension).

• We need **more evidence**, t, if we have

fewer measurements (top-down dimension).

• A common criticism of the t-test is that picking α is ad-hoc. There are ways to correct for the selection of α .

	lpha (one-tail)	0.05	0.025	0.01	0.005	0.001	0.0005
d.f.	1	6.314	12.71	31.82	63.66	318.3	636.6
	10	1.812	2.228	2.764	3.169	4.144	4.587
	20	1.725	2.086	2.528	2.845	3.552	3.850
	∞	1.645	1.960	2.326	2.576	3.091	3.291

Another example: collocations

• Collocation:

n. a 'turn-of-phrase' or usage where a sequence of words is 'perceived' to have a meaning 'beyond' the sum of its parts.

- E.g., 'disk drive', 'video recorder', and 'soft drink' are collocations. 'cylinder drive', 'video storer', 'weak drink' are not despite some near-synonymy between alternatives.
- Collocations are not just highly frequent bigrams, otherwise 'of the', and 'and the' would be collocations.
- How can we test if a bigram is a collocation or not?

Hypothesis testing collocations

- For collocations, the **null hypothesis** H_0 is that there is **no** association between two given words **beyond pure chance**.
 - I.e., the bigram's **actual** distribution and pure chance are the **same**.
 - We compute the probability of those words occurring together if H_0 were true. If that probability is too low, we reject H_0 .
 - E.g., we expect 'of the' to occur together, because they're both likely words to draw randomly
 - We could probably **not** reject H_0 in that case.

Example of the t-test on collocations

- Is 'new companies' a collocation?
- In our corpus of 14,307,668 word tokens, *new* appears 15,828 times and *companies* appears 4,675 times.
- Our **null hypothesis**, H_0 is that they are **independent**, i.e.,

H₀:
$$P(new\ companies) = P(new)P(companies)$$

= $\frac{15828}{14307668} \times \frac{4675}{14307668}$
 $\approx 3.615 \times 10^{-7}$

Example of the t-test on collocations

- The Manning & Schütze text claims that if the process of randomly generating bigrams follows a Bernoulli distribution.
 - i.e., assigning 1 whenever *new companies* appears and 0 otherwise gives $\bar{x} = p = P(new companies)$
 - For Bernoulli distributions, $\sigma^2 = p(1-p)$. Manning & Schütze claim that we can assume $\sigma^2 = p(1-p) \approx p$, since for most bigrams, p is very small.

Example of the t-test on collocations

- So, $\mu = 3.615 \times 10^{-7}$ is the expected mean in H_0 .
- We actually count 8 occurrences of new companies in our corpus

•
$$\bar{x} = \frac{8}{14307667} \approx 5.591 \times 10^{-7}$$
 There is 1 fewer bigram instance than word tokens in the corpus

$$\therefore \sigma^2 \approx p = \bar{x} = 5.591 \times 10^{-7}$$

• So
$$t = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/N}} = \frac{5.591 \times 10^{-7} - 3.615 \times 10^{-7}}{\sqrt{5.591 \times 10^{-7}/14307667}} \approx 0.9999$$

- In a t-test table, we look up the minimum value of t necessary to reject H_0 at $\alpha = 0.005$, and find 2. 576.
 - Since 0.9999 < 2.576, we cannot reject H_0 at the 99.5% level of confidence.
 - We don't have enough evidence to think that new companies is a collocation (we can't say that it definitely isn't, though!).

2. Analysis of variance (aside)

- Analyses of variance (ANOVAs) (there are several types) can be:
 - A way to generalize t-tests to more than two groups.
 - A way to determine which (if any) of several variables are responsible for the variation in an observation (and the interaction between them).
- E.g., we measure the **accuracy** of an ASR system for different settings of **empirical parameters** M (# components) and Q (# states).

Accuracy (%)	M=2	M = 4	M=16
Q=2	53.33	66.67	53.33
	26.67	53.33	40.00
	0.00	40.00	26.67
Q = 5	93.33	26.67	100.00
	66.67	13.33	80.00
	40.00	0.00	60.00

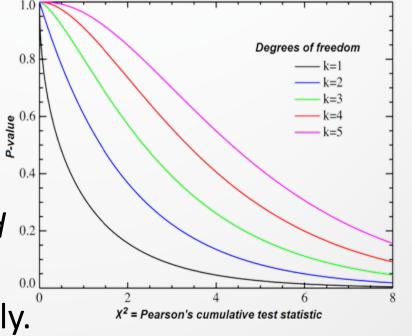
 H_0 : no effect of source variables.

9	Source	d.f.	$oldsymbol{p}$ value	
	Q	1	0.179	Accept H_0
	М	2	0.106	Accept H_0
i	nteraction	2	0.006	Reject H_0 at $\alpha=0.01$

A completely fictional example

3. Pearson's χ^2 test (details aside)

• The χ^2 test applies to categorical data, like the output of a classifier.


• Like the *t*-test, we decide on the degrees of freedom (number of categories minus number of parameters), compute the test-statistic, then

look it up in a table.

• The test statistic is:

$$\chi^2 = \sum_{c=1}^{C} \frac{(O_c - E_c)^2}{E_c}$$

where O_c and E_c are the *observed* 0.2 and *expected* number of observations of type c, respectively.

3. Pearson's χ^2 test

- For example, is our die from Lecture 2 fair or not?
- Imagine we throw it 60 times. The expected number of appearances of each side is 10.

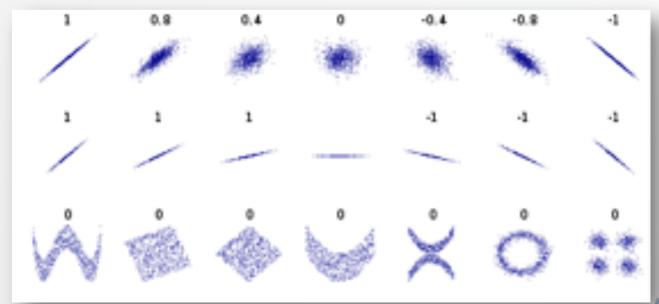
С	o_c	$\boldsymbol{E_c}$	$O_c - E_c$	$(\boldsymbol{O}_c - \boldsymbol{E}_c)^2$	$(\boldsymbol{O}_c - \boldsymbol{E}_c)^2 / \boldsymbol{E}_c$
1	5	10	-5	25	2.5
2	8	10	-2	4	0.4
3	9	10	-1	1	0.1
4	8	10	-2	4	0.4
5	10	10	0	0	0
6	20	10	10	100	10
			13.4		

- With df = 6 1 = 5, the critical value is 11.07<13.4, so we throw away H_0 : the die is biased.
- We'll see χ^2 again soon...

Feature selection

Determining a good set of features

- Restricting your feature set to a proper subset quickens training and reduces overfitting.
- There are a few methods that select good features, e.g.,
 - 1. Correlation-based feature selection
 - 2. Minimum Redundancy, Maximum Relevance
 - 3. χ^2



1. Pearson's correlation

Pearson is a measure of linear dependence

$$\rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^n (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^n (Y_i - \bar{Y})^2}}$$

Does not measure 'slope' nor non-linear relations.

1. Spearman's correlation

- Spearman is a non-parametric measure of rank correlation, $r_{cX} = r(c, X)$.
 - It is basically Pearson's correlation, but on 'rank variables' that are monotonically increasing integers.
 - If the class *c* can be **ordered** (e.g., in any binary case), then we can compute the correlation between a feature *X* and that class.

1. Correlation-based feature selection

- 'Good' features should correlate strongly (+ or -) with the predicted variable but not with other features.
- S_{CFS} is some set S of k features f_i that maximizes this ratio, given class c:

$$S_{CFS} = \underset{S}{\operatorname{argmax}} \frac{\sum_{f_i \in S} r_{cf_i}}{\sqrt{k + 2\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \rho_{f_i f_j}}}$$

2. mRMR feature selection

• Minimum-redundancy-maximum-relevance (mRMR) can use correlation, distance scores (e.g., D_{KL}) or mutual information to select features.

• For feature set S of features f_i , and class c,

D(S, c): a measure of **relevance** S has for c, and

R(S): a measure of the **redundancy** within S,

$$S_{mRMR} = \underset{S}{\operatorname{argmax}} [D(S, c) - R(S)]$$

2. mRMR feature selection

 Measures of relevance and redundancy can make use of our familiar measures of mutual information,

•
$$D(S,c) = \frac{1}{\|S\|} \sum_{f_i \in S} I(f_i; c)$$

•
$$R(S) = \frac{1}{\|S\|^2} \sum_{f_i \in S} \sum_{f_j \in S} I(f_i; f_j)$$

 mRMR is robust but doesn't measure interactions of features in estimating c (for that we could use ANOVAs).

3. χ^2 method

• We adapt the χ^2 method we saw when testing whether distributions were significantly different:

$$\chi^{2} = \sum_{c=1}^{C} \frac{(O_{c} - E_{c})^{2}}{E_{c}} \qquad \qquad \chi^{2} = \sum_{c=1}^{C} \sum_{f_{i}=f}^{F} \frac{(O_{c,f} - E_{c,f})^{2}}{E_{c,f}}$$

where $O_{c,f}$ and $E_{c,f}$ are the observed and expected number, respectively, of times the class c occurs together with the (discrete) feature f.

- The expectation $E_{c,f}$ assumes c and f are **independent**.
- Now, every feature has a p-value. A lower p-value means c and f are less likely to be independent.
- Select the *k* features with the lowest *p*-values.

Multiple comparisons

- If we're just **ordering** features, this χ^2 approach is (mostly) fine.
- But what if we get a 'significant' p-value (e.g., p < 0.05)? Can we claim a significant effect of the class on that feature?
- Imagine you're flipping a coin to see if it's fair. You claim that if you get 'heads' in 9/10 flips, it's biased.
- Assuming H_0 , the coin is fair, the probability that a fair coin would come up heads ≥ 9 out of 10 times is:

$$(10+1)\times0.5^{10}=0.0107$$
Number of ways 9 Number of ways all 10 flips are heads

Multiple comparisons

- But imagine that you're simultaneously testing 173 coins you're doing 173 (multiple) comparisons.
- If you want to see if a specific chosen coin is fair, you still have only a 1.07% chance that it will give heads $\geq \frac{9}{10}$ times.
- But if you don't preselect a coin, what is the probability that none of these fair coins will accidentally appear biased?

$$(1 - 0.0107)^{173} \approx 0.156$$

• If you're testing 1000 coins?

$$(1 - 0.0107)^{1000} \approx 0.0000213$$

Multiple comparisons

- The more features you evaluate with a statistical test (like χ^2), the more likely you are to accidentally find spurious (incorrect) significance accidentally.
- Various compensatory tactics exist, including Bonferroni correction, which basically divides your level of significance required, by the number of comparisons.

• E.g., if $\alpha=0.05$, and you're doing 173 comparisons, each would need $p<\frac{0.05}{173}\approx 0.00029$ to be considered significant.

Reading

Manning & Schütze: 2.2, 5.3-5.5

Entropy and decisions

- Information theory is a vast ocean that provides statistical models of communication at the heart of cybernetics.
 - We've only taken a first step on the beach.
 - See the ground-breaking work of Shannon & Weaver, e.g.
- So far, we've mainly dealt with random variables that the world provides – e.g., words tokens, mainly.
- What if we could transform those inputs into new random variables, or features, that are directly engineered to be useful to decision tasks...