corpora, language models, and smoothing

CSC401/2511 – Natural Language Computing – Spring 2021 Lecture 2 Frank Rudzicz, Sean Robertson, and Serena Jeblee 1 University of Toronto

CSC401/2511 – Spring 2021

Overview

- (Statistical) language models (n-gram models)
 - Counting
 - Data
 - Definitions
 - Evaluations
 - Distributions
 - Smoothing
- Some slides are based on content from Bob Carpenter, Dan Klein, Roger Levy, Josh Goodman, Dan Jurafsky, Christopher Manning, Gerald Penn, and Bill MacCartney.

Statistics: what are we counting?

- Statistical language models are based on simple counting.
- What are we counting?

First, we shape our tools and thereafter our tools shape us.

• Tokens: *n.pl.* instances of words or punctuation (<u>13</u>).

• Types: *n.pl.* 'kinds' of words or punctuation (<u>10</u>).

Confounding factors

- Are the following pairs one type or two?
 - (run, runs)
 - (happy, happily)
 - (fra⁽¹⁾gment, fragme⁽¹⁾nt) (spoken stress)
 - (realize, realise)
 - (We, we)

(verb conjugation)
(adjective vs. adverb)
(spoken stress)
(spelling)
(capitalization)

- How do we count **speech disfluencies**?
 - e.g., I <u>uh main-</u>mainly do data processing
 - Answer: It depends on your task.
 - e.g., if you're doing summarization, you usually don't care about 'uh'.

Does it matter how we count things?

- Answer: See lecture on **feature extraction**.
- Preview: <u>yes, it matters</u>...(sometimes)
 - E.g., to **diagnose Alzheimer's disease** from a patient's speech, you may want to measure:
 - Excessive **pauses** (disfluencies),
 - Excessive word **type** repetition, and
 - Simplistic or **short** sentences.
- Where do we count things?

Corpora

- Corpus: n. A body of language data of a particular sort (pl. corpora).
- Most useful corpora occur naturally.
 - e.g., newspaper articles, telephone conversations, multilingual transcripts of the United Nations, tweets.
- We use corpora to gather statistics.
 - More is better (typically between 10M and 1T words).
 - Be aware of bias.
- Examples: Canadian Hansards, Project Gutenberg (ebooks), web crawls (Google N-Gram, Common Crawl)

Statistical modelling

 Insofar as language can be modelled statistically, it might help to think of it in terms of dice.

Learning probabilities

- What if the symbols are *not* equally likely?
 - We have to estimate the *bias* using training data.

- So you've learned your probabilities.
 - Do they model unseen data from the same source well?
 - Keep rolling the same dice.
 - Do sides keep appearing in the same proportion as we expect?

- Keep reading words.
- Do words keep appearing in the same proportion as we expect?

Sequences with no dependencies

 If you *ignore* the past *entirely*, the probability of a sequence is the product of prior probabilities.

P(2,1,4) = P(2)P(1)P(4)

P(the old car) = P(the)P(old)P(car)

Language involves context. Ignoring that gives weird results, e.g.,

P(2,1,4) = P(2)P(1)P(4)= P(2)P(4)P(1) = P(2,4,1) P(the old car) = P(the)P(old)P(car)= P(the)P(car)P(old) = P(the car old)

Sequences with full dependencies

P(2,1,4) = P(2)P(1|2)P(4|2,1)

P(the old car) = P(the)P(old|the)P(car|the old)

- If you consider *all* of the past, you will never gather enough data in order to be useful in practice.
 - Imagine you've only seen the Brown corpus.
 - The sequence 'the old car' never appears therein.
 - $P(car|the old) = 0 \therefore P(the old car) = 0$

Sequences with fewer dependencies?

Magic die (with recent memory)

P(2,1,4) = P(2)P(1|2)P(4|1)

- Only consider two words at a time...
 - Imagine you've only seen the Brown corpus.
 - The sequences 'the old' & 'old car' do appear therein!
 - $P(old|the) > 0, P(car|old) > 0 \therefore P(the old car) > 0$
 - Also, P(the old car) > P(the car old)

LANGUAGE MODELS

CSC401/2511 - Spring 2021

Word prediction

- Guess the next word...
- *Spoilers* You can do quite well by counting how often certain tokens occur given their contexts.
 - E.g., estimate $P(w_t|w_{t-1})$ from count of (w_{t-1}, w_t) in corpus

Word prediction with N-grams

• **N-grams**: *n.pl.* **token** sequences of length *N*.

- The fragment '<u>in this sentence is'</u> contains the following 2-grams (i.e., '**bigrams**'):
 - (in this), (this sentence), (sentence is)
- The next bigram **must** start with 'is'.
- What word is **most likely** to follow 'is'?
 - Derived from bigrams (is, \cdot)

Use of N-gram models

- Given the **probabilities** of *N*-grams, we can compute the **conditional probabilities** of possible subsequent words.
 - E.g., P(is the) > P(is a) :P(the|is) > P(a|is)

Then we would predict:

'the last word in this sentence is the.'

(The last word in this sentence is missing.)

CSC401/2511 – Spring 2021

Language models

- Language model: *n*. The statistical model of a language (obviously).
 - e.g., probabilities of words in an ordered sequence.

i.e., $P(w_1, w_2, ..., w_n)$

- Word prediction is at the heart of language modelling.
- What do we **do** with a language model?

Language model usage

Language models can score and sort sentences.

- e.g., $P(I \ like \ apples) \gg P(I \ lick \ apples)$
- Commonly used to (re-)rank hypotheses in other tasks
- Infer properties of natural language
 - e.g., P(les pommes rouges) > P(les rouges pommes)
 - Embedding spaces
- Efficiently compress text

• How do we calculate P(...)?

CSC401/2511 – Spring 2021

Frequency statistics

- Term count (Count) of term w in corpus C is the number of tokens of term w in C.
 Count(w, C)
- Relative frequency (F_C) is defined relative to the total number of tokens in the corpus, ||C||. $F_C(w) = \frac{Count(w, C)}{||C||}$
 - In theory, $\lim_{\|C\| \to \infty} F_C(w) = P(w)$. (the "frequentist view")

The chain rule

• Recall,

$$P(\mathbf{A}, \mathbf{B}) = P(\mathbf{B}|\mathbf{A})P(\mathbf{A}) = P(\mathbf{A}|\mathbf{B})P(\mathbf{B})$$
$$P(\mathbf{B}|\mathbf{A}) = \frac{P(\mathbf{A}, \mathbf{B})}{P(\mathbf{A})}$$

- This extends to longer sequences, e.g.,
 P(A, B, C, D) = P(A)P(B|A)P(C|A, B)P(D|A, B, C)
- Or, in general, $P(w_1, w_2, ..., w_n) = P(w_1)P(w_2|w_1) \cdots P(w_n|w_1, w_2, ..., w_{n-1})$

Very simple predictions

- Let's return to word prediction.
- We want to know the probability of the next word given the previous words in a sequence.
- We can **approximate** conditional probabilities by counting occurrences in large corpora of data.
 - E.g., P(food | I like Chinese) = P(I like Chinese food)

P(I like Chinese ·) ≈ Count(I like Chinese food)

Count(I like Chinese)

Problem with the chain rule

- There are **many** (∞ ?) possible sentences.
- In general, we won't have enough data to compute reliable statistics for long prefixes
 - E.g., P(pretty|I heard this guy talks too f ast but at least his slides are) = $\frac{P(I heard ... are pretty)}{P(I heard ... are)} = \frac{0}{0}$
- How can we avoid $\{0, \infty\}$ -probabilities?

Independence!

- We can simplify things if we're willing to break from the distant past and focus on recent history.
 - e.g., P(pretty|I heard this guy talks too fast but at least his slides are) ≈ P(pretty|slides are) ≈ P(pretty|are)
- I.e., we assume statistical independence.

Markov assumption

 Assume each observation only depends on a short linear history of length L.

$$P(w_n|w_{1:(n-1)}) \approx P(w_n|w_{(n-L+1):(n-1)})$$

• **Bigram** version:

$$P(w_n|w_{1:(n-1)}) \approx P(w_n|w_{n-1})$$

Berkeley Restaurant Project corpus

- Let's compute simple N-gram models of speech queries about restaurants in Berkeley California.
 - E.g.,
 - can you tell me about any good cantonese restaurants close by
 - mid priced thai food is what i'm looking for
 - tell me about chez panisse
 - can you give me a listing of the kinds of food that are available
 - i'm looking for a good place to eat breakfast
 - when is caffe venezia open during the day

Example bigram counts

• Out of 9222 sentences,

• e.g., "I want" occurred 827 times

Count(w _{t-1} ,w _t)		W _t									
		I	want	to	eat	Chinese	food	lunch	spend		
W _{t-1}	I	5	827	0	9	0	0	0	2		
	want	2	0	608	1	6	6	5	1		
	to	2	0	4	686	2	0	6	211		
	eat	0	0	2	0	16	2	42	0		
	Chinese	1	0	0	0	0	82	1	0		
	food	15	0	15	0	1	4	0	0		
	lunch	2	0	0	0	0	1	0	0		
	spend	1	0	1	0	0	0	0	0		

Example bigram probabilities

- Obtain likelihoods by dividing bigram counts by unigram counts.
 I want to eat Chinese food lunch spend
 - Unigram counts: 2533 927 2417 746 158 1093 341 278 $P(w_t|w_{t-1})$ lunch Chinese want eat food spend to 0.002 0.33 0.0036 0.00079 0 0 0 0 $P(want|I) \approx \frac{Count(I want)}{Count(I)} = \frac{827}{2533} \approx 0.33$ $P(spend|I) \approx \frac{Count(I spend)}{Count(I)} = \frac{2}{2533} \approx 7.9 \times 10^{-4}$

Example bigram probabilities

Obtain likelihoods by dividing bigram counts by unigram counts.
 I want to eat Chinese food lunch spend

Unigram counts:		2533	92	27	2417	746	5 1	158	1093	341	_	278
$P(w_t w_{t-1})$	<u> </u>	Wa	want			eat	Chinese		food	lunch		spend
1	0.002	0.	0.33		0.	0036	0		0	0		0.00079
want	0.0022		0	0.66	0.	0011	0.006	5	0.0065	0.0054	ŀ	0.0011
to	0.00083		0	0.0017	7 (0.28	0.000	83	0	0.0025	5	0.087
eat	0		0	0.0027	7	0	0.02	1	0.0027	0.056		0
Chinese	0.0063	(0	0		0	0		0.52	0.0063	3	0
food	0.014	(0	0.014		0	0.000	92	0.0037	0		0
lunch	0.0059		0	0		0	0		0.0029	0		0
spend	0.0036		0	0.0036	5	0	0		0	0		0

Bigram estimate of an unseen phrase

- We can string bigram probabilities together to estimate the probability of whole sentences.
 - We use the start (<s>) and end (</s>) tags here.

• E.g., $P(\langle s \rangle I \text{ want english food } \langle s \rangle) \approx$ $P(I | \langle s \rangle) P(\text{ want } | I) \cdot$ $P(\text{english} | \text{ want}) P(\text{food} | \text{english}) \cdot$ $P(\langle s \rangle | \text{ food})$ ≈ 0.000031

N-grams as linguistic knowledge

- Despite their simplicity, *N*-gram probabilities can **crudely** capture **interesting facts** about language and the world.
 - E.g., P(english|want) = 0.0011P(chinese|want) = 0.0065

World knowledge

P(to|want) = 0.66P(eat|to) = 0.28P(food|to) = 0

Discourse

$$P(i| < s >) = 0.25$$

Probabilities of sentences

 The probability of a sentence s is defined as the product of the conditional probabilities of its N-grams:

$$P(s) = \prod_{i=2}^{t} P(w_i | w_{i-2} w_{i-1}) \quad \text{trigram}$$

$$P(s) = \prod_{i=1}^{t} P(w_i | w_{i-1}) \quad \text{bigram}$$

• Which of these two models is better?

Aside - are N-grams still relevant?

- Appropriately smoothed N-gram LMs: (Shareghi *et al.* 2019):
 - Are often cheaper to train/query than neural LMs
 - Are interpolated with neural LMs to often achieve state-of-the-art performance
 - Occasionally outperform neural LMs
 - At least are a good baseline
 - Usually handle previously unseen tokens in a more principled (and fairer) way than neural LMs
- *N*-gram probabilities are interpretable
- Convenient

EVALUATING LANGUAGE MODELS

CSC401/2511 - Spring 2021

Shannon's method

- We can use a language model to **generate** random sequences.
- We ought to see sequences that are similar to those we used for training.
- This approach is attributed to Claude Shannon.

Shannon's method – unigrams

- Sample a model according to its probability.
 - For unigrams, keep picking tokens.
 - e.g., imagine throwing darts at this:

Problem with unigrams

 Unigrams give high probability to odd phrases.
 e.g., P(the the the the the </s>) = P(the)⁵ · P(</s>) > P(the Cat in the Hat </s>)

Shannon's method – bigrams

 Bigrams have *fixed* context once that context has been sampled.

Shannon and the Wall Street Journal

Unigram	 Months the my and issue of year foreign new exchange's September were recession exchange new endorsed a acquire to six executives.
Bigram	• Last December through the way to preserve the Hudson corporation N.B.E.C. Taylor would seem to complete the major central planners one point five percent of U.S.E. has already old M.X. corporation of living on information such as more frequently fishing to keep her.
Trigram	 They also point to ninety nine point six billion dollars from two hundred four oh six three percent of the rates of interest stores as Mexico and Brazil on market conditions.

Shannon's method on Shakespeare

Unigram	 To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have Hill he late speaks; or! A more to leg less first you enter Are where exeunt and sighs have rise excellency took of Sleep knave we. Near; vile like.
Bigram	 What means, sir. I confess she? Then all sorts, he is trim, captain. Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow. What we, hat got so she that I rest and sent to scold and nature bankrupt nor the first gentleman?
Trigram	 Sweet prince, Falstaff shall die. Harry of Monmouth's grave. This shall forbid it should be branded, if renown made it empty. Indeed the duke; and had a very good friend.
Quadrigram	 King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. Will you not tell me who I am? It cannot be but so. Indeed the short and the long. Marry. 'tis a noble Lepidus.

Shakespeare as a corpus

- 884,647 tokens, **vocabulary** of V = 29,066 types.
- Shakespeare produced about 300,000 bigram types out of $V^2 \approx 845M$ possible bigram types.
 - .99.96% of possible bigrams were never seen (i.e., they have 0 probability in the bigram table).
- Quadrigrams appear more similar to Shakespeare because, for increasing context, there are fewer possible next words, given the training data.
 - E.g., *P*(*Gloucester*|*seek the traitor*) = 1

Evaluating a language model

- How can we quantify the goodness of a model?
- How do we know whether one model is better than another?
 - There are 2 general ways of evaluating LMs:
 - Extrinsic: in terms of some external measure (this depends on some task or application).
 - Intrinsic: in terms of properties of the LM itself.

Extrinsic evaluation

- The **utility** of a **language model** is often determined *in situ* (i.e., in **practice**).
 - e.g.,
 - Alternately embed LMs A and B into a speech recognizer.
 - 2. Run speech recognition using each model.
 - 3. Compare recognition rates between the system that uses LM A and the system that uses LM B.

Intrinsic evaluation

- To measure the intrinsic value of a language model, we first need to estimate the probability of a corpus, P(C).
 - This will also let us adjust/estimate model parameters (e.g., P(to|want)) to maximize P(Corpus).
- For a **corpus** of sentences, *C*, we sometimes make the assumption that the **sentences are conditionally independent**: $P(C) = \prod_i P(s_i)$

Intrinsic evaluation

• We estimate $P(\cdot)$ given a particular corpus, e.g., Brown.

• A good model of the Brown corpus is one that makes Brown very likely (even if that model is bad for other corpora).

Maximum likelihood estimate

 Maximum likelihood estimate (MLE) of parameters θ in a model M, given training data T is

$$\theta^* = \operatorname{argmax}_{\theta} L_M(\theta|T), \quad L_M(\theta|T) = P_{M(\theta)}(T)$$

- e.g., T is the Brown corpus, M is the bigram and unigram tables $\theta_{(to|want)}$ is P(to|want).
- In fact, we have been doing MLE, within the N-gram context, all along with our simple counting*

*(assuming an end-of-sentence token)

Perplexity

- Perplexity corp. *C*, $PP(C) = 2^{-\left(\frac{\log_2 P(C)}{\|C\|}\right)} = P(C)^{-1/\|C\|}$
- If you have a vocabulary \mathcal{V} with $\|\mathcal{V}\|$ word types, and your LM is *uniform* (i.e., $P(w) = \frac{1}{\|\mathcal{V}\|} \forall w \in \mathcal{V}$),

Then

$$PP(C) = 2^{-\left(\frac{\log_2 P(C)}{\|C\|}\right)} = 2^{-\left(\frac{\log_2 [(1/_{\|\nu\|})^{\cdot \|C\|}]}{\|C\|}\right)} = 2^{-\log_2(1/\|\nu\|)} = 2^{\log_2 \|\nu\|} = \|\mathcal{V}\|$$

- Perplexity is sort of like a 'branching factor'.
- Minimizing perplexity = maximizing probability of corpus

Perplexity as an evaluation metric

- **Lower** perplexity \rightarrow a **better** model.
 - (more on this in the section on information theory)
- e.g., splitting WSJ corpus into a 38M word training set and a 1.5M word test set gives:

N-gram order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Modelling language

- So far, we've modelled language as a surface phenomenon using only our observations (i.e., words).
- Language is hugely complex and involves hidden structure (recall: syntax, semantics, pragmatics).
- A '**true**' model of language would take into account **all** those things and the proper **relations** between them.
- Our first hint of modelling hidden structure will come with uncovering grammatical roles (i.e., parts-of-speech)

ZIPF AND THE NATURAL DISTRIBUTIONS IN LANGUAGE

CSC401/2511 - Spring 2021

Sparseness

- Problem with *N*-gram models:
 - New words appear often as we read new data.
 - e.g., interfrastic, espepsia, \$182,321.09
 - New **bigrams** occur *even more* often.
 - Recall that Shakespeare only wrote ~0.04% of all the bigrams he *could* have, given his vocabulary.
 - Because there are so many possible bigrams, we encounter new ones more frequently as we read.
 - New trigrams occur even more even-more-often.

Sparseness of unigrams vs. bigrams

 Conversely, we can see lots of every unigram, but still miss many bigrams:

		1	want	to	eat	Chinese	food	lunch	spend				
Unigram counts:		2533	927	2417	746	158	1093	341	278				
Count(w _{t-1} ,w _t)			W _t										
		I	want	to	eat	Chinese	food	lunch	spend				
	l.	5	827	0	9	0	0	0	2				
	want	2	0	608	1	6	6	5	1				
	to	2	0	4	686	2	0	6	211				
147	eat	0	0	2	0	16	2	42	0				
w _{t-1}	Chinese	1	0	0	0	0	82	1	0				
	food	15	0	15	0	1	4	0	0				
	lunch	2	0	0	0	0	1	0	0				
	spend	1	0	1	0	0	0	0	0				

Why does sparseness happen?

- The bigram table appears to be filled in **non-uniformly**.
- Clearly, some words (e.g., want) are very popular and will occur in many bigrams just from random chance.
- Other words are not-so-popular (e.g., hippopotomonstrosesquipedalian). They will occur **infrequently**, and when they do their partner word will have its own P(w).
- Is there some phenomenon that describes P(w) in real language?

Patterns of unigrams

• Words in *Tom Sawyer* by Mark Twain:

Word	Frequency
the	3332
and	2972
а	1775
to	1725
of	1440
was	1161
it	1027
in	906
that	877
he	877
	•••

A *few* words occur very *frequently*.

- Aside: the *most frequent* 256 English word types account for 50% of English tokens.
- Aside: for Hungarian, we need the top 4096 to account for 50%.
- *Many* words occur very *infrequently*.

Frequency of frequencies

• How many words occur X number of times in *Tom Sawyer*?

Hapax legomena: n.pl.	Word frequency	# of word types with that frequency		
words that occur once	1	3993		e.g.,
in a corpus.	2	1292		1292 word types
	3	664		occur twice
	4	410		Notice how many
	5	243	\geq	, word types are
	6	199		relatively rare!
	7	172	J	
	8	131		
	9	82		
	10	91		
	11-50	540		
	51-100	99		
	>100	102		

Ranking words in Tom Sawyer

• Rank word types in order of decreasing frequency.

Word	Freq. (<i>f</i>)	Rank (<i>r</i>)	f·r	Word	Freq. (f)	Rank (r)	f∙r
the	3332	1	3332	name	21	400	8400
and	2972	2	5944	comes	16	500	8000
а	1775	3	5235	group	13	600	7800
he	877	10	8770	lead	11	700	7700
but	410	20	8400	friends	10	800	8000
be	294	30	8820	begin	9	900	8100
there	222	40	8880	family	8	1000	8000
one	172	50	8600	brushed	4	2000	8000
about	158	60	9480	sins	2	3000	6000
more	138	70	9660	Could	2	4000	8000
never	124	80	9920	Applausive	1	8000	8000

With some (relatively minor) exceptions, *f*·*r* is very consistent!

CSC401/2511 – Spring 2021

Zipf's Law

- In *Human Behavior and the Principle of Least Effort*, Zipf argues^(*) that all human endeavour depends on laziness.
 - Speaker minimizes effort by having a small vocabulary of common words.
 - Hearer minimizes effort by having a large vocabulary of less ambiguous words.
 - Compromise: frequency and rank are inversely proportional.

$$f \propto \frac{1}{r}$$
 i.e., for some k $f \cdot r = k$

(*) This does not make it true.

Zipf's Law on the Brown corpus

CSC401/2511 - Spring 2021

Zipf's Law on the novel Moby Dick

CSC401/2511 – Spring 2021

Zipf's Law in perspective

- Zipf's explanation of the **phenomenon** involved human laziness.
- Simon's discourse model (1956) argued that the phenomenon could equally be explained by two processes:
 - People imitate relative frequencies of words they hear
 - People innovate new words with small, constant probability
- There are other explanations.

Aside – Zipf's Law in perspective

- Zipf *also* observed that **frequency** *correlates* with several **other** properties of words, e.g.:
 - Age (frequent words are old)
 - Polysemy (frequent words often have many meanings or higher-order functions of meaning, e.g., *chair*)
 - Length (frequent words are spelled with few letters)
- He also showed that there are hyperbolic distributions in the world (crucially, they're not Gaussian), just like:
 - Yule's Law: B = 1 + $\frac{g}{s}$
 - *s:* probability of mutation becoming dominant in species
 - g: probability of mutation that expels species from genus
 - Pareto distributions (wealth distribution)

SMOOTHING

CSC401/2511 - Spring 2021

Zero probability in Shakespeare

- Shakespeare's collected writings account for about 300,000 bigrams out of a possible V² ≈ 845M bigrams, given his lexicon.
- So 99.96% of the possible bigrams were **never** seen.
- Now imagine that someone finds a new play and wants to know whether it is Shakespearean...
- Shakespeare isn't very predictable! Every time the play uses one of those 99.96% bigrams, the sentence that contains it (and the play!) gets 0 probability.
- This is bad.

Zero probability in general

- Some N-grams are just really rare.
 e.g., perhaps 'negative press covfefe'
- If we had more data, *perhaps* we'd see them.
- If we have no way to determine the distribution of unseen N-grams, how can we estimate them?

Smoothing mechanisms

- Smoothing methods we will cover:
 - 1. Add- δ smoothing (Laplace)
 - 2. Good-Turing
 - 3. Simple interpolation (Jelinek-Mercer)
 - 4. Absolute discounting
 - 5. Kneser-Ney smoothing
 - 6. Modified Kneser-Ney smoothing

Smoothing as redistribution

- Make the distribution more uniform.
- This moves the probability mass from 'the rich' towards 'the poor'.

1. Add-1 smoothing ("Laplace discounting")

- Given vocab size $||\mathcal{V}||$ and corpus size N = ||C||.
- Just add 1 to all the counts! No more zeros!

• MLE
$$: P(w) = Count(w)/N$$

• Laplace estimate $: P_{Lap}(w) = \frac{Count(w)+1}{N+\|V\|}$

• Does this give a proper probability distribution? Yes:

$$\sum_{w} P_{Lap}(w) = \sum_{w} \frac{Count(w) + 1}{N + \|\mathcal{V}\|} = \frac{\sum_{w} Count(w) + \sum_{w} 1}{N + \|\mathcal{V}\|} = \frac{N + \|\mathcal{V}\|}{N + \|\mathcal{V}\|} = 1$$

1. Add-1 smoothing for bigrams

• Same principle for bigrams:

$$P_{Lap}(w_t | w_{t-1}) = \frac{Count(w_{t-1}w_t) + 1}{Count(w_{t-1}) + \|\mathcal{V}\|}$$

- We are essentially holding out and spreading $\|\mathcal{V}\|/(N + \|\mathcal{V}\|)$ uniformly over "imaginary" events.
- Does this work?

1. Laplace smoothed bigram counts

- Out of 9222 sentences in Berkeley restaurant corpus,
 - e.g., "I want" occurred 827 times so Laplace gives 828

Count(w _{t-1} ,w _t)		w _t									
		I	want	to	eat	Chinese	food	lunch	spend		
	l.	5+1	827+1	1	9+1	1	1	1	2+1		
	want	2+1	1	608+1	1+1	6+1	6+1	5+1	1+1		
	to	2+1	1	4+1	686+1	2+1	1	6+1	211+1		
	eat	1	1	2+1	1	16+1	2+1	42+1	1		
<i>w_{t-1}</i>	Chinese	1+1	1	1	1	1	82+1	1+1	1		
	food	15+1	1	15+1	1	1+1	4+1	1	1		
	lunch	2+1	1	1	1	1	1+1	1	1		
	spend	1+1	1	1+1	1	1	1	1	1		

1. Laplace smoothed probabilities

$$P_{Lap}(w_t|w_{t-1}) = \frac{C(w_{t-1}w_t) + 1}{C(w_{t-1}) + \|\mathcal{V}\|}$$

$P(w_t w_{t-1})$	I.	want	to	eat	Chinese	food	lunch	spend
I.	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00083	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
Chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

1. Add-1 smoothing

 According to this method, *P(to|want)* went from 0.66 to 0.26.

- That's a huge change!
- In extrinsic evaluations, the results are not great.
- Sometimes ~90% of the probability mass is spread across unseen events.
- It only works if we know \mathcal{V} beforehand.

1. Add- δ smoothing

- Generalize Laplace: Add $\delta < 1$ to be a bit less generous.
- : P(w) = Count(w)/NMLE $: P_{add-\delta}(w) = \frac{Count(w)+\delta}{N+\delta \|\mathcal{V}\|}$ • Add- δ estimate
- Does this give a proper probability distribution? Yes:

$$\sum_{w} P_{add-\delta}(w) = \sum_{w} \frac{Count(w) + \delta}{N + \delta ||\mathcal{V}||} = \frac{\sum_{w} Count(w) + \sum_{w} \delta}{N + \delta ||\mathcal{V}||}$$

$$= \frac{N + \delta ||\mathcal{V}||}{N + \delta ||\mathcal{V}||} = 1$$
This sometimes works
empirically (e.g., in text
categorization), sometimes
not...

/Ι

Is there another way?

- Choice of δ is ad-hoc
- Has Zipf taught us nothing?
 - Unseen words should behave more like hapax legomena.
 - Words that occur a lot should behave like other words that occur a lot.
 - If I keep reading from a corpus, by the time I see a new word like '*zenzizenzizenzic*', I will have seen '*the*' a lot more than once more.

2. Good-Turing

- Define N_c as the number of N-grams that occur c times.
 - "Count of counts"

Word frequency	# of words (i.e., unigrams) with that frequency	
1	<i>N</i> ₁ = 3993	
2	N ₂ = 1292	
3	$N_3 = 664$	
		(from Tom Sawyer

- For some word in 'bin' N_c, the MLE is that I saw that word c times.
- Idea: get rid of zeros by re-estimating c using the MLE of words that occur c + 1 times.

2. Good-Turing intuition/example

Imagine you have this toy scenario:

	•	I-	HOCK	30000	mother	tops
Frequency 8	7	3	2	1	1	1

= 23 words total

What is the MLE prior probability of hearing 'soccer'?

• P(soccer) = 1/23

- What is the probability of seeing something **new**?
 - No way to tell, but 3/23 words are hapax legomena ($N_1 = 3$).
 - If we use 3/23 to approximate things we've never seen, then we have to also adjust other probabilities (e.g., $P_{GT}(soccer) < 1/23$).

2. Good-Turing adjustments

•
$$P_{GT}^*([unseen]) = N_1/N$$

• Re-estimate count $c^* = \frac{(c+1)N_{c+1}}{N_c}$

- Unseen words
 - c = 0
 - MLE: p = 0/23
 - $P_{GT}^*([unseen]) = \frac{N_1}{N}$ = 3/23

- Seen once (e.g., soccer)
 - *c* = 1

• MLE:
$$p = 1/23$$

•
$$c^*(soccer) = 2 \cdot \frac{N_2}{N_1}$$

= $2 \cdot 1/3$

•
$$P_{GT}^*(soccer) = \left(\frac{2}{3}\right)/23$$

2. Good-Turing limitations

- Q: What happens when you want to estimate P(w) when w occurs c times, but no word occurs c + 1 times?
 - E.g., what is $P_{GT}^*(camp)$ since $N_4 = 0$?

Word	ship	pass	camp	frock	soccer	mother	tops
Frequency	8	7	3	2	1	1	1

- A1: We can re-estimate count $c^* = \frac{(c+1)E[N_{c+1}]}{E[N_c]}$.
 - Uses Expectation-Maximization (method used later)
- A2: We can interpolate linearly, in log-log, between values of c that we do have.

2. Good-Turing limitations

- Q: What happens when Count(McGill genius) = 0 and Count(McGill brainbox) = 0, and we smooth bigrams?
- A: *P*(*genius*|*McGill*) = *P*(*brainbox*|*McGill*)
 - But we'd expect
 P(genius|McGill) > P(brainbox|McGill)
 (context notwithstanding) because 'genius' is a more common word than 'brainbox').
- The solution may be to combine bigram and unigram models...

3. Simple interpolation (Jelinek-Mercer)

• Combine trigram, bigram, and unigram probabilities.

•
$$\hat{P}(w_t | w_{t-2} w_{t-1}) = \lambda_1 P(w_t | w_{t-2} w_{t-1}) + \lambda_2 P(w_t | w_{t-1}) + \lambda_3 P(w_t)$$

- With $\sum_i \lambda_i = 1$, this constitutes a real distribution.
- λ_i determined from **held-out** (aka **development**) data
 - Expectation maximization

4. Absolute discounting

• Instead of multiplying highest N-gram by a λ_i , just subtract a fixed discount $0 \le \delta \le 1$ from each non-zero count.

- $\lambda_{w_{t-n+1:t-1}}$ are chosen s.t. $\sum_{w_t} P_{abs}(w_t | ...) = 1$
- You can learn δ using held-out data.

4. Why absolute discounting?

- Both simple interpolation and absolute discounting redistribute probability mass, why absolute discounting?
- Compare GT counts to observed counts on this database:

AP newswire, J&M 2nd Ed.

- As c increases, $(c c^*) \rightarrow 0.75$. Good δ !
- Similar trend observed when comparing counts of training set (c) vs. held-out set (≈ c*)

5. Kneser-Ney smoothing

- In interpolation, lower-order (e.g., N − 1) models should only be useful if the N-gram counts are close to 0.
 - E.g., unigram models *should* be optimized for when bigrams are not sufficient.
- Imagine the bigram 'San Francisco' is common ∴ 'Francisco' has a very high unigram probability because it occurs a lot.
 - But 'Francisco' only occurs after 'San'.
- Idea: We should give 'Francisco' a low unigram probability, because it only occurs within the well-modeled 'San Francisco'.

5. Kneser-Ney smoothing

 Let the unigram count be the number of different words that it follows. I.e.:

$$N_{1+}(\bullet w_t) = |w_{t-1}: C(w_{t-1}w_t) > 0|$$

$$N_{1+}(\bullet \bullet) = \sum_{w_i} N_{1+}(\bullet w_i) \quad \leftarrow \text{The total number of bigram types.}$$

• So, the unigram probability is $P_{KN}(w_t) = \frac{N_{1+}(\bullet w_t)}{N_{1+}(\bullet \bullet)}$, and:

$$P_{KN}(w_t|w_{t-n+1:t-1}) = \frac{\max(C(w_{t-n+1:t}) - \delta, 0)}{\sum_{w_t} C(w_{t-n+1:t})} + \frac{\delta N_{1+}(w_{t-n+1:w-1} \bullet)}{\sum_{w_t} C(w_{t-n+1:t})} P_{KN}(w_t|w_{t-n+2:t-1})$$

Where $N_{1+}(w_{t-n+1:w-1})$ is the number of possible words that follow the context.

5. Modified Kneser-Ney smoothing

• Use different absolute discounts δ depending on the n-gram count s.t. $C(w_{t-n+1:t}) \ge \delta_{C(w_{t-n+1:t})} \ge 0$

$$P_{MKN}(w_t|w_{t-n+1:t-1}) = \frac{C(w_{t-n+1:t}) - \delta_{C(w_{t-n+1:t})}}{\sum_{w_t} C(w_{t-n+1:t})} + (1 - \lambda_{w_{t-n+1:t-1}})P_{MKN}(w_t|w_{t-n+2:t-1})$$

- $\delta_{C(w_{t-n+1:t})}$ could be learned or approximated, usually aggregated for counts above 3
- λ chosen to sum to one

С	0	1	2	3
C *	0.0000270	0.446	1.26	2.24

Smoothing over smoothing

- Modified Kneser-Ney is arguably the most popular choice for ngram language modelling
 - Popular open-source toolkits like KenLM, SRILM, and IRSTLM all implement it
- New smoothing methods are occasionally published
 - Huang et al., Interspeech 2020
- While *n*-gram LMs are still around, most interest in language modelling research has shifted to neural networks
- We will discuss neural language modelling a few weeks from now

Readings

- Chen & Goodman (1998) "An Empirical Study of Smoothing Techniques for Language Modeling," Harvard Computer Science Technical Report
- Jurafsky & Martin (2nd ed): 4.1-4.7
- Manning & Schütze: 6.1-6.2.2, 6.2.5, 6.3
- Shareghi *et al* (2019): https://www.aclweb.org/anthology/N19-1417.pdf (From the aside – completely optional)