

CSC401/2511 – Natural Language Computing – Spring 3020

Lecture 10 Frank Rudzicz

University of Toronto

Personal assistants

Need to talk to someone NOW? **Call this Helpline:** 866-966-1020

Welcome Guests!

Username:

Password:

Registration is OPTIONAL Learn more about profiles HERE

Hello, welcome to Simcoach.

Some things before we get started: I'm based on the real experiences of warfighters and their families, but I am not a real human, so please be patient with me, and talk in short sentences. Far as conversations go, I'm best at talking about PTSD and depression. I'm not a shrink, but I'm here to help.

I'd like to ask you a few questions to get to know you a bit. Ok?

no

I think I can help you better if I know where you're coming from.

ok?

no

that's ok

What's the major concern that brought you here today?

STREAM

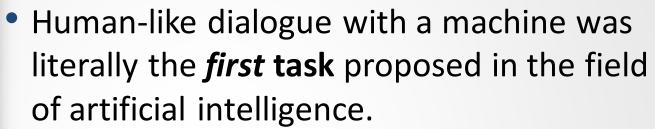
NOTES

Alright I'll check those out.

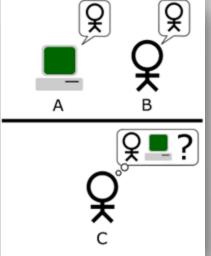
© 2010 USC Institute for Creative Technologies | Terms of Use

Personal assistants

Dialogue – the final frontier



It remains the most elusive.



- To succeed, our agents must:
 - Understand the world or task, and
 - 2. Respond realistically and consistently.

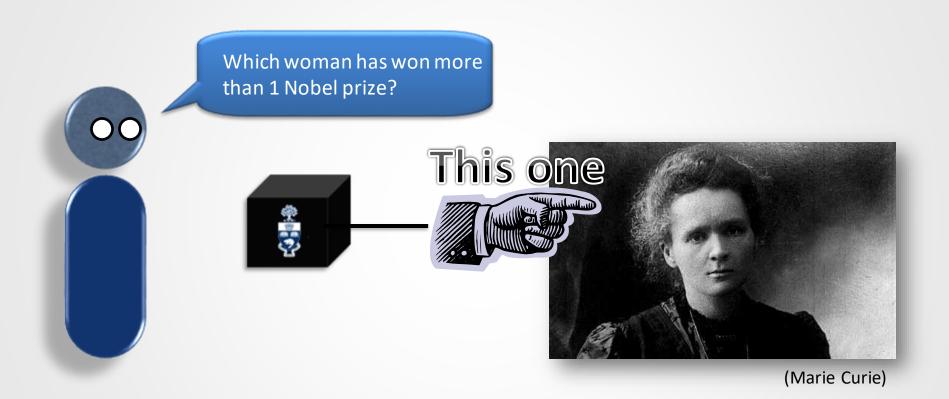
Understanding the world

RETRIEVING INFORMATION

Information retrieval systems

- Information retrieval (IR): n. searching for documents or information in documents.
 - Question-answering: respond with a specific answer to a question (e.g., Wolfram Alpha).
 - Document retrieval: find documents relevant to a query, ranked by relevance (e.g., bing or Google).
 - Text analytics/data mining: General organization of large textual databases (e.g., OpenText, MedSearch, ROSS)

Question answering (QA)

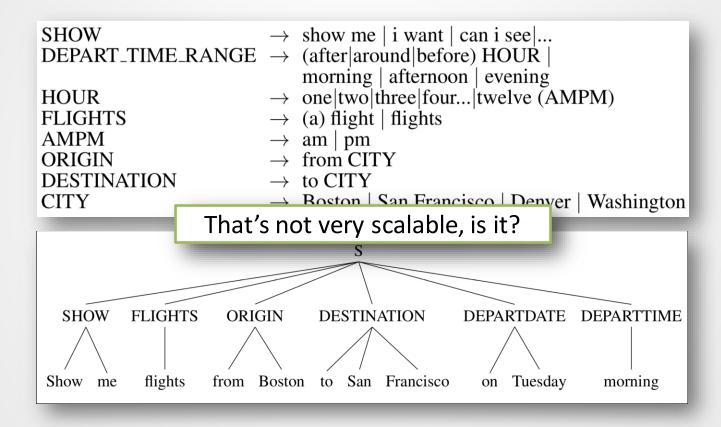


 Question Answering (QA) usually involves a specific answer to a question.

Knowledge-based QA

- Build a structured semantic representation of the query.
 - Extract times, dates, locations, entities using regular expressions.
 - Fit to well-known templates.
- 2. Query databases with these semantics.
 - Ontologies (Wikipedia infoboxes).
 - Restaurant review databases.
 - Calendars.
 - Movie schedules.
 - •

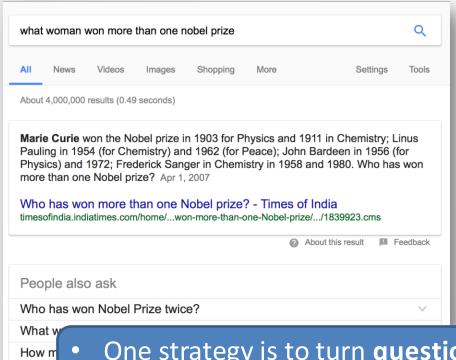
Slots machine

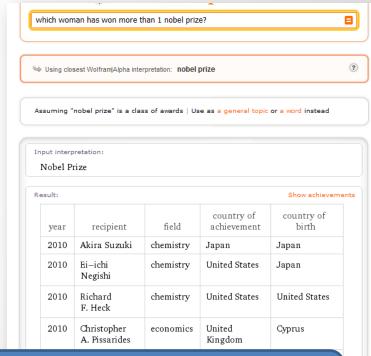


Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright 2017. All rights reserved. Draft of August 7, 2017.

Document retrieval vs IR

Google



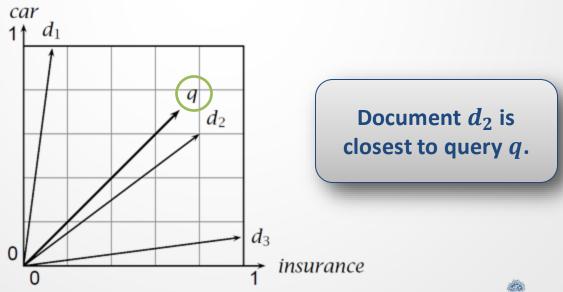


One strategy is to turn question answering into information retrieval (IR) and let the human complete the task.

How m

The vector space model

- If the query and the available documents can be represented by vectors, we can determine similarity according to their cosine distance.
 - Vectors that are near each other (within a certain angular radius) are considered relevant.



Term weighting

• What if we want to weight words in the vector space model?

Term frequency, tf_{ij}:

number of occurrences of word w_i in document d_i .

• Document frequency, df_i :

number of documents in which w_i appears.

Collection frequency, cf_i:

total occurrences of w_i in the collection.

Term frequency

- **Higher** values of tf_{ij} (for contentful words) suggest that word w_i is a **good** indicator of the content of document d_i .
 - When considering the relevance of a document d_j to a keyword w_i , tf_{ij} should be **maximized**.
- We often dampen tf_{ij} to temper these comparisons.
 - $tf_{dampen} = 1 + \log(tf)$, if tf > 0.

Document frequency

- The document frequency, df_i , is the number of documents in which w_i appears.
 - Meaningful words may occur repeatedly in a related document, but functional (or less meaningful) words may be distributed evenly over all documents.

Word	Collection frequency	Document frequency
kernel	10,440	3997
try	10,422	8760

• E.g., *kernel* occurs about as often as *try* in total, but it occurs in fewer documents – it is a more **specific** concept.

Inverse document frequency

- Very specific words, w_i , would give **smaller** values of df_i .
- To maximize specificity, the inverse document frequency is

$$idf_i = \log\left(\frac{D}{df_i}\right)$$

where D is the total number of documents and we scale with log, as before.

 This measure gives full weight to words that occur in 1 document, and zero weight to words that occur in all documents.

tf.idf

 We combine the term frequency and the inverse document frequency to give us a joint measure of relatedness between words and documents:

$$tf.idf(w_i, d_j) = \begin{cases} (1 + \log(tf_{ij})) \log \frac{D}{df_i} & \text{if } tf_{ij} \ge 1\\ 0 & \text{if } tf_{ij} = 0 \end{cases}$$

Latent semantic indexing

- Co-occurrence: n. when two or more terms occur in the same documents more often than by chance.
 - Note: this is not the same as collocations
- Consider the following:

		Term 1	Term 2	Term 3	Term 4
3	Query	natural	language		
	Document 1	natural	language	NLP	embedding
	Document 2			NLP	embedding

- Document 2 appears to be **related** to the query although it contains **none** of the query terms.
 - The query and document 2 are semantically related.

Singular value decomposition (SVD)

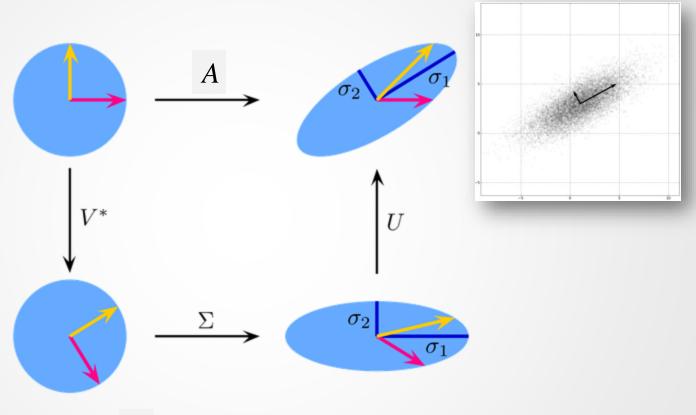
• An SVD projection is computed by decomposing the term-by-document matrix $A_{t\times d}$ into the product of three matrices:

$$T_{t \times n}$$
, $S_{n \times n}$, and $D_{d \times n}$
where t is the number of words (terms),
 d is the number of documents, and
 $n = \min(t, d)$.

Specifically,

$$A_{t\times d} = T_{t\times n} S_{n\times n} (D_{d\times n})^{\mathsf{T}}$$

Singular value decomposition (SVD)



$$A = U \cdot \Sigma \cdot V^*$$

$$A_{t\times d} = T_{t\times n} S_{n\times n} (D_{d\times n})^{\mathsf{T}}$$

 d_1

$$T = \begin{bmatrix} nat. & -0.44 & -0.30 & 0.57 & 0.58 & 0.25 \\ lang. & -0.13 & -0.33 & -0.59 & 0 & 0.73 \\ proc. & -0.48 & -0.51 & -0.37 & 0 & -0.61 \\ car & -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\ truck & -0.26 & 0.65 & -0.41 & 0.58 & -0.09 \\ \end{bmatrix}$$

$$S = \begin{bmatrix} 2.16 & 0 & 0 & 0 & 0 \\ 0 & 1.59 & 0 & 0 & 0 \\ 0 & 0 & 1.28 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0.39 \end{bmatrix}$$

$$D^{\mathsf{T}} = \begin{bmatrix} d_1 & d_2 & d_3 & d_4 & d_5 & d_6 \\ -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\ -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\ 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\ 0 & 0 & 0.58 & 0 & -0.58 & 0.58 \\ -0.53 & 0.29 & 0.63 & 0.19 & 0.41 & -0.22 \end{bmatrix}$$

What do these matrices mean?

		d_1	d_2	d_3	d_4	d_5	d_6
	natural	1	0	1	0	0	0
1 —	language	0	1	0	0	0	0
A —	processing	1	1	0	0	0	0
	car	1	0	0	1	1	0
	truck	0	0	0	1	0	1

- A is the matrix of term frequencies, tf_{ij} .
 - E.g., natural occurs once in d_1 and once in d_3 .

- Matrices T and D
 represent terms and
 documents, respectively in T
 this new space.
 - E.g., the first row of T corresponds to the first row of A, and so on.
- T and D are **orthonormal**, so all columns are orthogonal to each other and $T^{\mathsf{T}}T = D^{\mathsf{T}}D = I$.

	nat	-0.44	-0.30	0.57	0.58	0.25
	lang.	-0.13	-0.33	-0.59	0	0.73
T =	proc.	-0.48	-0.51	-0.37	0	-0.61
	car	-0.70	0.35	0.15	-0.58	0.16
	truck	-0.26	0.65	-0.41	0.58	-0.09

	u_1	u_2	uz	и4	u_5	u_6
	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
т	-0.29	-0.53	-0.19	0.63	0.22	0.41
_	0.28	-0.75	0.45	-0.20	0.12	-0.33
	0	0	0.58	0	-0.58	0.58
	-0.53	0.29	0.63	0.19	0.41	-0.22

- The matrix S contains the singular values of A in descending order.
 - The i^{th} singular value indicates the amount of variation on the i^{th} axis.

$$S = \begin{bmatrix} 2.16 & 0 & 0 & 0 & 0 \\ 0 & 1.59 & 0 & 0 & 0 \\ 0 & 0 & 1.28 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0.39 \end{bmatrix}$$

• By restricting T, S, and D to their first k < n columns, their product gives us \hat{A} , a 'best least squares' approximation of A.

	cosm.	-0.44	-0.30	U.57	0.58	0.25
	astro.	-0.13	-0.33	-0 59	0	0.73
T =	moon	-0.48	-0.51	-0.37	0	-0.61
	car	-0.70	0.35	0.15	-0.58	0.16
	truck	-0.26	0.65	-0 41	0.58	-0.09

$$S = \begin{bmatrix} 2.16 & 0 & 0 & 0 & 0 \\ 0 & 1.59 & 0 & 0 & 0 \\ 0 & 0 & 1.28 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0.39 \end{bmatrix}$$

$$D^{\mathsf{T}} = \begin{bmatrix} d_1 & d_2 & d_3 & d_4 & d_5 & d_6 \\ -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\ -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\ 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\ 0 & 0 & 0.58 & 0 & -0.58 & 0.58 \\ -0.53 & 0.29 & 0.63 & 0.19 & 0.41 & -0.22 \end{bmatrix}$$

SVD in practice



Rohde *et al.* (2006) An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence.

Communications of the ACM 8:62

3.

Neural embeddings revisited

- We can use neural embeddings for words and documents
 - Use term-document matrix, but swap out SVD for NNs.
 - Small amounts of labeled data can be used to fine-tune.

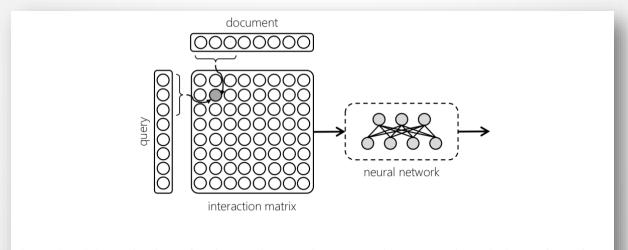


Figure 21: Schematic view of an interaction matrix generated by comparing windows of text from the query and the document. A deep neural network—such as a CNN—operates over the interaction matrix to find patterns of matches that suggest relevance of the document to the query.

Mitra B, Craswell N. (2017) Neural Models for Information Retrieval. http://arxiv.org/abs/1705.01509
Zhang Y, Rahman MM, Braylan A, et al. (2016) Neural Information Retrieval: A Literature Reviews

Neural embeddings revisited

 Global word embeddings risk capturing only coarse representations of topics dominant in the corpus.

global	local
cutting	tax
squeeze	deficit
reduce	vote
slash	budget
reduction	reduction
spend	house
lower	bill
halve	plan
soften	spend
freeze	billion

Figure 3: Terms similar to 'cut' for a word2vec model trained on a general news corpus and another trained only on documents related to 'gasoline tax'.

Diaz F, Mitra B, Craswell N. (2016) Query Expansion with Locally-Trained Word Embeddings, Proc. of ACL, 367–77. doi:10.18653/v1/P16-1035

Aside – query expansion

 Query expansion involves reweighting likelihoods, usually through deleted interpolation:

$$p_q^1(w) = \lambda p(w) + (1 - \lambda)p_{q^+}(w)$$

• P_q^+ comes from taking the $|\mathcal{V}| \times k$ term embedding matrix \mathbf{U} and the $|\mathcal{V}| \times 1$ query term vector q, taking the top terms from $UU^{\mathsf{T}}q$, and normalizing their weights.

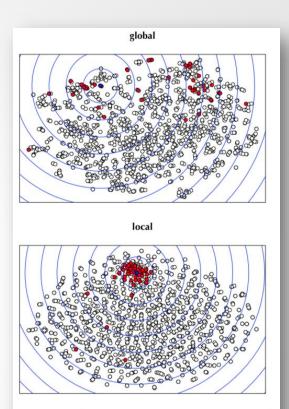


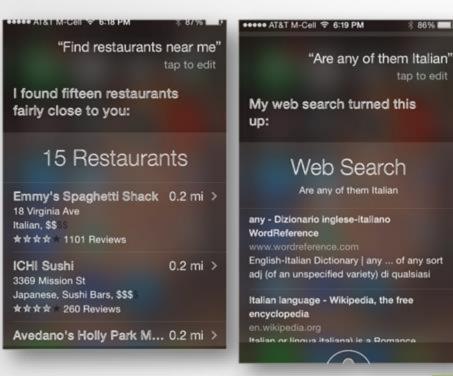
Figure 5: Global versus local embedding of highly relevant terms. Each point represents a candidate expansion term. Red points have high frequency in the relevant set of documents. White points have low or no frequency in the relevant set of documents. The blue point represents the query. Contours indicate distance from the query.

Diaz F, Mitra B, Craswell N. (2016) Query Expansion with Locally-Trained Word Embeddings,

Responding realistically and consistently

STIMULUS/RESPONSE

Let me Bing that for you



(a)

2014

(b)

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright 2017. All rights reserved. Draft of August 7, 2017.

Amnesic objective functions

 Simply mapping source to target results in interaction that is only as good as its last input.

$$Loss = -\log P(target|source)$$

- Generic responses become common,
 i.e., target = "Let me search the web for that"
- Trying to maximize mutual information improves things, but not by much.

$$I(T;S) = \sum_{T,S} p(T,S) \log_2 \frac{p(T,S)}{p(T)p(S)}$$

Amnesic objective functions

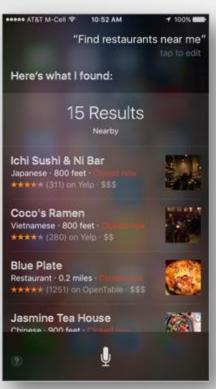
Input: What are you doing	g?
-0.86 I don't know.	-1.09 Get out of here.
-1.03 I don't know!	-1.09 I'm going home.
-1.06 Nothing.	-1.09 Oh my god!
-1.09 Get out of the way.	-1.10 I'm talking to you.
Input: what is your name	?
-0.91 I don't know.	***
-0.92 I don't know!	-1.55 My name is Robert.
-0.92 I don't know, sir.	-1.58 My name is John.
-0.97 Oh, my god!	-1.59 My name's John.
Input: How old are you?	
-0.79 I don't know.	***
-1.06 I'm fine.	-1.64 Twenty-five.
-1.17 I'm all right.	-1.66 Five.
-1.17 I'm not sure.	-1.71 Eight.

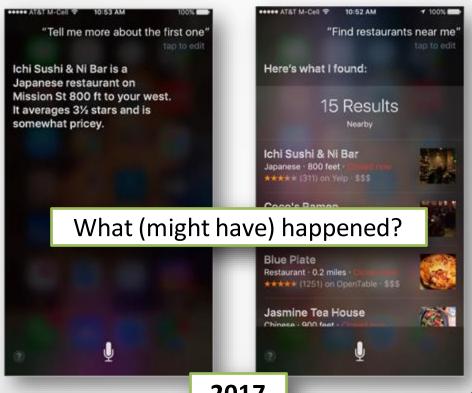
Input: What are you doing?	
 I've been looking for you. 	I told you to shut up.
I want to talk to you.	Get out of here.
Just making sure you're OK.	I'm looking for a doctor.
Input: What is your name?	
1. Blue!	4. Daniel.
2. Peter.	My name is John.
3. Tyler.	My name is Robert.
Input: How old are you?	
1. Twenty-eight.	4. Five.
Twenty-four.	5. 15.
3. Long.	6. Eight.
J. 2016.	0. 2.6

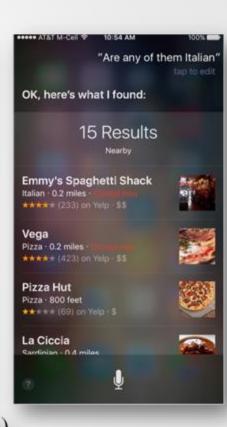
P(T|S)

I(T;S)

Let me actually answer that for you





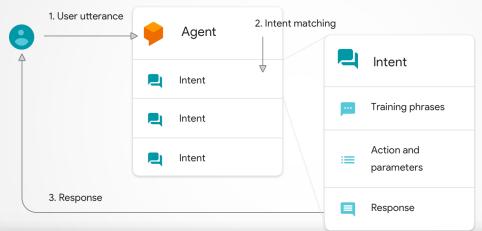


(a) **2017** (b)

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright 2017. All rights reserved. Draft of August 7, 2017.

States of this belief

- Map utterances to dialogue acts and beliefs about the world.
 - Maintain (and update*!) those beliefs. *Humans can barely do this.



https://dialogflow.com/docs/intro

	inform* / request* / select ¹²³ / recommend/ ¹²³ / not found ¹²³
act type	request booking info 123 / offer booking 1235 / inform booked 1235 / decline booking 1235
	welcome* /greet* / bye* / reqmore*
	address* / postcode* / phone* / name ¹²³⁴ / no of choices ¹²³⁵ / area ¹²³ /
slots	pricerange ¹²³ / type ¹²³ / internet ² / parking ² / stars ² / open hours ³ / departure ⁴⁵
	destination ⁴⁵ / leave after ⁴⁵ / arrive by ⁴⁵ / no of people ¹²³⁵ / reference no. ¹²³⁵ /
	trainID ⁵ / ticket price ⁵ / travel time ⁵ / department ⁷ / day ¹²³⁵ / no of days ¹²³

Mrkšić N, Séaghdha DÓ, Wen T-H, et al. (2016) Neural Belief Tracker: Data-Driven Dialogue State Tracking. http://arxiv.org/abs/1606.03777

	Core dialog acts
Info-request	Speaker wants information from ad-
	dressee
Action-request	Speaker wants addressee to perform
	an action
Yes-answer	Affirmative answer
No-answer	Negative answer
Answer	Other kinds of answer
Offer	Speaker offers or commits to perform
	an action
ReportOnAction	Speaker notifies an action is being/has
	been performed
Inform	Speaker provides addressee with in-
	formation not explicitly required (via
	an Info-request)
Co	onventional dialog acts
Greet	Conversation opening
Quit	Conversation closing
Apology	Apology
Thank	Thanking (and down-playing)
Feedback	turn management dialog acts
Clarif-request	Speaker asks addressee for confirma-
	tion/repetition of previous utterance
	for clarification.
Ack	Speaker expresses agreement with
	previous utterance, or provides feed-
	back to signal understanding of what
	the addressee said
Filler	Utterance whose main goal is to man-
	age conversational time (i.e. dpeaker
	taking time while keeping the turn)
Non-interpre	table/non-classifiable dialog acts
Other	Default tag for non-interpretable and
	non-classifiable utterances

Dinarelli M, Quarteroni S, Tonelli S. (2009) Annotating spoken dialogs: from speech segments to dialog acts and frame semantics. *Proc 2nd Work Semant Represent Spok Lang* 2009;:34–41.

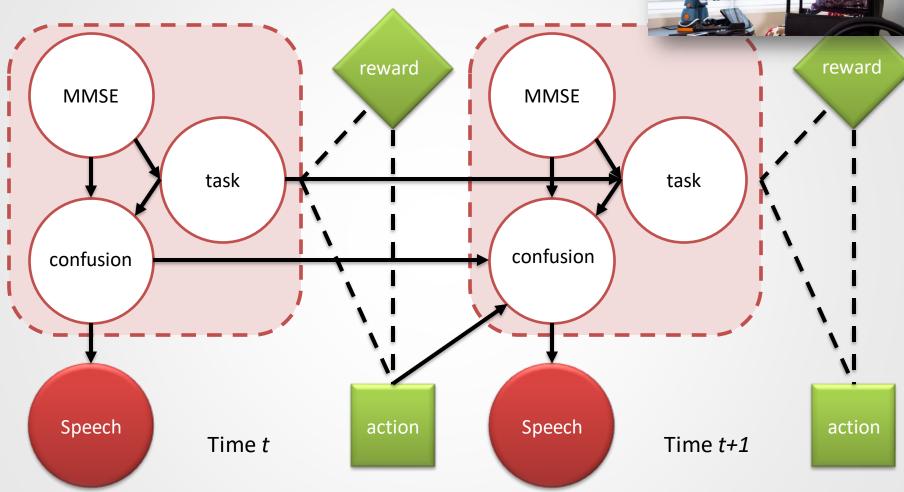
http://dl.acm.org/citation.cfm?id=1626301

State of this belief

Use reinforcement learning to make these explicit.



Li J, Monroe W, Ritter A, et al. (2017) Deep Reinforcement Learning for Dialogue Generation.



Chinaei H, Currie LC, Danks A, et al. (2017) Identifying and avoiding confusion in dialogue with people with Alzheimer's disease. *Computational Linguistics* **43**:377–406.

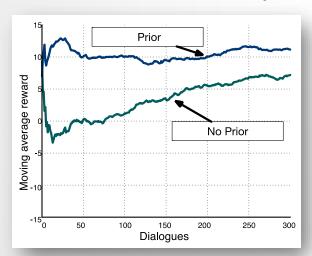
TORONTO

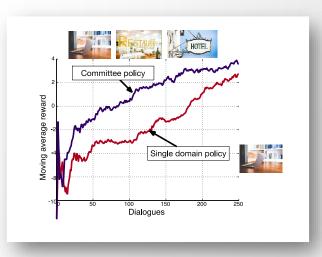
Aside – RL in dialogue

Challenge 1: data is limited in a particular domain

Solution 1 : learn a distributed architecture with Gaussian priors

• Challenge 2: Estimates of Q aren't shared across different domains Solution 2: Use a Bayesian 'committee machine'



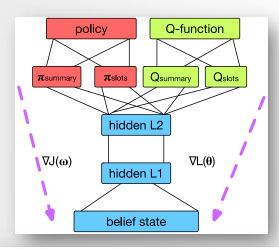


Gašić *et al* (2015) Distributed dialogue policies for multi-domain statistical dialogue management, ICASSP, https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7178997

Gašić et al (2015) Policy Committee for adaptation in multi-domain spoken dialogue systems,

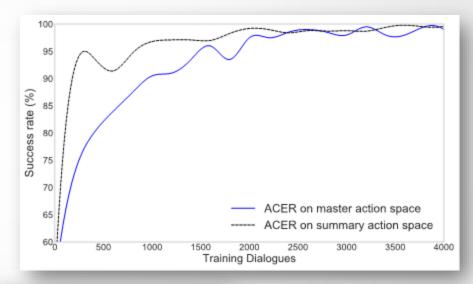
Aside – RL in dialogue

- ACER learns an 'off policy' gradient ∇J and modified loss ∇L .
 - Avoid bias through replaying experience



The off-policy version of the Policy Gradient Theorem [30] is used to derive the gradients $\nabla_{\omega} J(\omega) \approx g(\omega)$:

$$g(\omega) = \sum_{b \in \mathbb{B}} d^{\mu}(b) \sum_{a \in \mathbb{A}} \nabla_{\omega} \pi(a|b) Q_{\pi}(b,a) \tag{1}$$



$$\nabla L(\theta) = \nabla_{\theta} (Q^{ret} - Q_{\theta}(\mathbf{b}, a))^2$$

$$Q^{ret} = Q(\mathbf{b}, a) + \mathbb{E}_{\mu} \left[\sum_{t \ge 0} \gamma^t \left(\prod_{s=1}^t \lambda \min\left(1, \rho(a_s | \mathbf{b}_s)\right) \right) (r_t + \gamma V(\mathbf{b}_{t+1}) - Q(\mathbf{b}_t, a_t)) \right]$$

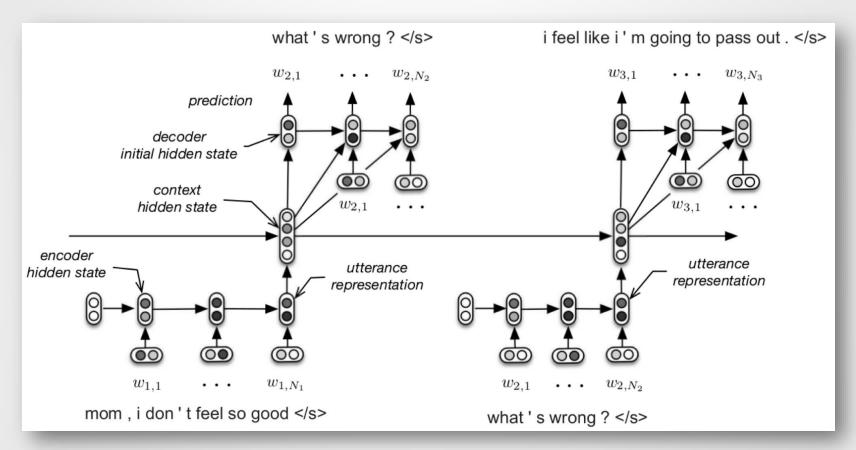
From Milica Gašić, Cambridge

Weisz, Budzianowski, Su, Gašić, (2018) Sample efficient deep reinforcement learning for dialogy systems with large action spaces, IEEE TASLP https://arxiv.org/pdf/1802.03753.pdf

Aside – RL in dialogue

Rajpurkar *et al* (2017) Malaria Likelihood Prediction By Effectively Surveying Households Using Deep Reinforcement Learning. *ML4H*.

End-to-end translation dialogue systems



Serban I V., Sordoni A, Bengio Y, et al. (2015) Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.

Extensions exist that add **variational encoding** or **diversity-promoting objective functions** to avoid Siri-like repetitiveness repetitiveness.

End-to-end dialogue systems

- Claim: "we view our model as a cognitive system, which has to carry out natural language understanding, reasoning, decision making, (sic) and natural language generation".
- Objective: Perplexity (where U is an utterance)...

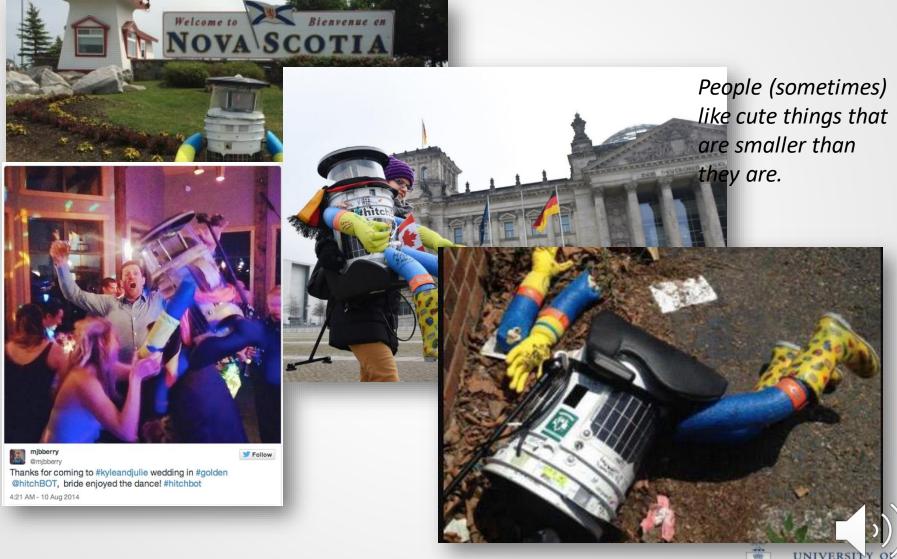
$$\exp\left(-\frac{1}{N_w}\sum_{n=1}^N\log P_\theta\left(U_1^n,U_2^n,U_3^n\right)\right)$$

Serban I V., Sordoni A, Bengio Y, et al. (2015) Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models.

Overhype vb. make exaggerated claims about (a product, idea, or event);
 publicize or promote excessively

EVALUATION

Qualitative evaluation



Corpora for dialogue

Metric	DSTC2	SFX	WOZ2.0	FRAMES	KVRET	M2M	MultiWOZ
# Dialogues	1,612	1,006	600	1,369	2,425	1,500	8,438
Total # turns	23,354	12,396	4,472	19,986	12,732	14,796	115,424
Total # tokens	199,431	108,975	50,264	251,867	102,077	121,977	1,520,970
Avg. turns per dialogue	14.49	12.32	7.45	14.60	5.25	9.86	13.68
Avg. tokens per turn	8.54	8.79	11.24	12.60	8.02	8.24	13.18
Total unique tokens	986	1,473	2,142	12,043	2,842	1,008	24,071
# Slots	8	14	4	61	13	14	25
# Values	212	1847	99	3871	1363	138	4510

Table 1: Comparison of our corpus to similar data sets. Numbers in bold indicate best value for the respective metric. The numbers are provided for the training part of data except for FRAMES data-set were such division was not defined.

<u>Ubuntu dialogue corpus</u> and <u>AMI Meeting corpus</u> are also popular.

Budzianowski P, Wen T-H, Tseng B-H, et al. (2018) MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling http://arxiv.org/abs/1810.00278

Evaluating end-to-end dialogue

- PyDial (pydial.org) is an open-source
 Python toolkit for dialogue evaluation.
 - Domain-independent
- Crowd sourcing (e.g., Mechanical Turk)?
 - Gather many responses to input by humans,
 - Learn to generate responses
 - Learn to discriminate real from fake.

```
For number of training iterations do

For i=1,D-steps do

Sample (X,Y) from real data

Sample \hat{Y} \sim G(\cdot|X)

Update D using (X,Y) as positive examples and (X,\hat{Y}) as negative examples.

End

For i=1,G-steps do

Sample (X,Y) from real data

Sample \hat{Y} \sim G(\cdot|X)

Compute Reward T for (X,\hat{Y}) using T

Update T

Update T

Teacher-Forcing: Update T

End

End
```

Figure 1: A brief review of the proposed adversarial reinforcement algorithm for training the generator G and discriminator D. The reward r from the discriminator D can be computed using different strategies according to whether using RE-INFORCE or REGS. The update of the generator G on (X, \hat{Y}) can be done by either using Eq.2 or Eq.3. D-steps is set to 5 and G-steps is set to 1.

Ultes, Rojas-Barahona, Su, et al (2017) PyDial: A Multi-domain Statistical Dialogue System Toolkit, ACL, https://www.aclweb.org/anthology/P17-4013

Casanueva, Budzianowski, Su, et al (2017) A Benchmarking Environment for Reinforcement Learning Based Task Oriented Dialogue Management, NIPS Symposium on Deep RL Li J, Monroe W, Shi T, et al. (2017) Adversarial Learning for Neural Dialogue Generation.

EMNLP, http://arxiv.org/abs/1701.06547

Evaluating end-to-end dialogue

Input	tell me how long have you had this falling sickness?			
Vanilla-SEQ2SEQ	i'm not a doctor.			
Adversarial	a few months, i guess.			
Input	so i had the doctors test sammy 's response to conditioning.			
Vanilla-SEQ2SEQ	sammy wrote the test sammy wrote the test.			
Adversarial	so he took the pills.			

- Evaluating according to scores like BLEU or ROUGE usually require lots of (expensive) references.
 - Contribution of fidelity can be overwhelmed by naturalness.
 - Even still, scores don't correlate at all with human judgements.

Li J, Monroe W, Shi T, et al. (2017) Adversarial Learning for Neural Dialogue Generation. EMNLP, http://arxiv.org/abs/1701.06547

Evaluating end-to-end dialogue

	Ubu	ntu Dialogue Co	rpus	Twitter Corpus			
	Embedding	Greedy	Vector	Embedding	Greedy	Vector	
	Averaging	Matching	Extrema	Averaging	Matching	Extrema	
R-TFIDF	0.536 ± 0.003	0.370 ± 0.002	0.342 ± 0.002	0.483 ± 0.002	0.356 ± 0.001	0.340 ± 0.001	
C-TFIDF	0.571 ± 0.003	0.373 ± 0.002	0.353 ± 0.002	0.531 ± 0.002	0.362 ± 0.001	0.353 ± 0.001	
DE	0.650 ± 0.003	0.413 ± 0.002	0.376 ± 0.001	$\textbf{0.597} \pm \textbf{0.002}$	0.384 ± 0.001	0.365 ± 0.001	
LSTM	0.130 ± 0.003	0.097 ± 0.003	0.089 ± 0.002	0.593 ± 0.002	0.439 ± 0.002	0.420 ± 0.002	
HRED	0.580 ± 0.003	$\textbf{0.418} \pm \textbf{0.003}$	$\textbf{0.384} \pm \textbf{0.002}$	$\textbf{0.599} \pm \textbf{0.002}$	$\textbf{0.439} \pm \textbf{0.002}$	$\textbf{0.422} \pm \textbf{0.002}$	

Table 2: Models evaluated using the vector-based evaluation metrics, with 95% confidence intervals.

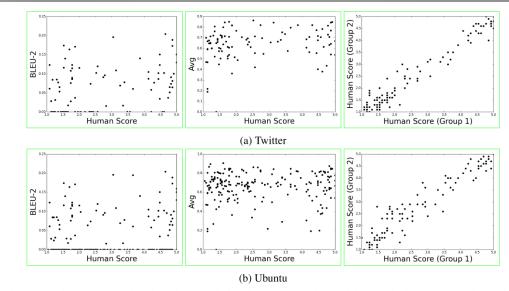


Figure 1: Scatter plots showing the correlation between metrics and human judgements on the Twitter corpus (a) and Ubuntu Dialogue Corpus (b). The plots represent BLEU-2 (left), embedding average (center), and correlation between two randomly selected halves of human respondents (right).

Liu C-W, Lowe R, Serban I V., et al. (2016) How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation. http://arxiv.org/abs/4603.0802

