

Features and classification

CSC401/2511 - Natural Language Computing -Spring 2020 Lecture 3 - Frank Rudzicz and Sean Robertson

Lecture 3 overview

- Today:
- Feature extraction from text.
- How to pick the right features?
- Grammatical 'parts-of-speech'.
- (which don't require spoken language)
- Classification overview
- Some slides may be based on content from Bob Carpenter, Dan Klein, Roger Levy, Josh Goodman, Dan Jurafsky, and Christopher Manning.

Features

- Feature: n. A measurable variable that is (or should be) distinctive of something we want to model.
- We usually choose features that are useful to identify something, i.e., to do classification.
- E.g., an emotional, whiny tone is likely to indicate that its source is not legal, or scientific, or political.
- Note that in neural networks, 'features' often refer to something like a latent dimension.
- We often need several features to adequately model something - but not too many!

Feature vectors

- Values for several features of an observation can be put into a single vector.

\# proper	\# 1st person	\# commas
nouns	pronouns	

Damien Fahey *

©DamienFahey

2. Follow

Rush Limbaugh looks like if someone put a normal human being in landscape mode.
4 Reply $\uparrow 7$ Retweet Favorite ee More

[
Faux John Madden
©FauxJohnMadden
2- Follow

BREAKING: Apple Maps projecting Barack Obama to win Brazil.

4 Reply 17 Retweet Favorite eee More

If there was an award for most pessimistic, I probably wouldn't even be nominated.

0	1	1

Feature vectors

- Features should be useful in discriminating between categories.

- Cluestr
- Tied pernes prasios

Sormed piana pheower
Flupd jwibe pueron
Cleatiatise nep/wertles?
Few-iser wht

Chanest
Celoes and weul-chas
punter
Funetions
THere
Cower =ens

- Fropni mase
- Alowly
*t-sent
Mebles illay armenter

* Minclon of evareres

Higher values \rightarrow this person is referring to themselves (to their opinion, too?)

Higher values \rightarrow looking forward to (or dreading) some future event?

Lower values \rightarrow this tweet is more formal. Perhaps not overly sentimental?

Quick comment on noise

- Noise is generally any artifact in your received 'signal' that obfuscates (hides) the features you want.
- E.g., in acoustics, it can be a loud buzzing sound that washes out someone's voice.
- E.g., in tweets, it can be text that affects feature values.
- E.g., The semi-colon in "... chill ;)" is part of an emoticon; will it confuse our classifier if we count it as punctuation?

Pre-processing

- Pre-processing involves preparing your data to make feature extraction easier or more valid.
- E.g., punctuation likes to press up against words. The sequence " example," should be counted as two tokens - not one.
- We separate the punctuation, as in " example ,".
- There is no perfect pre-processor.

Mutually exclusive approaches can often both be justified.

- E.g., Is Newfoundland-Labrador one word type or two?

Each answer has a unique implication for splitting the dash.

- Often, noise-reduction removes some information.
- Being consistent is important.

Different features for different tasks

- Alzheimer's disease involves atrophy in the brain.
- Excessive pauses (acoustic disfluencies),
- Excessive word type repetition, and
- Simplistic or short sentences.
- 'function words' like the and an are often dropped.
- To diagnose Alzheimer's disease, one might measure:
- Proportion of utterance spent in silence.
- Entropy of word type usage.
- Number of word tokens in a sentence.
- Number of prepositions and determiners (explained shortly).

Explainability!

Features in Sentiment Analysis

- Sentiment analysis can involve detecting:
- Stress or frustration in a conversation.
- Interest, confusion, or preferences. Useful to marketers.
- e.g., 'got socks for xmas wanted \#botw fml' $\}$
- Lies. e.g., 'Let's watch Netflix and chill.'

What does this mean?

- Complicating factors include sarcasm, implicitness, and a subtle spectrum from negative to positive opinions.
- Useful features for sentiment analyzers include:
- Trigrams.
- First-person pronouns.

Pronouns? Prepositions?

 Determiners?
Parts of Speech

Parts of speech (PoS)

- Linguists like to group words according to their structural function in building sentences.
- This is similar to grouping Lego by their shapes.
- Part-of-speech: n. lexical category or morphological class.

Nouns collectively constitute a part of speech (called Noun)

Example parts of speech

Part of Speech	Description	Examples
Noun	is usually a person, place, event, or entity.	chair, pacing, monkey, breath.
Verb	is usually an action or predicate.	run, debate, explicate.
Adjective	modifies a noun to further describe it.	orange, obscene, disgusting.
Adverb	modifies a verb to further describe it.	lovingly, horrifyingly, often

Example parts of speech

Part of Speech	Description	Examples
Preposition	Often specifies aspects of space, time, or means.	around, over, under, after, before, with
Pronoun	Substitutes for nouns; referent typically understood in context.	I, we, they
Determiner	logically quantify words, usually nouns.	the, an, both, either
Conjunction	combines words or phrases.	and, or, although

Contentful parts-of-speech

- Some PoS convey more meaning.
- Usually nouns, verbs, adjectives, adverbs.
- Contentful PoS usually contain more words.
- e.g., there are more nouns than prepositions.
- New contentful words are continually added e.g., an app, to google, to misunderestimate.
- Archaic contentful words go extinct.
e.g., fumificate, v., (1721-1792),
frenigerent, adj., (1656-1681), melanochalcographer, n., (c. 1697).

Functional parts-of-speech

- Some PoS are 'glue' that holds others together.
- E.g., prepositions, determiners, conjunctions.
- Functional PoS usually cover a small and fixed number of word types (i.e., a 'closed class').
- Their semantics depend on the contentful words with which they're used.
- E.g., I'm on time vs. I'm on a boat

Grammatical features

- There are several grammatical features that can be associated with words:
- Case
- Person
- Number
- Gender
- These features can restrict other words in a sentence.

(Aside) Grammatical features - person

- Person: n. typically refers to a participant in an event, especially with pronouns in a conversation.
- E.g.,
first: The speaker/author. Can be either inclusive ("we") or exclusive of hearer/reader ("I").
second: The hearer/reader, exclusive of speaker ("you") third: Everyone else ("they")

Aside: some languages add exclusivity to 'person'.
E.g., in "we're going to a party" - who's going to the party?

(Aside) Grammatical features - number

- Number: n. Broad numerical distinction.
- E.g.,
singular: Exactly one ("one cow")
plural: More than one ("two cows")
dual: Exactly two (e.g., - ان in Arabic).
paucal: Not too many (e.g., in Hopi).
collective: Countable (e.g., Welsh "moch" for 'pigs' as opposed to "mochyn" for vast 'pigginess').

(Aside) Grammatical features - gender

- gender: n. typically partitions nouns into classes associated with biological gender. Not typical in English.
- Gender alters neighbouring words regardless of speaker/hearer.
- E.g.,
feminine: Typically pleasant things (not always). (e.g., la France, eine Brücke, une poubelle).
masculine: Typically ugly or rugged things (not always). (e.g., le Québec, un pont).
neuter: Everything else.
(Brücke: German bridge; pont: French bridge; poubelle: French garbage)

Other features of nouns

- Proper noun: named things (e.g., "they've killed Bill!")
- Common noun: unnamed things
(e.g., "they've killed the bill!")
- Mass noun: divisible and uncountable
(e.g., "butter" split in two gives two piles of butter - not two 'butters')
- Count noun: indivisible and countable.
(e.g., a "pig" split in two does not give two pigs)

(Aside) Some features of prepositions

- By
- Alongside: a cottage by the lake
- Agentive: Chlamydia was given to Mary by John
- For
- Benefactive: I have a message for your mom
- Purpose: have a friend (over) for dinner
- With
- Sociative:
- Instrumental:
watch a film with a friend hit a nail with a hammer

Agreement

- Parts-of-speech should match (i.e., agree) in certain ways.
- Articles 'have' to agree with the number of their noun
- e.g., "these pretzels are making me thirsty" ()
- e.g., " \underline{a} winters are coming" (:)
- Verbs 'have' to agree (at least) with their subject (in English)
- e.g., "the dogs eats the gravy" :) no number agreement
- e.g., "Yesterday, all my troubles seem so far away"
. . bad tense - should be past tense seemed
- e.g., "Can you handle me the way I are?" :.)

Tagging

PoS tagging

- Tagging: v.g. the process of assigning a part-of-speech to each word in a sequence.
- E.g., using the 'Penn treebank' tag set (see appendix):

Word	The	nurse	put	the	sick	patient	to	sleep
Tag	DT	NN	VBD	DT	JJ	NN	IN	NN

Ambiguities in parts-of-speech

- Words can belong to many parts-of-speech.
- E.g., back:
- The back/JJ door
- On its back/NN
- Win the voters back/RB
- Promise to back/VB you in a fight
- We want to decide the appropriate tag given a particular sequence of tokens.

Why is tagging useful?

- First step towards practical purposes.
- E.g.,
- Speech synthesis: how to pronounce text
- I'm conTENT/JJ vs. the CONtent/NN
- I obJECT/VBP vs. the OBJect/NN
- I lead/VBP ("I iy d") vs. it's lead/NN ("I eh d")
- Information extraction:
- Quickly finding names and relations.
- Machine translation:
- Identifying grammatical 'chunks' is useful
- Explainability!

Tagging as classification

- We have access to a sequence of observations and are expected to decide on the best assignment of a hidden variable, i.e., the PoS

				NN		
Hidden				vB		
variable		VBN		JJ		NN
	PRP	vBD	то	RB	DT	vB
Observation	she	omised	to	back	the	bill

Reminder: Bayes' Rule

$$
\begin{aligned}
& P(X, Y)=P(X) P(Y \mid X) \\
& P(X, Y)=P(Y) P(X \mid Y)
\end{aligned}
$$

$$
P(Y)
$$

$$
P(X \mid Y)=\frac{P(X)}{P(Y)} P(Y \mid X)
$$

Statistical PoS tagging

- Determine the most likely tag sequence $t_{1: n}$ by: $\underset{t_{1: n}}{\operatorname{argmax}} P\left(t_{1: n} \mid w_{1: n}\right)=\underset{t_{1: n}}{\operatorname{argmax}} \frac{P\left(w_{1: n} \mid t_{1: n}\right) P\left(t_{1: n}\right)}{P\left(w_{1: n}\right)} \begin{gathered}\text { By Bayes' } \\ \text { Rule }\end{gathered}$

$$
=\underset{t_{1: n}}{\operatorname{argmax}} \frac{P\left(w_{1: n} \mid t_{1: n}\right) P\left(t_{1: n}\right)}{\Gamma\left(w_{1: n}\right)} \quad \begin{gathered}
\text { Only } \\
\text { maximize } \\
\text { numerator }
\end{gathered}
$$

$$
\approx \underset{t_{1: n}}{\operatorname{argmax}} \prod_{i}^{n} P\left(w_{i} \mid t_{i}\right) P\left(t_{i} \mid t_{i-1}\right)
$$

Assuming independence

Assuming
Markov

Word likelihood probability $P\left(w_{i} \mid t_{i}\right)$

- VBZ (verb, $3^{\text {rd }}$ person singular present) is likely is.
- Compute $P(i s \mid V B Z)$ by counting in a corpus that has already been tagged:
$P\left(w_{i} \mid t_{i}\right)=\frac{\operatorname{Count}\left(w_{i} \text { tagged as } t_{i}\right)}{\operatorname{Count}\left(t_{i}\right)}$

$$
\begin{aligned}
& \text { e.g., } \\
& P(\text { is } \mid \boldsymbol{V B Z})=\frac{\operatorname{Count}(\text { is tagged as } \boldsymbol{V B Z})}{\operatorname{Count}(\boldsymbol{V B Z})}=\frac{10,073}{21,627}=0.47
\end{aligned}
$$

Tag-transition probability $P\left(t_{i} \mid t_{i-1}\right)$

- Will/MD the/DT chair/NN chair/?? the/DT meeting/NN from/IN that/DT chair/NN?
a)

b)

Those are hidden Markov models!

- We'll see these soon...

Image sort of from 2001:A Space Odyssey
by MGM pictures

Classification

General process

1. We gather a big and relevant training corpus.
2. We learn our parameters (e.g., probabilities) from that corpus to build our model.
3. Once that model is fixed, we use those probabilities to evaluate testing data.

General process

- Often, training data consists of 80% to 90% of the available data.
- Often, some subset of this is used as a validation/development set.
- Testing data is not used for training but comes from the same corpus.
- It often consists of the remaining available data.
- Sometimes, it's important to partition speakers/writers so they don't appear in both training and testing.
- But what if we just randomized (un)luckily??

Better process: K-fold cross-validation

- K-fold cross validation: n. splitting all data into K partitions and iteratively testing on each after training on the rest (report means and variances).

(Some) Types of classifiers

- Generative classifiers model the world.
- Parameters set to maximize likelihood of training data.
- We can generate new observations from these.
- e.g., hidden Markov models

Vs.

- Discriminative classifiers emphasize class boundaries.
- Parameters set to minimize error on training data.
- e.g., support vector machines, decision trees.

What do class boundaries look like in the data?

Binary and linearly separable

- Perhaps the easiest case.
- Extends to dimensions $d \geq 3$, line becomes (hyper-)plane.

N -ary and linearly separable

- A bit harder - random guessing gives $\frac{1}{N}$ accuracy (given equally likely classes).
- We can logically combine $N-1$ binary classifiers.

Class holes

- Sometimes it can be impossible to draw any lines through the data to separate the classes.
- Are those troublesome points noise or real phenomena?

The kernel trick

- We can sometimes linearize a non-linear case by moving the data into a higher dimension with a kernel function. E.g.,

Capacity and over/under-fitting

- A central challenge in machine learning is that our models should generalize to unseen data, so we need to set our (hyper-)parameters appropriately.

Capacity and over/under-fitting

- A central challenge in machine learning is that our models should generalize to unseen data, so we need to set our (hyper-)parameters appropriately.

Symptoms of performance during inference of new data (\times)

- Let's summarize a few of the classifiers from Assignment 1

Naïve Bayes and SoftMax

- Broadly, Bayesian probability conceives of probability not as frequency of some phenomenon occurring, but rather as an expectation related to our own certainty.
- Given an observation x, Naïve Bayes simply chooses the class $c \in C$ that maximizes $\boldsymbol{P}(\boldsymbol{c} \mid \boldsymbol{x})$.
- This can be done in many ways.

$$
\underset{c}{\operatorname{argmax}} P(c \mid x)=\frac{P(c)}{\underline{P(x)}} P(x \mid c)
$$

Estimate the $P(\cdot)$ using Gaussians, or...

Naïve Bayes and SoftMax

- Assume $x \in \mathbb{R}^{d}$, learning a linear decision boundary is tantamount to learning $W \in \mathbb{R}^{C \times d}$.

Support vector machines (SVMs)

- In binary linear classification, two classes are assumed to be separable by a line (or plane). However, many possible separating planes might exist.

- Each of these blue lines separates the training data.
- Which line is the best?

Support vector machines (SVMs)

- The margin is the width by which the boundary could be increased before it hits a training datum.

Support vector machines (SVMs)

- The width of the margin, M, can be computed by the angle $M \quad$ and displacement of the planar boundary, x, as well as the planes that touch data points.
- Given an initial guess of the angle and displacement of x we can compute:
- whether all data is correctly classified,
- The width of the margin, M.
- We update our guess by quadratic programming, which is semi-analytic.

Support vector machines (SVMs)

- The maximum margin helps SVMs generalize to situations when it's impossible to linearly separate the data.
- We introduce a parameter that allows us to measure the distance of all data not in their correct 'zones'.

- We simultaneously maximize the margin while minimizing the misclassification error.
- There is a straightforward approach to solving this system based on quadratic programming.

Support vector machines (SVMs)

- SVMs generalize to higher-dimensional data and to systems in which the data is non-linearly separable (e.g., by a circular decision boundary).
- Using the kernel trick (from before) is common.
- Many binary SVM classifiers can also be combined to simulate a multi-category classifier.
- (Still) one of the most popular off-the-shelf classifiers.

Trees!

(The ... larch.)

Decision trees

- Consists of rules for classifying data that have many attributes (features).
- Decision nodes: Non-terminal. Consists of a

- Leaf nodes:

Terminal. Consists of a single class/category, so no further testing is required.

Decision tree example

- Shall I go for a walk?

Forecast

Humidity

Decision tree algorithm: ID3

- ID3 (iterative dichotomiser 3) is an algorithm invented by Ross Quinlan to produce decision trees from data.
- Basically,

1. Compute the uncertainty of asking about each feature.
2. Choose the feature which reduces the most uncertainty.
3. Make a node asking a question of that feature.
4. Go to step 1, minus the chosen feature.

- Example attribute vectors (observations):

Forecast	Humidity	Wind	
Avg. token length	Avg. sentence length	Frequency of nouns	\ldots

Information gain

- The information gain is based on the expected decrease in entropy after a set of training data is split on an attribute.
- We prefer the attribute that removes the most entropy.

Information gain and ID3

- When a node in the decision tree is generated in which all members have the same class,
- that node has 0 entropy,
- that node is a leaf node.
- Otherwise, we need to (try to) split that node with another question.
- See the Appendix of these slides for a complete example.

Aspects of ID3

- ID3 tends to build short trees since at each step we are removing the maximum amount of entropy possible.
- ID3 trains on the whole training set and does not succumb to issues related to random initialization.
- ID3 can over-fit to training data.
- Only one attribute is used at a time to make decisions
- It can be difficult to use continuous data, since many trees need to be generated to see where to break the continuum.

Random Forests

- Random forests n.pl. are ensemble classifiers that produce K decision trees, and output the mode class of those trees.
- Can support continuous features.
- Can support non-binary decisions.
- Support cross-validation.
- The component trees in a random forest must differ.
- Sometimes, decision trees are pruned randomly.
- Usually, different trees accept different subsets of features.

That's a good idea - can we choose the best features in a reasonable way?

Readings

- J\&M: 5.1-5.5 (2 ${ }^{\text {nd }}$ edition)
- M\&S: 16.1, 16.4

Features and classification

- We talked about:
- How preprocessing can effect feature extraction.
- What parts-of-speech are, and how to identify them.
- How to prepare data for classification
- SVMs
- Decision trees (which are parts of random forests)
- We've only taken a first step. Next week: neural networks.

Appendix - prepositions from CELEX

of	540,085	through	14,964	worth	1,563	pace	12
in	331,235	after	13,670	toward	1,390	nigh	9
for	142,421	between	13,275	plus	750	re	4
to	125,691	under	9,525	till	686	mid	3
with	124,965	per	6,515	amongst	525	o'er	2
on	109,129	among	5,090	via	351	but	0
at	100,169	within	5,030	amid	222	ere	0
by	77,794	towards	4,700	underneath	164	less	0
from	74,843	above	3,056	versus	113	midst	0
about	38,428	near	2,026	amidst	67	o	0
than	20,210	off	1,695	sans	20	thru	0
over	18,071	past	1,575	circa	14	vice	0

Appendix - particles

aboard	aside	besides	forward(s)	opposite	through
about	astray	between	home	out	throughout
above	away	beyond	in	outside	together
across	back	by	inside	over	under
ahead	before	close	instead	overhead	underneath
alongside	behind	down	near	past	up
apart	below	east, etc.	off	round	within
around	beneath	eastward(s),etc.	on	since	without

Appendix - conjunctions

and	514,946	yet	5,040	considering	174	forasmuch as	0
that	134,773	since	4,843	lest	131	however	0
but	96,889	where	3,952	albeit	104	immediately	0
or	76,563	nor	3,078	providing	96	in as far as	0
as	54,608	once	2,826	whereupon	85	in so far as	0
if	53,917	unless	2,205	seeing	63	inasmuch as	0
when	37,975	why	1,333	directly	26	insomuch as	0
because	23,626	now	1,290	ere	12	insomuch that 0	
so	12,933	neither	1,120	notwithstanding	3	like	0
before	10,720	whenever	913	according as	0	neither nor	0
though	10,329	whereas	867	as if	0	now that	0
than	9,511	except	864	as long as	0	only	0
while	8,144	till	686	as though	0	provided that	0
after	7,042	provided	594	both and	0	providing that 0	
whether	5,978	whilst	351	but that	0	seeing as	0
for	5,935	suppose	281	but then	0	seeing as how	0
although	5,424	cos	188	but then again	0	seeing that	0
until	5,072	supposing	185	either or	0	without	0

Appendix - Penn TreeBank PoS tags

Tag	Description	Example	Tag	Description	Example
CC	coordin conjunction	and, but, or	SYM	symbol	
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3 sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	\#	pound sign	\#
PDT	predeterminer	all, both	*	left quote	'or"
POS	possessive ending	's	"	right quote	'or"
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, \{, <
PRPS	possessive pronoun	your, one's)	right parenthesis],), \},>
RB	adverb	quickly, never	,	comma	
RBR	adverb, comparative	faster		sentence-final punc	!?
RBS	adverb, superlative	fastest	:	mid-sentence punc	, ...
RP	particle	up, off			

Example - Hero classification

	Hero	Hair length	Height	Age	Hero Type
	(Aquaman	2"	6'2'	35	Hero
	- Batman	1"	5'11"	32	Hero
	(2) Catwoman	$7 \prime$	5'9"	29	Villain
	(0. Deathstroke	$0 \prime$	6'4"	28	Villain
	(9) Harley Quinn	5"	5'0"	27	Villain
	(Martian Manhunter	$0 \prime$	8'2"	128	Hero
	Q Poison Ivy	6 "	5'2"	24	Villain
	a Wonder Woman	$6 "$	$6^{\prime} 1^{\prime \prime}$	108	Hero
	3 Zatanna	10"	5'8'	26	Hero

Test data 6 Red Hood $\quad 2^{\prime \prime} \quad 6^{\prime \prime} 0^{\prime \prime} \quad 22 \quad$?

Example - Hero classification

- How do we split?
- Split on hair length?
- Split on height?
- Split on age?
- Let's compute the information gain for each:

$$
\operatorname{Gain}(Q)=H(S)-\sum_{\text {child set }} p(\text { child set }) H(\text { child set })
$$

Split on hair length?

$\operatorname{Gain}($ Question $)=H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

Split on hair length?

$$
\text { Gain(Question) }=H(S)-\sum_{\text {child set }} p(\text { child set }) H(\text { child set })
$$

$$
H(S)=\frac{h}{h+v} \log _{2}\left(\frac{h+v}{h}\right)+\frac{v}{h+v} \log _{2}\left(\frac{h+v}{v}\right)
$$

$H(5 h, 4 v)=\frac{5}{9} \log _{2}\left(\frac{9}{5}\right)+\frac{4}{9} \log _{2}\left(\frac{9}{4}\right)=\mathbf{0 . 9 9 1 1}$ bits

Split on hair length?

$\operatorname{Gain}($ Question $)=H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

Split on hair length?

$\operatorname{Gain}($ Question $)=H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

Split on hair length?

$\operatorname{Gain}($ Question $)=H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

Split on hair length?

$\operatorname{Gain}($ Question $)=H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

Hair Length $\leq 5^{\prime \prime}$?

Gain $\left(\right.$ HairLength $\left.\leq 5^{\prime \prime}\right)=\underbrace{0.9911}-\underbrace{\frac{5}{9} \mathbf{0 . 7 2 1 9}-\frac{4}{9} \mathbf{1}}=\mathbf{0 . 0 0 7 2 1}$

Example - Hero classification

- How do we split?
- Split on hair length? Gain(HairLength ≤ 5 ") $=\mathbf{0 . 0 0 7 2 1}$
- Split on height?
- Split on age?
- Let's compute the information gain for each:

$$
\operatorname{Gain}(Q)=H(S)-\sum_{\text {child set }} p(\text { child set }) H(\text { child set })
$$

Split on height?

$$
\operatorname{Gain}(\text { Question })=H(S)-\sum_{\text {child set }} p(\text { child set }) H(\text { child set })
$$

Split on height?

$\operatorname{Gain}($ Question $)=H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

$$
H(S)=\frac{h}{h+v} \log _{2}\left(\frac{h+v}{h}\right)+\frac{v}{h+v} \log _{2}\left(\frac{h+v}{v}\right)
$$

$H(5 h, 4 v)=\frac{5}{9} \log _{2}\left(\frac{9}{5}\right)+\frac{4}{9} \log _{2}\left(\frac{9}{4}\right)=\mathbf{0 . 9 9 1 1}$ bits

Split on height?

$\operatorname{Gain}($ Question $)=H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

NO $\quad H(\mathbf{3} h, \mathbf{1} v)=\frac{3}{4} \log _{2}\left(\frac{4}{3}\right)+\frac{1}{4} \log _{2}\left(\frac{4}{1}\right)=\mathbf{0 . 8 1 3}$

Split on height?

Gain(Question) $H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

Gain $\left(\right.$ Height $\left.\leq 6^{\prime} 0^{\prime \prime}\right)=0.9911-\frac{5}{9}[0.971]-\frac{4}{9}[0.813]=0.0903$

Example - Hero classification

- How do we split?
- Split on hair length? Gain(HairLength ≤ 5 ") $=\mathbf{0 . 0 0 7 2 1}$
- Split on height?
- Split on age?
- Let's compute the information gain for each:

$$
\operatorname{Gain}(Q)=H(S)-\sum_{\text {child set }} p(\text { child set }) H(\text { child set })
$$

Split on age?

$\operatorname{Gain}($ Question $)=H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

Age ≤ 30 ?

$$
H(S)=\frac{h}{h+v} \log _{2}\left(\frac{h+v}{h}\right)+\frac{v}{h+v} \log _{2}\left(\frac{h+v}{v}\right)
$$

$H(5 h, 4 v)=\frac{5}{9} \log _{2}\left(\frac{9}{5}\right)+\frac{4}{9} \log _{2}\left(\frac{9}{4}\right)=\mathbf{0 . 9 9 1 1}$ bits

Split on age?

$\operatorname{Gain}($ Question $)=H(S)-\sum_{\text {child set }} p($ child set $) H($ child set $)$

NO $\quad H(\mathbf{4} h, \mathbf{0} v)=\frac{4}{4} \log _{2}\left(\frac{4}{4}\right)+\frac{0}{4} \log _{2}(\infty)=\mathbf{0}$

Split on age?

$$
\operatorname{Gain}(\text { Question })=H(S)-\sum_{\text {child set }} p(\text { child set }) H(\text { child set })
$$

Example - Hero classification

- How do we split?
- Split on hair length? Gain(HairLength ≤ 5 ") $=\mathbf{0 . 0 0 7 2 1}$
- Split on height? Gain(Height $\left.\leq 6^{\prime} 0^{\prime \prime}\right)=\mathbf{0 . 0 9 0 3}$
- Split on age? Gain(Age ≤ 30) $=\mathbf{0 . 5 9 0}$
- Let's compute the information gain for each:

$$
\operatorname{Gain}(Q)=H(S)-\sum_{\text {child set }} p(\text { child set }) H(\text { child set })
$$

The resulting tree

Testing

