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This lecture

* Information theory and entropy.
® Decisions.

* Classification.

* Significance.

Can we quantify the statistical structure in a model of communication?
Can we quantify the meaningful difference between statistical models?

s
UNIVERSITY OF

CSC401/2511 — Spring 2020 2 W TORONTO



Information

* Imagine Darth Vader is about to say either “yes” or
“no” with equal probability.
®* You don’t know what he’ll say.

® You have a certain amount of uncertainty — a lack of
information.

Darth Vaderis © Dlsney

""#
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Information

* Imagine you then observe Darth Vader saying “no”
® Your uncertainty is gone; you’ve received information.

°* How much information do you receive about event E
when you observe it?

NY ~
I(E) =1
(E) OgZP(E)
For the units For the inverse
8 of measurement
' 1 1 _
I(no) = log, P(n0) = log2% = 1 bit

B
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Information

* Imagine Darth Vader is about to roll a fair die.
* You have more uncertainty about an event because
there are more possibilities.
* You receive more information when you observe it.

~ 2.59 bits

‘."3'#
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Information is additive

* From kindependent, equally likely events E,

1 1

I(E¥) = log, PED) = log, PE)E I(k binary decisions) = log, = k bits

(/)"
® For a unigram model, with each of 50K words w equally likely,

~ 15.61 bits

I(W) = lOgZ 1
50000

and for a sequence of 1K words in that model,

1 7
I(Wk) = log; 1 )1000 zl ]

( /50000

'
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Information with unequal events

* An information source .S emits symbols without memory from
a vocabulary {w,,w,, ..., w, }. Each symbol has its own

probability {p{, p,, ..., Py}

°* What is the average amount of
information we get in observing
the output of source 5 ?

®* You still have 6 events that are
M Yes (0.1) = No (0.7) possible — but you’re fairly

® Maybe (0.04) m Sure (0.03) sure it will be ‘No’.
m Darkside (0.06) = Destiny (0.07)

Xk
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Entropy

°* Entropy: n. the average amount of information we get in
observing the output of source §.

([ 1
H(S) = 2 pil(w;) = z p; log, p_
. . l
| l l
ENTROPY

Note that this is very similar to how we define the
expected value (i.e., ‘average’) of something:

1= > p(ox

xX€eX

"37\2
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Entropy — examples

1
‘ H(5)=zpi1082—
: Di
M Yes (0.1) ® No (0.7) =MUWAT: 07) + 0.1log,(1/0.1) + -
= Maybe (0.04) m Sure (0.03) = 1.542 bits

m Darkside (0.06) m Destiny (0.07)

H(S)—Z 1 1—6(11 1)
’ — P P 6052 16
B1 2 m3 B4 Bm5 m6 =2.585b1tS
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Entropy characterizes the distribution

* ‘Flatter’ distributions have a higher entropy because the

choices are more equivalent, on average.
* So which of these distributions has a lower entropy?

0.25 0.25

0.2 0.2
50.15 50.15
S 3
o 0.1 o 0.1
a. Q.

0.05 0.05

o WLLUEELLEETALEH ol el o e b HEEAH 4 ]

Words Words

X
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Low entropy makes decisions easier

°* When predicting the next word, e.g., we'd like a distribution

with lower entropy.

* Low entropy = less uncertainty

0.25

0.2

o
[HEY
Ul

Probability
o
.

(]
g
0.05

|
AT YT

hign
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Bounds on entropy

* Maximum: uniform distribution §;. Given M choices,

1 1 1
H(S1) = Zpi logza = Zﬁlogzl/_M = log, M
l l
0
* Minimum: only one choice, H(s;) = p;log, - = 1logy 1 =0

0.1 1

0.08 0.8
2 2

= 0.06 = 0.6
C (]

S 0.04 2 0.4
a a

0.02 0.2

0 0

Words Words
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Coding symbols efficiently

° If we want to transmit Vader’s words efficiently, we can

encode them so that more probable words require fewer bits.
°* On average, fewer bits will need to be transmitted.

Word Linear Huffman
(sorted) | Code Code

No 000 0

Yes 001 11

Destiny 010 101

Darkside 011 1001

Maybe 100 10000
M Yes (0.1) m No (0.7)

Sure 101

= Maybe (0.04) m Sure (0.03)
m Darkside (0.06) m Destiny (0.07)

£
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Coding symbols efficiently

* Another way of looking at this is through the (binary) Huffman
tree (r-ary trees are often flatter, all else being equal):

%\
No y\ (sorted) | Code Code

No 000 0

A \;els' Yes 001 11
Destiny Destiny 010 101
101 Darkside 011 1001
 Darkside Maybe 100 10000
LR Sure 101

Maybe Sure
10000 10001

-~
w,
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Alternative notions of entropy

* Entropy is equivalently:
* The average amount of information provided
by symbols in a vocabulary,
* The average amount of uncertainty you have before
observing a symbol from a vocabulary,
°* The average amount of ‘surprise’ you receive when
observing a symbol,

®* The number of bits needed to communicate that alphabet
* Aside: Shannon showed that you cannot have a coding scheme
that can communicate the vocabulary more efficiently than H(S)

s
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Entropy of several variables

* Joint entropy
* Conditional entropy
®* Mutual information

1)
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45

Entropy of several variables @"

®* Consider the vocabulary of a meteorologist describing
Temperature and Wetness.
* Temperature = {hot, mild, cold}
°* Wetness = {dry, wet}

P(W = d'}"y) = 06’ 3 i L_ |
PW = wet) = 0.4 W)= 06loga g+ 0cklogs 57 = 0.970951 bis

P(T = hot) = 0.3,

1 1 1 _

P(T = cold) = 0.2

But W and T are not independent,
P(W,T) = P(W)P(T)

Example from Roni Rosenfeld & I NIVERSITY OF

CSC401/2511 — Spring 2020 19 © TORONTO



Joint entropy

* Joint Entropy: n. the average amount of information needed
to specify multiple variables simultaneously.

T 1
H(X,Y) = %%m, y)log o —

* Hint: this is very similar to univariate entropy — we just replace
univariate probabilities with joint probabilities and sum over
everything.

s
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Entropy of several variables

* Consider joint probability, P(W,T)

* Joint entropy, H(W,T), computed as a sum over the space
of joint events (W =w,T =1t)

HW,T) = 0.1log, /o1 + 0.4log, /94 + 0.1l0g, */o 4
+0.2log, /5, + 0.1log, /51 + 0.11log, /o1 = 2.32193 hits

? :RSITY OF
% TORONTO
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Entropy given knowledge

° In our example, joint entropy of two variables together is

lower than the sum of their individual entropies
* HW,T) = 232< 246 = HW) + H(T)

°* Why?

* Information is shared among variables
®* There are dependencies, e.g., between temperature and
wetness.
* E.g., if we knew exactly how wet it is, is there less
confusion about what the temperature is ... ?

o
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Conditional entropy

* Conditional entropy: n. the average amount of information

needed to specify one variable given
that you know another.

* A.k.a ‘equivocation’

HOVIX) = ) pCOH(YIX = x)

xeX

* Hint: this is very similar to how we compute expected values in
general distributions.

B
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Entropy given knowledge

* Consider conditional probability, P(T |W)

O T I T

PeT W
0.1/ 0.4/
BT o o

0.1/0.6
0.1/

£
-
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Entropy given knowledge

* Consider conditional probability, P(T |W)

mm—
e
e R —
(1 2 1) .
H(T|W = dry) = H (5,5@) — 1.25163 bits
e H(T|W = wet) = H( e ) — 1.5 bits
2 4 4

* Conditional entropy combines these:

H(T|W) 0.6 0.4
_ [p<w{4w>ﬂmw — )]+ (W= Wet) (111 — wer)]
= 1.350978 bits

&
UUUUUUUUUU
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Equivocation removes uncertainty

* Remember H(T) = 1.48548 bits Entropy (i.e., confusion) about
o I—I(W’ T) = 2.32193 bits temperature is reduced if we know
o H(TlW) — 1.350978 bits how wet it is outside.

* How much does I/ tell us about 7°?
* H(T) — H(T|W) = 1.48548 — 1.350978 ~ 0.1345 bits

* Well, a little bit!

B
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Perhaps T is more informative?

* Consider another conditional probability, P(W|T)

PUVIT) | T=cod | mid | ot
0.1/0.3 0.4/0.5 0.1/0.2

- wet  [PIE 0.1/0.5 0.1/0.2

e H(WI|T = cold) = H ({%%}) — 0.918295 bits
o H(WIT = mild) = H ({%%}) — 0.721928 bits
e H(WIT = hot) = H({%%}) — 1 bit

* H(W|T) = 0.8364528 bits

e
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Equivocation removes uncertainty

* H(T) = 1.48548 bits

e H(W) = 0.970951 bits

* H(W,T) = 2.32193 bits

o H(T|W) = 1.350978 hits

* H(T) — H(T|W) ~ 0.1345 bits

Previously

(—-’ computed

®* How much does T tell us about I/ on average?
* HW)—- H(W|T) = 0.970951 — 0.8364528
~ 0.1345 bits

®* Interesting ... is that a coincidence?

o
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Mutual information

®* Mutual information: n. the average amount of information
shared between variables.

1(X;Y) = H(X) — H(X|Y) = H(Y) — H(Y|X)

. p(x,y)
B Zx,y p(x’ y) logz p(x)p(y)

® Hint: The amount of uncertainty removed in variable X if you know Y.

° Hint2: If X and Y are independent, p(x,y) = p(x)p(y), then
log p(x,y)
2 p()p()

= log, 1 = 0 Vx, y —there is no mutual information!

o
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Relations between entropies

_ HQXY)

H(X,Y) = H(X) + H(Y) — [(X;Y)

CSC401/2511 — Spring 2020 30
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Reminder — the noisy channel

* Messages can get distorted when passed through a noisy
conduit — how much information is lost/retained?

* Signals -§Ay

* Symbols -
Channel

®* Languages

Hello, computer 2 Bonjour, ordinateur

X
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Relating corpora

UNIVERSITY OF
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Relatedness of two distributions

°* How similar are two probability distributions?
° e.g., Distribution P learned from Kylo Ren
Distribution Q learned from Darth Vader

Probability
Probability

Words

Words

";\‘ UNIVERSITY OF
CSC401/2511 — Spring 2020 33 ¥ TORONTO



Relatedness of two distributions

* A Huffman code based on Vader (Q) instead of Kylo (P) will

be less efficient at coding symbols that Kylo will say.
* What is the average number of extra bits required to code

symbols from P when using a code based on Q?

Probability
Probability

Words

'
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Kullback-Leibler divergence

* KL divergence:

Probability

Words

CSC401/2511 — Spring 2020

n. the average log difference between the
distributions P and Q, relative to Q.

a.k.a. relative entropy.
caveat: we assume 0log0 =0

35

Probability

Words

B
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Kullback-Leibler divergence

P(i)

D (PIIQ) = Z P()log ;S

P(i) L =
+10g 20~ 0g P(D) ~ 10g () = o5 (2) - log (-1

* If word w; is less probable in Q than P (i.e., it carries more

information), it will be Huffman encoded in more bits, so

when we see w; from P, we need log% more bits.

?‘:' UNIVERSITY OF
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Kullback-Leibler divergence

* KL divergence:
* is somewhat like a ‘distance’ :
* Dk (Pl[Q) =0 VP, 0
®* Di (P||Q) = 0iff P and Q are identical.
° is not symmetric, Dy; (P||Q) # Dy (Q||P)

* Aside:
I(P; Q) = Dg,(P(X, V)||P(X)P(Y))

‘i‘:. UNIVERSITY OF
CSC401/2511 — Spring 2020 37 ¥ TORONTO



Kullback-Leibler divergence

* KL divergence generalizes to continuous distributions.
* Below, Dy; (blue||green) > Dg; (blue||purple)

04, pyr_ple

[0 X

= UNIVERSITY OF
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Applications of KL divergence

* Often used towards some other purpose, e.g.,
* |[n evaluation to say that purple is a better model
than green of the true distribution blue.
* [n machine learning to adjust the parameters of

purple to be, e.g., less like green and more like blue.
. purple

blue | green

B
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Entropy as intrinsic LM evaluation

* Cross-entropy measures how difficult it is to encode
an event drawn from a true probability p given a
model based on a distribution gq.

* What if we don’t know the true probability p?
* We'd have to estimate the CE using a test corpus C:

log, P, (C)

* What's the probability of a corpus P, (C)?

?‘:' UNIVERSITY OF
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Probability of a corpus?

* The probability P(C) of a corpus C requires similar
assumptions that allowed us to compute the probability
P(s;) of a sentence s;.

T TN

Chain P(s;) = P(C) =
rule  Pwp) [TE—z PWelwie—1))  P(wy) TTIIEh P(Welwy.e-1y)
Approx. P(s;) = | lP(Wt) P(C) = | lP(Si)

t L

* Regardless of the LM used for P(s;), we can assume
complete independence between sentences.

= UNIVERSITY OF
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Intrinsic evaluation — Cross-entropy

® Cross-entropy of a LM Mand a new test corpus C
with size ||C|| (total number of words), where sentence
s; € C, is approximated by:

logz Pu(C) _ ilog; Pu(s)

A == > 1l

* Perplexity comes from this definition:
PPy (C) = 2H (M)

:;‘ UNIVERSITY OF
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Decisions

UNIVERSITY OF

&
CSC401/2511 — Spring 2020 43 ¥ TORONTO



Deciding what we know

* Anecdotes are often useless except as proofs by contradiction.
°* E.g., “I saw Google used as a verb” does not mean that Google is
always (or even likely to be) a verb, just that it is not always a noun.

* Shallow statistics are often not enough to be truly meaningful.
* E.g., “My ASR system is 95% accurate on my test data. Yours is only
94.5% accurate, you horrible knuckle-dragging idiot.”
°* What if the test data was biased to favor my system?
°* What if we only used a very small amount of data?

* Given all this potential ambiguity, we need a test to see if our
statistics actually mean something.

o
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Differences due to sampling

* We saw that KL divergence essentially measures how different
two distributions are from each other.

® But what if their difference is due to randomness in sampling?

°* How can we tell that a distribution is really different from
another?

s
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Hypothesis testing

* Often, we assume a null hypothesis, Hy, which states that the
two distributions are the same (i.e., come from the same
underlying model, population, or phenomenon).

* We reject the null hypothesis if the probability of it being true
is too small.

* This is often our goal — e.g., if my ASR system beats yours by 0.5%,
| want to show that this difference is not a random accident.

® | assume it was an accident, then show how nearly impossible that is.

* As scientists, we have to be very careful to not reject Hy too hastily.
°* How can we ensure our diligence?

o

CSC401/2511 — Spring 2020
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Confidence

* We reject Hy if it is too improbable.
* How do we determine the value of ‘too’?

* Significance level a (0 < a < 1) is the maximum probability that
two distributions are identical allowing us to disregard H,,.
* In practice, a < 0.05. Usually, it’s much lower.
* Confidencelevelisy =1 —«
° E.g., a confidence level of 95% (¢ = 0.05) implies that we
expect that our decision is correct 95% of the time,
regardless of the test data.

s
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Confidence

* We will briefly see three types of statistical tests that can tell us
how confident we can be in a claim:

1. A t-test, which usually tests whether the means of two
models are the same. There are many types,
but most assume Gaussian distributions.

2. An analysis of variance (ANOVA), which generalizes the
t-test to more than two groups.

3. The y* test, which evaluates categorical (discrete) outputs.

'
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1. The t-test

®* The t-test is a method to compute if distributions are
significantly different from one another.

* It is based on the mean (x) and variance (o) of N samples.
* |t compares x and o to Hy which states that the samples are
drawn from a distribution with a mean L.

°If  t = (the “t-statistic”) IS large enough, we can reject H,,.

An example would be
nice...
There are actually several types of t-tests for different situations...

s
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Example of the t-test: tails

* Imagine the average tweet length of a McGill ‘student’ is © = 158 chars.
* Wesample N = 200 UofT students and find that our average tweet is

X = 169 chars (with 0% = 2600).
* Are UofT tweets significantly longer than much worse McGill tweets?

°* We use a ‘one-tailed’ test because we want to see if UofT tweet lengths
are significantly higher.
° |f we just wanted to see if UofT tweets were significantly different,
we’d use a two-tailed test.

two tails

CSC401/2511 — Spring 2020 50 @ TORONTO
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Example of the t-test: freedom

* Imagine the average tweet length of a McGill ‘student’ is © = 158 chars.
* Wesample N = 200 UofT students and find that our average tweet is

X = 169 chars (with % = 2600).
* Are UofT tweets significantly longer than much worse McGill tweets?

* Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the
number of observations, minus 1 (the number

of sample sets).

* In our example, we have Ny, rr = 200 for UofT students, meaning
d.f.=199
* (this example is adapted from Manning & Schiitze)

'
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Example of the t-test

* Imagine the average tweet length of a McGill ‘student’ is © = 158 chars.

* Wesample N = 200 UofT students and find that our average tweet is
X = 169 chars (with % = 2600).

* Are UofT tweets significantly longer than much worse McGill tweets?

X-p _ 169-158 4 ¢
GZ/N \/2600/200 .

® Sot =

® |n a t-test table, we look up the minimum value of t necessary to reject
Hyata = 0.005 (we want to be quite confident) for a 1-tailed test...

s

UNIVERSITY OF

CSC401/2511 — Spring 2020 52 6 TORONTO



Example of the t-test

X—LU 169—158
= ~ 3.05
/GZ/N \/2600/200

®* Sot =

* |n a t-test table, we look up the minimum value of t necessary to reject
Hy at a = 0.005, and find 2.576 (using d. f.= 199 = )
* Since 3.05 > 2.576, we can reject H at the 99.5% level of confidence
(y =1 —a = 0.995) ; UofT students are significantly more verbose.

-mmmmm

6.314 12.71 31.82 63.66 318.3 636.6

iy 10 1.812 2.228 2.764 3.169 4.144 4.587
- 20 1.725 2.086 2.528 2.845 3.552 3.850
oo 1.645 1.960 2.326 2.576 3.091 3.291

"'7#
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Example of the t-test

®* Some things to observe about the t-test table:

* We need more evidence, t, if we want to be
more confident (left-right dimension).
* We need more evidence, t, if we have

fewer measurements (top-down dimension).

* A common criticism of the t-test is that picking « is ad-hoc.
There are ways to correct for the selection of .

-mmmmm

6.314 12.71 31.82 63.66 318.3 636.6

iy 10 1.812 2.228 2.764 3.169 4.144 4.587
- 20 1.725 2.086 2.528 2.845 3.552 3.850
o0 1.645 1.960 2.326 2.576 3.091 3.291

""#
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Another example: collocations

* Collocation: n. a ‘turn-of-phrase’ or usage where a
sequence of words is ‘perceived’ to have a
meaning ‘beyond’ the sum of its parts.

° E.g., ‘disk drive’, ‘video recorder’, and * drink’ are
collocations. ‘cylinder drive’, ‘video storer’, drink’
are not despite some near-synonymy between alternatives.

* Collocations are not just highly frequent bigrams, otherwise
‘of the’, and ‘and the” would be collocations.

°* How can we test if a bigram is a collocation or not?

s
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Hypothesis testing collocations

* For collocations, the null hypothesis H, is that there is no
association between two given words beyond pure chance.

* |.e., the bigram’s actual distribution and pure chance are the same.
* We compute the probability of those words occurring together
if Hy were true. If that probability is too low, we reject H,.

* E.g., we expect ‘of the’ to occur together, because they’re both likely
words to draw randomly
* We could probably not reject Hj in that case.

s
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Example of the t-test on collocations

* |s ‘new companies’ a collocation?
* |n our corpus of 14,307,668 word tokens, new appears 15,828 times

and companies appears 4,675 times.
* Our null hypothesis, H, is that they are independent, i.e.,

Hy: P(new companies) = P(new)P(companies)
_ 15828 4675

14307668~ 14307668

~ 3.615%10~7

B
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Example of the t-test on collocations

* The Manning & Schitze text claims that if the process of randomly
generating bigrams follows a Bernoulli distribution.

° j.e., assigning 1 whenever new companies appears and 0 otherwise
gives X = p = P(new companies)

* For Bernoulli distributions, 6% = p(1 — p). Manning & Schiitze claim
that we can assume 6% = p(1 — p) = p, since for most bigrams, p is
very small.

s
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Example of the t-test on collocations

* So, u = 3.615x1077 is the expected mean in H,,.
* We actually count 8 occurrences of new companies in our corpus

- 8 _ , : :
° vy — ~ 5591x%x10 7 There is 1 fewer blgram instance
14307667 | than word tokens in the corpus
~ 0% ~p=x=5591x10""
xX— 5.591x1077-3.615x10~"
®* Sot = £ — ~

02/ 5.591><10—7/
N 14307667

* |n a t-test table, we look up the minimum value of t necessary to reject
Hy at a = 0.005, and find 2. 576.
* Since < 2.576, we cannot reject Hy at the 99.5% level of
confidence.
°* We don’t have enough evidence to think that new companies
is a collocation (we can’t say that it definitely isn’t, though!).

'
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2. Analysis of variance (aside)

* Analyses of variance (ANOVAS) (there are several types) can be:
° A way to generalize t-tests to more than two groups.
* A way to determine which (if any) of several variables are responsible
for the variation in an observation (and the interaction between them).

* E.g., we measure the accuracy of an ASR system for different settings of
empirical parameters M (# components) and Q (# states).

Accuracy (%) M=2 M=4 M=16 ’ Hy: no effect of source variables.

26.67 53.33 40.00
0.179 Accept Hy
0.00 40.00 26.67

M 2 0.106 Accept Hy
Q=5 93.33 26.67 100.00
66.67 13.33 30.00 interaction 2 0.006 Reject Hyata = 0.01
40.00 0.00  60.00 | | Acompletelyfictional example

""#
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3. Pearson’s y“ test (details aside)

* The y“ test applies to categorical data, like the output of a
classifier.

* Like the t-test, we decide on the degrees of freedom (number of
categories minus number of parameters), compute the test-statistic, then

look it up in a table. L0

® The test statistic is: os|
c i

2 2 (OC - EC)Z ;g().():-

X = E K I

c=1 c 04

where O, and E . are the observed o}
and expected number of o

0 2
O bse rvat I O n S Of ty p e C, res pectlve |y. X? = Pearson's cumulative test statistic

s
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3. Pearson’s y2 test (39

®* For example, is our die from Lecture 2 fair or not?
* Imagine we throw it 60 times. The expected number of
appearances of each side is 10.

— L I
BN DA ROSSRRORI) . 11— ;s

; T 2 . 04 the critical value is
3 9 10 1 1 0.1 11.07<13.4, so we
4 8 10 2 4 0.4 throw away H:

5 10 10 0 0 0 the die is biased.

6 20 10 10 100 10 e \We'll see XZ again

sSOoon...

"'7\1
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Feature selection
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Determining a good set of features

* Restricting your feature set to a proper subset
guickens training and reduces overfitting.

* There are a few methods that select good features,

e.g.,
1. Correlation-based feature selection
2. Minimum Redundancy, Maximum Relevance

3. yx*

o CSC4OI/2%‘~E%H\§(’§’§’%{)



1. Pearson’s correlation

® Pearson is a measure of linear dependence
~cov(X,Y) X=X, -Y)

. ) J S, (X, — X)? Jzz;l(Yi — )3

* Does not measure ‘slope’ nor non-linear relations.

Ox Oy

VAR A B R S N

1 : 1 -1 -1

/ -~ e " “ .\_
0 0 ¢ 0 0 0 0
' | o’ ™ S
e N e »
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1. Spearman’s correlation

®* Spearman is a non-parametric measure of rank
correlation, 7.y = r(c, X).
* |t is basically Pearson’s correlation, but on ‘rank variables’

that are monotonically increasing integers.
* |f the class ¢ can be ordered (e.g., in any binary case), then
we can compute the correlation between a feature X and

that class.

- csmom%—%q%goﬁ?%b



1. Correlation-based feature selection

* ‘Good’ features should correlate strongly (+ or -) with
the predicted variable but not with other features.

* Scrs is some set S of k features f; that maximizes this
ratio, given class c:

Zfiesrfi

Scrs = argmax
S k—1yk
Jk + 20051 Ljmiv1 Pri,
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2. MRMR feature selection

* Minimum-redundancy-maximum-relevance (mRMR)
can use correlation, distance scores (e.g., Dg; ) or
mutual information to select features.

* For feature set S of features f;, and class c,
D(S,c) :ameasure of relevance S has for ¢, and

R(S) : 2@ measure of the redundancy within S,

Smrmr = argmax [D(S,c) — R(S)]
S

- CSC401/2%_T%§%§’§?%6



2. MRMR feature selection

* Measures of relevance and redundancy can make use
of our familiar measures of mutual information,

* D(S,0) = pes (i ©)

1

" R(S) =15z Lries Lrjes [ Ui /)

* mMRMR is robust but doesn’t measure interactions of
features in estimating ¢ (for that we could use ANOVAs).

- csmom%—%qg 80%%'0



3. ¥* method

70

We adapt the ¥? method we saw when testing whether distributions
were significantly different:

2(0 _Ec)z ‘ 2 2 (0cf ch)

c=1f;=f

where O, r and E.  are the observed and expected number, respectively,
of times the class ¢ occurs together with the (discrete) feature f.
* The expectation E. r assumes c and [ are independent.

Now, every feature has a p-value. A lower p-value means c and [ are less

likely to be independent.
Select the k features with the lowest p-values.
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Multiple comparisons

* |f we're just ordering features, this y# approach is (mostly) fine.
* But what if we get a ‘significant’ p-value (e.g., p < 0.05)?
Can we claim a significant effect of the class on that feature?

* Imagine you're flipping a coin to see if it’s fair. You claim that
if you get ‘heads’ in 9/10 flips, it’s biased.

* Assuming H,, the coin is fair, the probability that a fair coin
would come up heads = 9 out of 10 times is:

(10 + 1)x0.5° = 0.0107

||

Number of ways 9 Number of ways all 10
flips are heads flips are heads

- CSC401/2%_%H\%80§)%C




Multiple comparisons

® But imagine that you’re simultaneously testing 173 coins —
you’re doing 173 (multiple) comparisons.
* If you want to see if a specific chosen coin is fair, you still have

only a 1.07% chance that it will give heads = % times.

® But if you don’t preselect a coin, what is the probability that
none of these fair coins will accidentally appear biased?

(1—-0.0107)'73 = 0.156

* If you're testing 1000 coins?
(1 —-0.0107)'%99 ~ 0.0000213
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Multiple comparisons

* The more features you evaluate with a statistical test (like y?),
the more likely you are to accidentally find spurious (incorrect)

significance accidentally.

® Various compensatory tactics exist, including Bonferroni
correction, which basically divides your level of significance

required, by the number of comparisons.
* E.g., ifa = 0.05, and you’re doing 173 75@/‘\/7
comparisons, each would need T e
p <222~ 0.00029 to be |

173
considered significant. o

csmom%—%q% g’ﬁ?T‘O
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Reading

®* Manning & Schitze: 2.2, 5.3-5.5

X

UNIVERSITY OF

CSC401/2511 — Spring 2020 74 3 TORONTO



e

° Information theory is a vast ocean that provides statistical
models of communication at the heart of cybernetics.
°* We've only taken a first step on the beach.
* See the ground-breaking work of Shannon & Weaver, e.g.

Entropy and decisions

* So far, we’ve mainly dealt with random variables that the
world provides — e.g., words tokens, mainly.

°* What if we could transform those inputs into new random [

variables, or features, that are directly engineered to be
useful to decision tasks...




