

Entropy and decisions

This lecture

- Information theory and entropy.
- Decisions.
- Classification.
- Significance.

Can we quantify the statistical structure in a model of communication? Can we quantify the meaningful difference between statistical models?

Information

- Imagine Darth Vader is about to say either "yes" or "no" with equal probability.
- You don’t know what he'll say.
- You have a certain amount of uncertainty - a lack of information.

Information

- Imagine you then observe Darth Vader saying "no"
- Your uncertainty is gone; you've received information.
- How much information do you receive about event E when you observe it?

$$
\begin{aligned}
& I(E)=\log _{2} \frac{1}{P(E)} \\
& \begin{array}{l}
\text { For the units } \\
\text { of measurement } \\
I(n o)=\log _{2} \frac{1}{P(n o)}=\log _{2} \frac{1}{1 / 2}=1 \text { bit } \\
4
\end{array}
\end{aligned}
$$

Information

- Imagine Darth Vader is about to roll a fair die.
- You have more uncertainty about an event because there are more possibilities.
- You receive more information when you observe it.

$$
\begin{aligned}
I(5) & =\log _{2} \frac{1}{P(5)} \\
& =\log _{2} \frac{1}{1 / 6} \approx 2.59 \mathrm{bits}
\end{aligned}
$$

Information is additive

- From k independent, equally likely events E,

$$
I\left(E^{k}\right)=\log _{2} \frac{1}{P\left(E^{k}\right)}=\log _{2} \frac{1}{P(E)^{k}} \quad I(k \text { binary decisions })=\log _{2} \frac{1}{(1 / 2)^{k}}=\underline{k} \text { bits }
$$

- For a unigram model, with each of 50K words w equally likely,

$$
I(w)=\log _{2} \frac{1}{1 / 50000} \approx 15.61 \mathrm{bits}
$$

and for a sequence of 1 K words in that model,

$$
I\left(w^{k}\right)=\log _{2} \frac{1}{(1 / 50000)^{1000}} \approx \square ? ?
$$

Information with unequal events

- An information source S emits symbols without memory from a vocabulary $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. Each symbol has its own probability $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$

- What is the average amount of information we get in observing the output of source S ?
- You still have 6 events that are possible - but you're fairly sure it will be ' $N o$ '.

Entropy

- Entropy: n. the average amount of information we get in observing the output of source S.

$$
H(S)=\sum_{i} p_{i} I\left(w_{i}\right)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}
$$

Note that this is very similar to how we define the expected value (i.e., 'average') of something:

$$
E[X]=\sum_{x \in X} p(x) x
$$

Entropy - examples

$$
\begin{aligned}
& H(S)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}} \\
& =07 \log _{2}(1 / 07)+0.1 \log _{2}(1 / 0.1)+\cdots
\end{aligned}
$$

$$
=1.542 \text { bits }
$$

There is less average uncertainty when the probabilities are 'skewed'.

$$
H(S)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}=6\left(\frac{1}{6} \log _{2} \frac{1}{1 / 6}\right)
$$

$=2.585$ bits

Entropy characterizes the distribution

- 'Flatter' distributions have a higher entropy because the choices are more equivalent, on average.
- So which of these distributions has a lower entropy?

Low entropy makes decisions easier

- When predicting the next word, e.g., we'd like a distribution with lower entropy.
- Low entropy ミ less uncertainty

Bounds on entropy

- Maximum: uniform distribution S_{1}. Given M choices,

$$
H\left(S_{1}\right)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}=\sum_{i} \frac{1}{M} \log _{2} \frac{1}{1 / M}=\log _{2} M
$$

- Minimum: only one choice, $H\left(S_{2}\right)=p_{i} \log _{2} \frac{1}{p_{i}}=1 \log _{2}^{0} 1=0$

Coding symbols efficiently

- If we want to transmit Vader's words efficiently, we can encode them so that more probable words require fewer bits.
- On average, fewer bits will need to be transmitted.

Word (sorted)	Linear Code	Huffman Code
No	000	0
Yes	001	11
Destiny	010	101
Darkside	011	1001
Maybe	100	10000
Sure	101	10001

Coding symbols efficiently

- Another way of looking at this is through the (binary) Huffman tree (r-ary trees are often flatter, all else being equal):

Word (sorted)	Linear Code	Huffman Code
No	000	0
Yes	001	11
Destiny	010	101
Darkside	011	1001
Maybe	100	10000
Sure	101	10001

Alternative notions of entropy

- Entropy is equivalently:
- The average amount of information provided by symbols in a vocabulary,
- The average amount of uncertainty you have before observing a symbol from a vocabulary,
- The average amount of 'surprise' you receive when observing a symbol,
- The number of bits needed to communicate that alphabet
- Aside: Shannon showed that you cannot have a coding scheme that can communicate the vocabulary more efficiently than $H(S)$

Entropy of several variables

- Joint entropy
- Conditional entropy
- Mutual information

Entropy of several variables

- Consider the vocabulary of a meteorologist describing \underline{T} emperature and \underline{W} etness.
- Temperature = \{hot, mild, cold\}
- \underline{W} etness $=\{d r y, w e t\}$
$P(W=d r y)=0.6$,
$P(W=w e t)=0.4$
$P(T=h o t)=0.3$,
$P(T=$ mild $)=0.5$,
$P(T=$ cold $)=0.2$

$$
\boldsymbol{H}(\boldsymbol{T})=0.3 \log _{2} \frac{1}{0.3}+0.5 \log _{2} \frac{1}{0.5}+0.2 \log _{2} \frac{1}{0.2}=\mathbf{1} .48548 \text { bits }
$$

But W and T are not independent,

$$
P(W, T) \neq P(W) P(T)
$$

$$
\boldsymbol{H}(\boldsymbol{W})=0.6 \log _{2} \frac{1}{0.6}+0.4 \log _{2} \frac{1}{0.4}=\mathbf{0 . 9 7 0 9 5 1} \text { bits }
$$

Joint entropy

- Joint Entropy: n. the average amount of information needed to specify multiple variables simultaneously.

$$
H(X, Y)=\sum_{x} \sum_{y} p(x, y) \log _{2} \frac{1}{p(x, y)}
$$

- Hint: this is very similar to univariate entropy - we just replace univariate probabilities with joint probabilities and sum over everything.

Entropy of several variables

- Consider joint probability, $P(W, T)$

	cold	mild	hot	
dry	0.1	0.4	0.1	0.6
wet	0.2	0.1	0.1	0.4
	0.3	0.5	0.2	1.0

- Joint entropy, $H(W, T)$, computed as a sum over the space of joint events $(W=w, T=t)$
$H(W, T)=0.1 \log _{2} 1 / 0.1+0.4 \log _{2} 1 / 0.4+0.1 \log _{2} 1 / 0.1$

$$
+0.2 \log _{2} 1 / 0.2+0.1 \log _{2} 1 / 0.1+0.1 \log _{2} 1 / 0.1=2.32193 \text { bits }
$$

Notice $H(W, T) \approx 2.32<2.46 \approx H(W)+H(T)$

Entropy given knowledge

- In our example, joint entropy of two variables together is lower than the sum of their individual entropies
- $H(W, T) \approx 2.32<2.46 \approx H(W)+H(T)$
- Why?
- Information is shared among variables
- There are dependencies, e.g., between temperature and wetness.
- E.g., if we knew exactly how wet it is, is there less confusion about what the temperature is ... ?

Conditional entropy

- Conditional entropy: n. the average amount of information needed to specify one variable given that you know another.
- A.k.a 'equivocation'

$$
H(Y \mid X)=\sum_{x \in X} p(x) H(Y \mid X=x)
$$

- Hint: this is very similar to how we compute expected values in general distributions.

Entropy given knowledge

- Consider conditional probability, $P(T \mid W)$

$P(W, T)$	$T=$ cold	mild	hot	
$W=$ dry	0.1	0.4	0.1	0.6
wet	0.2	0.1	0.1	0.4
	0.3	0.5	0.2	1.0

$$
P(T \mid W)=P(W, T) / P(W)
$$

$P(T \mid W)$	$T=$ cold	mild	hot	
$W=$ dry	$0.1 / 0.6$	$0.4 / 0.6$	$0.1 / 0.6$	1.0
wet	$0.2 / 0.4$	$0.1 / 0.4$	$0.1 / 0.4$	1.0

Entropy given knowledge

- Consider conditional probability, $P(T \mid W)$

$\boldsymbol{P}(\boldsymbol{T} \mid \boldsymbol{W})$	$\boldsymbol{T}=$ cold	mild	hot	
$\boldsymbol{W}=$ dry	$1 / 6$	$2 / 3$	$1 / 6$	
wet	$1 / 2$	$1 / 4$	$1 / 4$	1.0

- $\boldsymbol{H}(\boldsymbol{T} \mid \boldsymbol{W}=\boldsymbol{d r y})=H\left(\left\{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}\right)=\mathbf{1} .25163$ bits
- $H(T \mid W=w e t)=H\left(\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}\right)=1.5$ bits
- Conditional entropy combines these:

$$
\begin{aligned}
& \boldsymbol{H}(\boldsymbol{T} \mid \boldsymbol{W}) \\
& =[p(W=d r y) H(T \mid W=d r y)]+[p(W-\text { wet }) H(T \mid W=w e t)] \\
& =\mathbf{1 . 3 5 0 9 7 8} \text { bits }
\end{aligned}
$$

Equivocation removes uncertainty

- Remember $H(T)=1.48548$ bits
- $H(W, T)=2.32193$ bits
- $H(T \mid W)=1.350978$ bits

Entropy (i.e., confusion) about temperature is reduced if we know how wet it is outside.

- How much does W tell us about T ?
- $H(T)-H(T \mid W)=1.48548-1.350978 \approx 0.1345$ bits
- Well, a little bit!

Perhaps T is more informative?

- Consider another conditional probability, $P(W \mid T)$

$P(W \mid T)$	$T=$ cold	mild	hot
$W=$ dry	$0.1 / 0.3$	$0.4 / 0.5$	$0.1 / 0.2$
wet	$0.2 / 0.3$	$0.1 / 0.5$	$0.1 / 0.2$
	1.0	1.0	1.0

- $H(W \mid T=$ cold $)=H\left(\left\{\frac{1}{3}, \frac{2}{3}\right\}\right)=0.918295$ bits
- $H(W \mid T=$ mild $)=H\left(\left\{\frac{4}{5}, \frac{1}{5}\right\}\right)=0.721928$ bits
- $H(W \mid T=h o t)=H\left(\left\{\frac{1}{2}, \frac{1}{2}\right\}\right)=1$ bit
- $H(W \mid T)=0.8364528$ bits

Equivocation removes uncertainty

- $H(T)=1.48548$ bits
- $H(W)=0.970951$ bits
- $H(W, T)=2.32193$ bits
- $H(T \mid W)=1.350978$ hits
- $\boldsymbol{H}(T)-\boldsymbol{H}(T \mid W) \approx 0.1345$ bits

Previously
computed

- How much does T tell us about W on average?
- $\boldsymbol{H}(W)-\boldsymbol{H}(W \mid T)=0.970951-0.8364528$ ≈ 0.1345 bits
- Interesting ... is that a coincidence?

Mutual information

- Mutual information: n. the average amount of information shared between variables.

$$
\begin{aligned}
I(X ; Y) & =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X) \\
& =\sum_{x, y} p(x, y) \log _{2} \frac{p(x, y)}{p(x) p(y)}
\end{aligned}
$$

- Hint: The amount of uncertainty removed in variable X if you know Y.
- Hint2: If X and Y are independent, $p(x, y)=p(x) p(y)$, then
$\log _{2} \frac{p(x, y)}{p(x) p(y)}=\log _{2} 1=0 \forall x, y$ - there is no mutual information!

Relations between entropies

$$
H(X, Y)=H(X)+H(Y)-I(X ; Y)
$$

Reminder - the noisy channel

- Messages can get distorted when passed through a noisy conduit - how much information is lost/retained?
- Signals

- Symbols
- Languages

Relating corpora

Relatedness of two distributions

- How similar are two probability distributions?
- e.g., Distribution P learned from Kylo Ren Distribution Q learned from Darth Vader

Relatedness of two distributions

- A Huffman code based on Vader (Q) instead of Kylo (P) will be less efficient at coding symbols that Kylo will say.
- What is the average number of extra bits required to code symbols from P when using a code based on Q?

Kullback-Leibler divergence

- KL divergence: n. the average log difference between the distributions P and Q, relative to Q. a.k.a. relative entropy. caveat: we assume $0 \log 0=0$

Kullback-Leibler divergence

$$
D_{K L}(P \| Q)=\sum_{i} P(i) \log \frac{P(i)}{Q(i)}
$$

- Why $\log \frac{P(i)}{Q(i)}$?
- $\log \frac{P(i)}{Q(i)}=\log P(i)-\log Q(i)=\log \left(\frac{1}{Q(i)}\right)-\log \left(\frac{1}{P(i)}\right)$
- If word w_{i} is less probable in Q than P (i.e., it carries more information), it will be Huffman encoded in more bits, so when we see w_{i} from P, we need $\log \frac{P(i)}{Q(i)}$ more bits.

Kullback-Leibler divergence

- KL divergence:
- is somewhat like a 'distance' :
- $D_{K L}(P \| Q) \geq 0 \quad \forall P, Q$
- $D_{K L}(P \| Q)=0$ iff P and Q are identical.
- is not symmetric, $D_{K L}(P \| Q) \neq D_{K L}(Q \| P)$
- Aside:

$$
I(P ; Q)=D_{K L}(P(X, Y) \| P(X) P(Y))
$$

Kullback-Leibler divergence

- KL divergence generalizes to continuous distributions.
- Below, $D_{K L}$ (blue\|green) $>D_{K L}$ (blue \|purple)

Applications of KL divergence

- Often used towards some other purpose, e.g.,
- In evaluation to say that purple is a better model than green of the true distribution blue.
- In machine learning to adjust the parameters of purple to be, e.g., less like green and more like blue.

Entropy as intrinsic LM evaluation

- Cross-entropy measures how difficult it is to encode an event drawn from a true probability p given a model based on a distribution q.
- What if we don't know the true probability p ?
- We'd have to estimate the CE using a test corpus C:

$$
H(p, q) \approx-\frac{\log _{2} P_{q}(C)}{\|C\|}
$$

- What's the probability of a corpus $P_{q}(C)$?

Probability of a corpus?

- The probability $P(C)$ of a corpus C requires similar assumptions that allowed us to compute the probability $P\left(s_{i}\right)$ of a sentence s_{i}.

	Sentence	Corpus		
Chain	$P\left(s_{i}\right)=$	$P(C)=$		
rule	$P\left(w_{1}\right) \prod_{t=2}^{n} P\left(w_{t} \mid w_{1:(t-1)}\right)$	$P\left(w_{1}\right) \prod_{t=2}^{\\|C\\|} P\left(w_{t} \mid w_{1:(t-1)}\right)$		
Approx.	$P\left(s_{i}\right) \approx \prod_{t} P\left(w_{t}\right)$	$P(C) \approx \prod_{i} P\left(s_{i}\right)$		

- Regardless of the LM used for $P\left(s_{i}\right)$, we can assume complete independence between sentences.

Intrinsic evaluation - Cross-entropy

- Cross-entropy of a LM Mand a new test corpus C with size $\|C\|$ (total number of words), where sentence $s_{i} \in C$, is approximated by:

$$
H(C ; M)=-\frac{\log _{2} P_{M}(C)}{\|C\|}=-\frac{\sum_{i} \log _{2} P_{M}\left(s_{i}\right)}{\sum_{i}\left\|s_{i}\right\|}
$$

- Perplexity comes from this definition:

$$
P P_{M}(C)=2^{H(C ; M)}
$$

Decisions

Deciding what we know

- Anecdotes are often useless except as proofs by contradiction.
- E.g., "I saw Google used as a verb" does not mean that Google is always (or even likely to be) a verb, just that it is not always a noun.
- Shallow statistics are often not enough to be truly meaningful.
- E.g., "My ASR system is 95\% accurate on my test data. Yours is only 94.5\% accurate, you horrible knuckle-dragging idiot."
- What if the test data was biased to favor my system?
- What if we only used a very small amount of data?
- Given all this potential ambiguity, we need a test to see if our statistics actually mean something.

Differences due to sampling

- We saw that KL divergence essentially measures how different two distributions are from each other.
- But what if their difference is due to randomness in sampling?
- How can we tell that a distribution is really different from another?

Hypothesis testing

- Often, we assume a null hypothesis, H_{0}, which states that the two distributions are the same (i.e., come from the same underlying model, population, or phenomenon).
- We reject the null hypothesis if the probability of it being true is too small.
- This is often our goal - e.g., if my ASR system beats yours by 0.5%, I want to show that this difference is not a random accident.
- I assume it was an accident, then show how nearly impossible that is.
- As scientists, we have to be very careful to not reject H_{0} too hastily.
- How can we ensure our diligence?

Confidence

- We reject H_{0} if it is too improbable.
- How do we determine the value of 'too'?
- Significance level $\alpha(0 \leq \alpha \leq 1)$ is the maximum probability that two distributions are identical allowing us to disregard H_{0}.
- In practice, $\alpha \leq 0.05$. Usually, it's much lower.
- Confidence level is $\gamma=1-\alpha$
- E.g., a confidence level of $95 \%(\alpha=0.05)$ implies that we expect that our decision is correct 95% of the time, regardless of the test data.

Confidence

- We will briefly see three types of statistical tests that can tell us how confident we can be in a claim:

1. A t-test, which usually tests whether the means of two models are the same. There are many types, but most assume Gaussian distributions.
2. An analysis of variance (ANOVA), which generalizes the t-test to more than two groups.
3. The χ^{2} test, which evaluates categorical (discrete) outputs.

1. The t-test

- The t-test is a method to compute if distributions are significantly different from one another.
- It is based on the mean (\bar{x}) and variance (σ) of N samples.
- It compares \bar{x} and σ to H_{0} which states that the samples are drawn from a distribution with a mean μ.
- If $t=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / N}}$ (the "t-statistic") is large enough, we can reject H_{0}.

An example would be nice...
There are actually several types of t-tests for different situations...

Example of the t-test: tails

- Imagine the average tweet length of a McGill 'student' is $\mu=158$ chars.
- We sample $N=200$ UofT students and find that our average tweet is $\bar{x}=169$ chars (with $\sigma^{2}=2600$).
- Are UofT tweets significantly longer than much worse McGill tweets?
- We use a 'one-tailed' test because we want to see if UofT tweet lengths are significantly higher.
- If we just wanted to see if UofT tweets were significantly different, we'd use a two-tailed test.

Example of the t-test: freedom

- Imagine the average tweet length of a McGill 'student' is $\mu=158$ chars.
- We sample $N=200$ UofT students and find that our average tweet is $\bar{x}=169$ chars (with $\sigma^{2}=2600$).
- Are UofT tweets significantly longer than much worse McGill tweets?
- Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the number of observations, minus 1 (the number of sample sets).
- In our example, we have $N_{U o f T}=200$ for UofT students, meaning

$$
\text { d.f. }=199
$$

- (this example is adapted from Manning \& Schütze)

Example of the t-test

- Imagine the average tweet length of a McGill 'student' is $\mu=158$ chars.
- We sample $N=200$ UofT students and find that our average tweet is $\bar{x}=169$ chars (with $\sigma^{2}=2600$).
- Are UofT tweets significantly longer than much worse McGill tweets?
- So $t=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / N}}=\frac{169-158}{\sqrt{2600 / 200}} \approx 3.05$
- In a t-test table, we look up the minimum value of t necessary to reject H_{0} at $\alpha=0.005$ (we want to be quite confident) for a 1-tailed test...

Example of the t-test

- So $t=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / N}}=\frac{169-158}{\sqrt{2600 / 200}} \approx 3.05$
- In a t-test table, we look up the minimum value of t necessary to reject H_{0} at $\alpha=0.005$, and find 2.576 (using d. $f .=199 \approx \infty$)
- Since $3.05>2.576$, we can reject H_{0} at the 99.5% level of confidence ($\gamma=1-\alpha=0.995$) ; UofT students are significantly more verbose.

	α (one-tail)	0.05	0.025	0.01	0.005	0.001	0.0005
d.f.	1	6.314	12.71	31.82	63.66	318.3	636.6
	10	1.812	2.228	2.764	3.169	4.144	4.587
	20	1.725	2.086	2.528	2.845	3.552	3.850
	∞	1.645	1.960	2.326	$\mathbf{2 . 5 7 6}$	3.091	3.291

Example of the t-test

- Some things to observe about the t-test table:
- We need more evidence, t, if we want to be more confident (left-right dimension).
- We need more evidence, t, if we have
fewer measurements (top-down dimension).
- A common criticism of the t-test is that picking α is ad-hoc. There are ways to correct for the selection of α.

	α (one-tail)	0.05	0.025	0.01	0.005	0.001	0.0005
d.f.	1	6.314	12.71	31.82	63.66	318.3	636.6
	10	1.812	2.228	2.764	3.169	4.144	4.587
	20	1.725	2.086	2.528	2.845	3.552	3.850

Another example: collocations

- Collocation:
n. a 'turn-of-phrase' or usage where a sequence of words is 'perceived' to have a meaning 'beyond' the sum of its parts.
- E.g., 'disk drive', 'video recorder', and 'soft drink' are collocations. 'cylinder drive', 'video storer', 'weak drink' are not despite some near-synonymy between alternatives.
- Collocations are not just highly frequent bigrams, otherwise 'of the', and 'and the' would be collocations.
- How can we test if a bigram is a collocation or not?

Hypothesis testing collocations

- For collocations, the null hypothesis H_{0} is that there is no association between two given words beyond pure chance.
- I.e., the bigram's actual distribution and pure chance are the same.
- We compute the probability of those words occurring together if H_{0} were true. If that probability is too low, we reject H_{0}.
- E.g., we expect 'of the' to occur together, because they're both likely words to draw randomly
- We could probably not reject H_{0} in that case.

Example of the t-test on collocations

- Is 'new companies' a collocation?
- In our corpus of $14,307,668$ word tokens, new appears 15,828 times and companies appears 4,675 times.
- Our null hypothesis, H_{0} is that they are independent, i.e.,

$$
\begin{aligned}
\mathrm{H}_{0}: P(\text { new companies }) & =P(\text { new }) P(\text { companies }) \\
& =\frac{15828}{14307668} \times \frac{4675}{14307668} \\
& \approx 3.615 \times 10^{-7}
\end{aligned}
$$

Example of the t-test on collocations

- The Manning \& Schütze text claims that if the process of randomly generating bigrams follows a Bernoulli distribution.
- i.e., assigning 1 whenever new companies appears and 0 otherwise gives $\bar{x}=p=P($ new companies $)$
- For Bernoulli distributions, $\sigma^{2}=p(1-p)$. Manning \& Schütze claim that we can assume $\sigma^{2}=p(1-p) \approx p$, since for most bigrams, p is very small.

Example of the t-test on collocations

- So, $\mu=3.615 \times 10^{-7}$ is the expected mean in H_{0}.
- We actually count 8 occurrences of new companies in our corpus
- $\bar{x}=\frac{8}{14307667} \approx 5.591 \times 10^{-7}$

There is 1 fewer bigram instance than word tokens in the corpus

$$
\therefore \sigma^{2} \approx p=\bar{x}=5.591 \times 10^{-7}
$$

- So $t=\frac{\bar{x}-\mu}{\sqrt{\sigma^{2} / N}}=\frac{5.591 \times 10^{-7}-3.615 \times 10^{-7}}{\sqrt{5.591 \times 10^{-7} / 14307667}} \approx 0.9999$
- In a t-test table, we look up the minimum value of t necessary to reject H_{0} at $\alpha=0.005$, and find 2.576 .
- Since $0.9999<2.576$, we cannot reject H_{0} at the 99.5% level of confidence.
- We don't have enough evidence to think that new companies is a collocation (we can't say that it definitely isn't, though!).

2. Analysis of variance (aside)

- Analyses of variance (ANOVAs) (there are several types) can be:
- A way to generalize \boldsymbol{t}-tests to more than two groups.
- A way to determine which (if any) of several variables are responsible for the variation in an observation (and the interaction between them).
- E.g., we measure the accuracy of an ASR system for different settings of empirical parameters M (\# components) and Q (\# states).

Accuracy (\%)	$\boldsymbol{M}=\mathbf{2}$	$\boldsymbol{M}=\mathbf{4}$	$\boldsymbol{M}=\mathbf{1 6}$
$\boldsymbol{Q}=\mathbf{2}$	53.33	66.67	53.33
	26.67	53.33	40.00
	0.00	40.00	26.67
$\boldsymbol{Q}=\mathbf{5}$	93.33	26.67	100.00
	66.67	13.33	80.00
	40.00	0.00	60.00

H_{0} : no effect of source variables.

Source	$d . f$.	p value	
Q	1	0.179	Accept H_{0}
M	2	0.106	Accept H_{0}
interaction	2	0.006	Reject H_{0} at $\alpha=0.01$

A completely fictional example

3. Pearson's χ^{2} test (details aside)

- The χ^{2} test applies to categorical data, like the output of a classifier.
- Like the t-test, we decide on the degrees of freedom (number of categories minus number of parameters), compute the test-statistic, then look it up in a table.
- The test statistic is:

$$
\chi^{2}=\sum_{c=1}^{c} \frac{\left(O_{c}-E_{c}\right)^{2}}{E_{c}}
$$

where O_{c} and E_{c} are the observed and expected number of observations of type c, respectively.

3. Pearson's χ^{2} test

- For example, is our die from Lecture 2 fair or not?
- Imagine we throw it 60 times. The expected number of appearances of each side is 10 .

c	\boldsymbol{O}_{c}	E_{c}	$O_{c}-E_{c}$	$\left(O_{c}-E_{c}\right)^{2}$	$\left(O_{c}-E_{c}\right)^{2} / E_{c}$
1	5	10	-5	25	2.5
2	8	10	-2	4	0.4
3	9	10	-1	1	0.1
4	8	10	-2	4	0.4
5	10	10	0	0	0
6	20	10	10	100	10

- With $d f=6-1=5$, the critical value is $11.07<13.4$, so we throw away H_{0} : the die is biased.
- We'll see χ^{2} again soon...

Feature selection

Determining a good set of features

- Restricting your feature set to a proper subset quickens training and reduces overfitting.
- There are a few methods that select good features, e.g.,

1. Correlation-based feature selection
2. Minimum Redundancy, Maximum Relevance
3. χ^{2}

1. Pearson's correlation

- Pearson is a measure of linear dependence

$$
\rho_{X Y}=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}
$$

- Does not measure 'slope' nor non-linear relations.

1. Spearman's correlation

- Spearman is a non-parametric measure of rank correlation, $r_{c X}=r(c, X)$.
- It is basically Pearson's correlation, but on 'rank variables' that are monotonically increasing integers.
- If the class c can be ordered (e.g., in any binary case), then we can compute the correlation between a feature X and that class.

1. Correlation-based feature selection

- 'Good’ features should correlate strongly (+ or -) with the predicted variable but not with other features.
- $S_{C F S}$ is some set S of k features f_{i} that maximizes this ratio, given class C :

$$
S_{C F S}=\underset{S}{\operatorname{argmax}} \frac{\sum_{f_{i} \in S} r_{C f_{i}}}{\sqrt{k+2 \sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \rho_{f_{i} f_{j}}}}
$$

2. mRMR feature selection

- Minimum-redundancy-maximum-relevance (mRMR) can use correlation, distance scores (e.g., $D_{K L}$) or mutual information to select features.
- For feature set S of features f_{i}, and class c, $D(S, c)$: a measure of relevance S has for c, and $R(S) \quad$: a measure of the redundancy within S,

$$
\mathrm{S}_{m R M R}=\underset{s}{\operatorname{argmax}}[D(S, c)-R(S)]
$$

2. mRMR feature selection

- Measures of relevance and redundancy can make use of our familiar measures of mutual information,
- $D(S, c)=\frac{1}{\|S\|} \sum_{f_{i} \in S} I\left(f_{i} ; c\right)$
- $R(S)=\frac{1}{\|S\|^{2}} \sum_{f_{i \in \mathrm{~S}}} \sum_{f_{j} \in S} I\left(f_{i} ; f_{j}\right)$
- mRMR is robust but doesn't measure interactions of features in estimating c (for that we could use ANOVAs).

3. χ^{2} method

- We adapt the χ^{2} method we saw when testing whether distributions were significantly different:

$$
\chi^{2}=\sum_{c=1}^{C} \frac{\left(O_{c}-E_{c}\right)^{2}}{E_{c}} \square \chi^{2}=\sum_{c=1}^{C} \sum_{f_{i}=f}^{F} \frac{\left(O_{c, f}-E_{c, f}\right)^{2}}{E_{c, f}}
$$

where $O_{c, f}$ and $E_{C, f}$ are the observed and expected number, respectively, of times the class c occurs together with the (discrete) feature f.

- The expectation $E_{c, f}$ assumes c and f are independent.
- Now, every feature has a p-value. A lower p-value means c and f are less likely to be independent.
- Select the k features with the lowest p-values.

Multiple comparisons

- If we're just ordering features, this χ^{2} approach is (mostly) fine.
- But what if we get a 'significant' p-value (e.g., $p<0.05$)? Can we claim a significant effect of the class on that feature?
- Imagine you're flipping a coin to see if it's fair. You claim that if you get 'heads' in 9/10 flips, it's biased.
- Assuming H_{0}, the coin is fair, the probability that a fair coin would come up heads ≥ 9 out of 10 times is:

$$
(10+1) \times 0.5^{10}=0.0107
$$

Multiple comparisons

- But imagine that you're simultaneously testing 173 coins you're doing 173 (multiple) comparisons.
- If you want to see if a specific chosen coin is fair, you still have only a 1.07% chance that it will give heads $\geq \frac{9}{10}$ times.
- But if you don't preselect a coin, what is the probability that none of these fair coins will accidentally appear biased?

$$
(1-0.0107)^{173} \approx 0.156
$$

- If you're testing 1000 coins?

$$
(1-0.0107)^{1000} \approx 0.0000213
$$

Multiple comparisons

- The more features you evaluate with a statistical test (like χ^{2}), the more likely you are to accidentally find spurious (incorrect) significance accidentally.
- Various compensatory tactics exist, including Bonferroni correction, which basically divides your level of significance required, by the number of comparisons.
- E.g., if $\alpha=0.05$, and you're doing 173 comparisons, each would need $p<\frac{0.05}{173} \approx 0.00029$ to be considered significant.

Reading

- Manning \& Schütze: 2.2, 5.3-5.5

Entropy and decisions

- Information theory is a vast ocean that provides statistical models of communication at the heart of cybernetics.
- We've only taken a first step on the beach.
- See the ground-breaking work of Shannon \& Weaver, e.g.
- So far, we've mainly dealt with random variables that the world provides - e.g., words tokens, mainly.
- What if we could transform those inputs into new random variables, or features, that are directly engineered to be useful to decision tasks...

