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This lecture

• Information theory and entropy.
• Decisions.
• Classification.
• Significance.

Can we quantify the statistical structure in a model of communication?
Can we quantify the meaningful difference between statistical models?
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Information

• Imagine Darth Vader is about to say either “yes” or 

“no” with equal probability.  

• You don’t know what he’ll say.

• You have a certain amount of uncertainty – a lack of 

information.

Darth Vader is © Disney
And the prequels and Rey/Finn Star Wars suck

Star Trek is better than Star Wars
3
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Information

• Imagine you then observe Darth Vader saying “no”

• Your uncertainty is gone; you’ve received information.

• How much information do you receive about event !
when you observe it?

! "# = log!
1

)("#)
= log!

1
,1 2
= 1 bit

! 1 = log!
1

)(1)

For the units
of measurement

For the inverse
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Information

• Imagine Darth Vader is about to roll a fair die.

• You have more uncertainty about an event because 

there are more possibilities.

• You receive more information when you observe it.

! 5 = log!
1

)(5)
= log!

"
⁄! "
≈ 2.59 bits
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Information is additive
• From k independent, equally likely events ",

• For a unigram model, with each of 50K words # equally likely,

and for a sequence of 1K words in that model,

$ % binary decisions = log!
1

51 2
" = % bits$ 8" = log!

1
9(8") = log!

1
9 8 "

$ < = log!
1

51 50000
≈ 15.61 bits

$ <" = log!
1

51 50000
#$$$ ≈ 15,610 bits???
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Information with unequal events
• An information source S	 emits symbols without memory from 

a vocabulary #!, #", … , ## . Each symbol has its own
probability {)!, )", … , )#}

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

• What is the average amount of 
information we get in observing 
the output of source S		?

• You still have 6 events that are 
possible – but you’re fairly 
sure it will be ‘No’.
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Entropy
• Entropy: n. the average amount of  information we get in 

observing  the output of source S	.

" # = %
!
&!' (! =%

!
&! log"

1
&!

ENTROPY

Note that this is very similar to how we define the 
expected value (i.e., ‘average’) of something: 

$[&] = )
!∈#

*(,) ,
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Entropy – examples

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

7 8 =9
C

:C log!
1
:C

= 0.7 log!(1/0.7) + 0.1 log!(1/0.1) + ⋯
= 1.542 bits

1 2 3 4 5 6

7 8 =9
C

:C log!
1
:C
= 6

1
6
log!

1
1/6

= 2.585 bits

There is less average uncertainty when the 
probabilities are ‘skewed’.
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Entropy characterizes the distribution
• ‘Flatter’ distributions have a higher entropy because the 

choices are more equivalent, on average.
• So which of these distributions has a lower entropy?
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Low entropy makes decisions easier
• When predicting the next word, e.g., we’d like a distribution 

with lower entropy.
• Low entropy ≡ less uncertainty

LowHigh
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Bounds on entropy
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• Maximum: uniform distribution ,!. Given - choices, 

7 8" =9
C

:C log!
1
:C
=9

C

1
C
log!

1
1/C

= DEFDG

• Minimum: only one choice, . /$ = *% log$
&
'!
= 1 log$ 1 = 4

0
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Coding symbols efficiently
• If we want to transmit Vader’s words efficiently, we can 

encode them so that more probable words require fewer bits.
• On average, fewer bits will need to be transmitted. 

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

Word
(sorted)

Linear 
Code

Huffman 
Code

No 000 0
Yes 001 11
Destiny 010 101
Darkside 011 1001
Maybe 100 10000
Sure 101 10001
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Coding symbols efficiently
• Another way of looking at this is through the (binary) Huffman 

tree (r-ary trees are often flatter, all else being equal):

Word
(sorted)

Linear 
Code

Huffman 
Code

No 000 0
Yes 001 11
Destiny 010 101
Darkside 011 1001
Maybe 100 10000
Sure 101 10001

Sure
10001

Maybe
10000

10

10

10

10No
0

10

Darkside
1001

Destiny
101

Yes
11
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Alternative notions of entropy

• Entropy is equivalently:

• The average amount of information provided
by symbols in a vocabulary,
• The average amount of uncertainty you have before

observing a symbol from a vocabulary,
• The average amount of ‘surprise’ you receive when 

observing a symbol,
• The number of bits needed to communicate that alphabet
• Aside: Shannon showed that you cannot have a coding scheme 

that can communicate the vocabulary more efficiently than 7(8)

15
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Entropy of several variables
• Joint entropy
• Conditional entropy
• Mutual information

1818
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Entropy of several variables
• Consider the vocabulary of a meteorologist describing 

Temperature and Wetness.
• Temperature = {hot, mild, cold}
• Wetness = {dry, wet}

19
Example from Roni Rosenfeld 

) H = IJK = 0.6, 
) H = LMN = 0.4

) O = ℎ#N = 0.3, 
) O = RSTI = 0.5, 
) O = U#TI = 0.2

E F = 0.6 log!
1
0.6 + 0.4 log!

1
0.4 = I. JKIJLM bits

E N = 0.3 log!
1
0.3 + 0.5 log!

1
0.5 + 0.2 log!

1
0.2 =M. PQLPQ

bits

But ! and " are not independent, 
#(!, ") ≠ # ! #(")

19
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Joint entropy
• Joint Entropy: n. the average amount of information needed 

to specify multiple variables simultaneously.

" -, / = %
#
%
$
&(1, 2) log"

1
&(1, 2)

• Hint: this is very similar to univariate entropy – we just replace 
univariate probabilities with joint probabilities and sum over 
everything.
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Entropy of several variables
• Consider joint probability, .(0, 1)

21

cold mild hot

dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

• Joint entropy, 3(0, 1), computed as a sum over the space 
of joint events (0 = #, 1 = 5)
! ",$ = 0.1 log! ⁄" #."+ 0.4 log! ⁄" #.%+ 0.1 log! ⁄" #."

+0.2 log! ⁄" #.!+ 0.1 log! ⁄" #."+ 0.1 log! ⁄" #." = 0. 10231 bits

Notice ( !," ≈ 2.32 < 2.46 ≈ ( ! +((")
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Entropy given knowledge
• In our example, joint entropy of two variables together is 

lower than the sum of their individual entropies
• 3 0,1 ≈ 2.32 < 2.46 ≈ 3 0 +3(1)

• Why?

• Information is shared among variables
• There are dependencies, e.g., between temperature and 

wetness.
• E.g., if we knew exactly how wet it is, is there less 

confusion about what the temperature is … ?

22
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Conditional entropy
• Conditional entropy: n. the average amount of information 

needed to specify one variable given 
that you know another.
• A.k.a ‘equivocation’

" /|- = %
#∈&

& 1 "(/|- = 1)

• Hint: this is very similar to how we compute expected values in 
general distributions.

23
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Entropy given knowledge
• Consider conditional probability, .(1|0)

R(F, N) N = cold mild hot

S = dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

R(N |F) N = cold mild hot

F = dry 0.1/0.6 0.4/0.6 0.1/0.6 1.0

wet 0.2/0.4 0.1/0.4 0.1/0.4 1.0

! " # = !(#, ")/!(#)

24
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Entropy given knowledge
• Consider conditional probability, .(1|0)

R(N |F) N = cold mild hot

F = dry 1/6 2/3 1/6 1.0

wet 1/2 1/4 1/4 1.0

• > ? @ = ABC = 3 !
5
, "
6
, !
5

= D. EFDGH bits

• > ? @ = MNO = 3 !
"
, !
7
, !
7

= D. F bits
• Conditional entropy combines these:

V W X
= : H = IJK 7 O H = IJK + : H = LMN 7 O H = LMN
= Y. Z[\]^_ bits

0.6 0.4
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Equivocation removes uncertainty
• Remember 3 1 = 1.48548 bits
• 3 0,1 = 2.32193 bits
• 3 1 0 = 1.350978 bits

• How much does 0 tell us about 1?
• 3 1 − 3 1 0 = 1.48548 − 1.350978 ≈ 0.1345 bits
• Well, a little bit!

Entropy (i.e., confusion) about 
temperature is reduced if we know
how wet it is outside.

26
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Perhaps ! is more informative?
• Consider another conditional probability, .(0|1)

• ) # " = *+,- = )
!
" ,

#
" = 0.918295 bits

• ) # " = 9:,- = )
$
% ,

!
% = 0.721928 bits

• ) # " = ℎ+= = )
!
# ,

!
# = 1 bit

• > ? @ = A. BCDEFGB bits

R(F|N) N = cold mild hot

F = dry 0.1/0.3 0.4/0.5 0.1/0.2

wet 0.2/0.3 0.1/0.5 0.1/0.2

1.0 1.0 1.0
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Equivocation removes uncertainty
• 3 1 = 1.48548 bits
• 3 0 = 0.970951 bits
• 3 0,1 = 2.32193 bits
• 3 1 0 = 1.350978 bits
• > ? −> ? @ ≈ W. DHXF bits

• How much does 1 tell us about 0 on average?
• > @ −> @ ? = 0.970951 − 0.8364528

≈ W. DHXF bits

• Interesting … is that a coincidence?

Previously 
computed

28
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Mutual information
• Mutual information: n. the average amount of information 

shared between variables.

' -; / = " - − " - / = " / − " / -

= ∑#,$ &(1, 2) log"
((#,$)
( # (($)

• Hint: The amount of uncertainty removed in variable ` if you know a.
• Hint2: If ` and a are independent, : b, K = : b :(K), then 

log!
U(V,W)
U V U(W) = log! 1 = 0 ∀b, K – there is no mutual information!
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Relations between entropies

3 Y, Z = 3 Y + 3 Z − [(Y; Z)

30
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Reminder – the noisy channel
• Messages can get distorted when passed through a noisy

conduit – how much information is lost/retained?

• Signals

• Symbols

• Languages

Sexual abuse Locker room talk

Hello, computer Bonjour, ordinateur

31
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Relatedness of two distributions
• How similar are two probability distributions?
• e.g., Distribution P learned from Kylo Ren

Distribution Q learned from Darth Vader

P Q

Words Words

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty

33



CSC401/2511 – Spring 2020

Relatedness of two distributions
• A Huffman code based on Vader (Q) instead of Kylo (P) will 

be less efficient at coding symbols that Kylo will say.
• What is the average number of extra bits required to code 

symbols from P when using a code based on Q?

P Q

Words Words
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Kullback-Leibler divergence
• KL divergence: n. the average log difference between the 

distributions P and Q, relative to Q.
a.k.a. relative entropy.
caveat: we assume 0 log 0 = 0

P Q

Words Words
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Kullback-Leibler divergence

189(#||3) =5
:
# 6 log #(6)3(6)

• Why log 8 9
: 9

?

• log 8 9
: 9

= log. a − logb a = log !
: 9

− log !
8 9

• If word #9 is less probable in b than . (i.e., it carries more 
information), it will be Huffman encoded in more bits, so 

when we see #9 from ., we need log 8 9
: 9

more bits.
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Kullback-Leibler divergence
• KL divergence:

• is somewhat like a ‘distance’ :

• 8+,(9||:) ≥ 0 ∀9, :
• 8+,(9||:) = 0 iff 9 and : are identical.  

• is not symmetric, 8+,(9||:) ≠ 8+,(:||9)

• Aside:

' 9; : = 8+, 9(-, /)||9 - 9 /

37
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Kullback-Leibler divergence
• KL divergence generalizes to continuous distributions.

• Below, 8+,(?@AB||CDBBE) > 8+,(?@AB||GADG@B)

greenblue

purple

38
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Applications of KL divergence
• Often used towards some other purpose, e.g., 

• In evaluation to say that purple is a better model 

than green of the true distribution blue.

• In machine learning to adjust the parameters of 

purple to be, e.g., less like green and more like blue.

greenblue

purple

39
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Entropy as intrinsic LM evaluation

• Cross-entropy measures how difficult it is to encode 

an event drawn from a true probability & given a 

model based on a distribution H.

• What if we don’t know the true probability &?

• We’d have to estimate the CE using a test corpus C:

" &, H ≈ −
log" 9- J

J

• What’s the probability of a corpus 9-(J)?

40
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Probability of a corpus?

• The probability #(:) of a corpus : requires similar 
assumptions that allowed us to compute the probability 
#(;:) of a sentence ;:.

Sentence Corpus

Chain
rule

) eC =
)(L")∏XY!

Z )(LX|L": X\" )
) h =

)(L")∏XY!
] )(LX|L": X\" )

Approx. ) eC ≈i
X

)(LX) ) h ≈i
C

)(eC)

• Regardless of the LM used for #(;:), we can assume 
complete independence between sentences.

41



CSC401/2511 – Spring 2020

Intrinsic evaluation – Cross-entropy

• Cross-entropy of a LM M and a new test corpus C
with size J (total number of words), where sentence 

M! ∈ J, is approximated by:

"(J;O) = −
log" 9. J

J
= −

∑! log" 9.(M!)
∑! M!

• Perplexity comes from this definition:

99. J = 2/(0;.)

42
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Deciding what we know
• Anecdotes are often useless except as proofs by contradiction.
• E.g., “I saw Google used as a verb” does not mean that Google is 

always (or even likely to be) a verb, just that it is not always a noun.

• Shallow statistics are often not enough to be truly meaningful.
• E.g., “My ASR system is 95% accurate on my test data. Yours is only 

94.5% accurate, you horrible knuckle-dragging idiot.”
• What if the test data was biased to favor my system?
• What if we only used a very small amount of data?

• Given all this potential ambiguity, we need a test to see if our 
statistics actually mean something.
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Differences due to sampling
• We saw that KL divergence essentially measures how different

two distributions are from each other.

• But what if their difference is due to randomness in sampling?

• How can we tell that a distribution is really different from 
another?

45
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Hypothesis testing
• Often, we assume a null hypothesis, 3;, which states that the 

two distributions are the same (i.e., come from the same 
underlying model, population, or phenomenon).

• We reject the null hypothesis if the probability of it being true 
is too small.
• This is often our goal – e.g., if my ASR system beats yours by 0.5%, 

I want to show that this difference is not a random accident.
• I assume it was an accident, then show how nearly impossible that is.

• As scientists, we have to be very careful to not reject 7^ too hastily.
• How can we ensure our diligence?

46
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Confidence
• We reject )& if it is too improbable.
• How do we determine the value of ‘too’?

• Significance level H (0 ≤ J ≤ 1) is the maximum probability that 
two distributions are identical allowing us to disregard )&.
• In practice, J ≤ 0.05. Usually, it’s much lower.
• Confidence level is K = 1 − J
• E.g., a confidence level of 95% (J = 0.05) implies that we 

expect that our decision is correct 95% of the time, 
regardless of the test data.

47
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Confidence
• We will briefly see three types of statistical tests that can tell us 

how confident we can be in a claim:

1. A  t-test, which usually tests whether the means of two
models are the same. There are many types,
but most assume Gaussian distributions.

2. An analysis of variance (ANOVA), which generalizes the 
t-test to more than two groups.

3. The M' test, which evaluates categorical (discrete) outputs.

48
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1. The t-test
• The t-test is a method to compute if distributions are 

significantly different from one another.

• It is based on the mean (cd) and variance (e) of f samples. 
• It compares h̅ and i to 3; which states that the samples are 

drawn from a distribution with a mean j.

• If   5 = =̅>?

@!" #
(the “t-statistic”) is large enough, we can reject 3;.

An example would be 
nice…

There are actually several types of t-tests for different situations…

49
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Example of the t-test: tails
• Imagine the average tweet length of a McGill ‘student’ is j = 158 chars.
• We sample k = 200 UofT students and find that our average tweet is 
b̅ = 169 chars (with m! = 2600).

• Are UofT tweets significantly longer than much worse McGill tweets?

• We use a ‘one-tailed’ test because we want to see if UofT tweet lengths 
are significantly higher.
• If we just wanted to see if UofT tweets were significantly different, 

we’d use a two-tailed test.

one tail two tails

50
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Example of the t-test: freedom
• Imagine the average tweet length of a McGill ‘student’ is j = 158 chars.
• We sample k = 200 UofT students and find that our average tweet is 
b̅ = 169 chars (with m! = 2600).

• Are UofT tweets significantly longer than much worse McGill tweets?

• Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the 
number of observations, minus 1 (the number
of sample sets).

• In our example, we have k_`ab = 200 for UofT students, meaning
I. n. = 199

• (this example is adapted from Manning & Schütze)

51
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Example of the t-test
• Imagine the average tweet length of a McGill ‘student’ is j = 158 chars.
• We sample k = 200 UofT students and find that our average tweet is 
b̅ = 169 chars (with m! = 2600).

• Are UofT tweets significantly longer than much worse McGill tweets?

• So N = V̅\d

5#$ %
= "ef\"gh

⁄$"&& $&&
≈ 3.05

• In a t-test table, we look up the minimum value of N necessary to reject 
7^ at o = 0.005 (we want to be quite confident) for a 1-tailed test…
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Example of the t-test

i (one-tail) 0.05 0.025 0.01 0.005 0.001 0.0005

d.f.

1 6.314 12.71 31.82 63.66 318.3 636.6
10 1.812 2.228 2.764 3.169 4.144 4.587
20 1.725 2.086 2.528 2.845 3.552 3.850
∞ 1.645 1.960 2.326 2.576 3.091 3.291

• So N = V̅\d

5#$ %
= "ef\"gh

⁄$"&& $&&
≈ 3.05

• In a t-test table, we look up the minimum value of N necessary to reject 
7^ at o = 0.005, and find 2.576 (using I. n. = 199 ≈ ∞)
• Since 3.05 > 2.576, we can reject 7^ at the 99.5% level of confidence 

(r = 1 − o = 0.995) ; UofT students are significantly more verbose.
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Example of the t-test
• Some things to observe about the t-test table:
• We need more evidence, t, if we want to be 

more confident (left-right dimension).
• We need more evidence, t, if we have 

fewer measurements (top-down dimension).
• A common criticism of the t-test is that picking A is ad-hoc. 

There are ways to correct for the selection of A.

i (one-tail) 0.05 0.025 0.01 0.005 0.001 0.0005

d.f.

1 6.314 12.71 31.82 63.66 318.3 636.6
10 1.812 2.228 2.764 3.169 4.144 4.587
20 1.725 2.086 2.528 2.845 3.552 3.850
∞ 1.645 1.960 2.326 2.576 3.091 3.291
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Another example: collocations
• Collocation: n. a ‘turn-of-phrase’ or usage where a 

sequence of words is ‘perceived’ to have a 
meaning ‘beyond’ the sum of its parts.

• E.g., ‘disk drive’, ‘video recorder’, and ‘soft drink’ are
collocations. ‘cylinder drive’, ‘video storer’, ‘weak drink’ 
are not despite some near-synonymy between alternatives.

• Collocations are not just highly frequent bigrams, otherwise 
‘of the’, and ‘and the’ would be collocations.

• How can we test if a bigram is a collocation or not?
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Hypothesis testing collocations
• For collocations, the null hypothesis 3; is that there is no 

association between two given words beyond pure chance.
• I.e., the bigram’s actual distribution and pure chance are the same.
• We compute the probability of those words occurring together 

if 7^ were true. If that probability is too low, we reject 7^.

• E.g., we expect ‘of the’ to occur together, because they’re both likely 
words to draw randomly 
• We could probably not reject 7^ in that case.
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Example of the t-test on collocations
• Is ‘new companies’ a collocation?
• In our corpus of 14,307,668 word tokens, new appears 15,828 times 

and companies appears 4,675 times.
• Our null hypothesis, 7^ is that they are independent, i.e., 

H^: ) "ML U#R:v"SMe = ) "ML ) U#R:v"SMe
= "gh!h

"kl^meeh×
kemg

"kl^meeh

≈ 3.615×10\m
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Example of the t-test on collocations
• The Manning & Schütze text claims that if the process of randomly 

generating bigrams follows a Bernoulli distribution.

• i.e., assigning 1 whenever new companies appears and 0 otherwise 
gives b̅ = : = )("ML U#R:v"SMe)

• For Bernoulli distributions, m! = :(1 − :). Manning & Schütze claim 
that we can assume m! = :(1 − :) ≈ :, since for most bigrams, : is 
very small.
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Example of the t-test on collocations
• So, j = 3.615×10\m is the expected mean in 7^.
• We actually count 8 occurrences of new companies in our corpus
• b̅ = h

"kl^meem
≈ 5.591×10\m

• So N = V̅\d

5#$ %
= g.gf"×"^'(\l.e"g×"^'(

5).)+!×!&'( !-.&(""(
≈ \. ]]]]

• In a t-test table, we look up the minimum value of N necessary to reject 
7^ at o = 0.005, and find x. [^y.
• Since \. ]]]] < x. [^y, we cannot reject 7^ at the 99.5% level of 

confidence. 
• We don’t have enough evidence to think that new companies

is a collocation (we can’t say that it definitely isn’t, though!).

There is 1 fewer bigram instance 
than word tokens in the corpus

∴ p! ≈ q = r̅ = 5.591×10%&
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2. Analysis of variance (aside)
• Analyses of variance (ANOVAs) (there are several types) can be:
• A way to generalize t-tests to more than two groups.
• A way to determine which (if any) of several variables are responsible

for the variation in an observation (and the interaction between them). 

• E.g., we measure the accuracy of an ASR system for different settings of 
empirical parameters C (# components) and { (# states).

Accuracy (%) & = ( & = ) & = *+
, = ( 53.33 66.67 53.33

26.67 53.33 40.00

0.00 40.00 26.67

, = - 93.33 26.67 100.00

66.67 13.33 80.00

40.00 0.00 60.00

Source .. /. 0 value

1 1 0.179 Accept 2"
3 2 0.106 Accept 2"

interaction 2 0.006 Reject 2" at 4 = 0.01

A completely fictional example

2": no effect of source variables.
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3. Pearson’s "! test (details aside)
• The kB test applies to categorical data, like the output of a 

classifier.
• Like the t-test, we decide on the degrees of freedom (number of 

categories minus number of parameters), compute the test-statistic, then 
look it up in a table.  
• The test statistic is:

where lC and "C are the observed
and expected number of 
observations of type m, respectively.

|! =9
tY"

]
}t − 1t !

1t
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3. Pearson’s "! test
• For example, is our die from Lecture 2 fair or not?
• Imagine we throw it 60 times. The expected number of 

appearances of each side is 10. 

u v' w' v' − w' v' − w' ( v' − w' (/w'
1 5 10 -5 25 2.5
2 8 10 -2 4 0.4
3 9 10 -1 1 0.1
4 8 10 -2 4 0.4
5 10 10 0 0 0
6 20 10 10 100 10

Sum (z!) 13.4

• With DE = 6 − 1 = 5, 
the critical value is 
11.07<13.4, so we 
throw away 3;: 
the die is biased.
• We’ll see n" again 

soon…
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Determining a good set of features

• Restricting your feature set to a proper subset 

quickens training and reduces overfitting.

• There are a few methods that select good features, 

e.g.,

1. Correlation-based feature selection

2. Minimum Redundancy, Maximum Relevance

3. Q"
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1. Pearson’s correlation

• Pearson is a measure of linear dependence

oIJ =
mpq(Y, Z)
iIiJ

=
∑9K!
# Y9 − sY Z9 − sZ

∑9K!
# Y9 − sY " ∑9K!

# Z9 − sZ "

• Does not measure ‘slope’ nor non-linear relations.
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1. Spearman’s correlation

• Spearman is a non-parametric measure of rank
correlation, R2& = R(S, -).
• It is basically Pearson’s correlation, but on ‘rank variables’ 

that are monotonically increasing integers.
• If the class m can be ordered (e.g., in any binary case), then 

we can compute the correlation between a feature Y and 
that class.
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1. Correlation-based feature selection

• ‘Good’ features should correlate strongly (+ or -) with 

the predicted variable but not with other features.

• #034 is some set # of T features U! that maximizes this 

ratio, given class S:

#034 = argmax
4

∑5(∈4 R25(

T + 2∑!67
897∑:6!;7

8 [5(5)
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2. mRMR feature selection

• Minimum-redundancy-maximum-relevance (mRMR)
can use correlation, distance scores (e.g., 8+,) or 

mutual information to select features.

• For feature set # of features U!, and class S,

\ ], ^ : a measure of relevance # has for S, and

_(]) : a measure of the redundancy within #,

S<=.= = argmax
>

8 #, S − a(#)
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2. mRMR feature selection

• Measures of relevance and redundancy can make use 

of our familiar measures of mutual information,

• 8 #, S =
7
4 ∑5(∈4 '(U!; S)

• a # =
7
4 *∑5(∈,∑5)∈4 '(U!; U:)

• mRMR is robust but doesn’t measure interactions of 

features in estimating S (for that we could use ANOVAs).
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3. "! method
• We adapt the |! method we saw when testing whether distributions 

were significantly different:

where }t,a and 1t,a are the observed and expected number, respectively, 
of times the class U occurs together with the (discrete) feature n.
• The expectation  1t,a assumes  U and n are independent.

• Now, every feature has a p-value. A lower p-value means U and n are less
likely to be independent.

• Select the k features with the lowest p-values.

|! =9
tY"

]
}t − 1t !

1t
|! =9

tY"

]

9
a/Ya

{
}t,a − 1t,a

!

1t,a
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Multiple comparisons
• If we’re just ordering features, this n" approach is (mostly) fine. 
• But what if we get a ‘significant’ p-value (e.g., ) < 0.05)? 

Can we claim a significant effect of the class on that feature?

• Imagine you’re flipping a coin to see if it’s fair. You claim that 
if you get ‘heads’ in 9/10 flips,  it’s biased.
• Assuming 3;, the coin is fair, the probability that a fair coin 

would come up heads ≥ 9 out of 10 times is:

10 + 1 ×0.5"^ = 0.0107

Number of ways 9
flips are heads

Number of ways all 10
flips are heads
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Multiple comparisons
• But imagine that you’re simultaneously testing 173 coins –

you’re doing 173 (multiple) comparisons.
• If you want to see if a specific chosen coin is fair, you still have 

only a 1.07% chance that it will give heads ≥ L
!;

times.

• But if you don’t preselect a coin, what is the probability that 
none of these fair coins will accidentally appear biased?

• If you’re testing 1000 coins? 

1 − 0.0107 MK| ≈ 0.156

1 − 0.0107 MIII ≈ 0.0000213
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Multiple comparisons
• The more features you evaluate with a statistical test (like n"), 

the more likely you are to accidentally find spurious (incorrect) 
significance accidentally.

• Various compensatory tactics exist, including Bonferroni 
correction, which basically divides your level of significance 
required, by the number of comparisons.
• E.g., if u = 0.05, and you’re doing 173 

comparisons, each would need 

) < ;.;N
!O6

≈ 0.00029 to be 

considered significant. 
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Reading
• Manning & Schütze: 2.2, 5.3-5.5
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Entropy and decisions
• Information theory is a vast ocean that provides statistical 

models of communication at the heart of cybernetics.
• We’ve only taken a first step on the beach.
• See the ground-breaking work of Shannon & Weaver, e.g.

• So far, we’ve mainly dealt with random variables that the 
world provides – e.g., words tokens, mainly.

• What if we could transform those inputs into new random 
variables, or features, that are directly engineered to be 
useful to decision tasks…
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