Hidden Markov models
Review

• **Zipf** in the context of *entropy*.
• Intuitions about *KL divergence*.
• Reminder of *statistical significance*.
• Collocations *vs.* idioms.
Zipf’s law in the context of entropy

Log

Linear

CSC401/2511 – Spring 2014
Zipf’s law in the context of entropy

- From this perspective, it is clear that a small number of highly-ranked words have a fairly low entropy.
Zipf’s law in the context of entropy

• However, among the many less frequent words, entropy quickly rises.

• About 50% of the words in large corpora, like Brown, occur only once.

• This implies difficulty in ‘preferring’ certain words over others.

• This is related to sparseness: each hapax legomenon means $2(\|V\| - 1)$ zeros in our unsmoothed bigram table.
Kullback-Leibler divergence

• E.g., I have two distributions: P (learned from *Shakespeare*) and Q (learned from *Wall Street Journal*).

$$D_{KL}(P||Q) = \sum_{w} P(w) \log \frac{P(w)}{Q(w)}$$
KL divergence and equivocation

\[D_{KL}(P||Q) = \sum_i P(i) \log \frac{P(i)}{Q(i)} \]

\[H(Y|X) = \sum_{x \in X} p(x) H(Y|X = x) \]

• \(D_{KL} \) tells us the expected number of extra bits required to code samples from \(P \) when using a code based on \(Q \).

• It is not the same as conditional entropy (aka equivocation).
 • The latter involves resolving a variable, \(D_{KL} \) does not.
Kullback-Leibler divergence

- Computed on a per-word basis. Some words may be much more likely in one distribution than the other.

\[D_{KL}(P||Q) = \sum_w P(w) \log \frac{P(w)}{Q(w)} = \cdots + P(OPEC) \log \frac{P(OPEC)}{Q(OPEC)} + \cdots \]
Kullback-Leibler divergence

\[D_{KL}(P||Q) = \cdots + P(OPEC) \log \frac{P(OPEC)}{Q(OPEC)} + \cdots \]

- As \(P(OPEC) \to Q(OPEC) \), then \(\left(\log \frac{P(OPEC)}{Q(OPEC)} \right) \to 0 \). There is little to no divergence due to this word.

- As \(P(OPEC) \to 0 \), then \(P(OPEC) \log \frac{P(OPEC)}{Q(OPEC)} \to 0 \). We never expect to have to encode \(OPEC \) in \(P \), so there is no divergence.

- We are constrained that \(Q(w) > 0 \) for every \(w \) s.t \(P(w) > 0 \)
Statistical significance

• The purpose of hypothesis testing is to show that the difference between distribution means is not due to chance.

• Saying system A is better than system B is inadequate.
• Saying A is better than B at 99% level of confidence implies that A is so much better, we expect it to win in 99% of all possible tests.
Collocations

• Note that collocations ≠ idioms.

• Idioms are ‘non-compositional’ in that their meanings are not in any way derived from their components.

• Collocations have meanings that are derived from their component words.
Idioms ≠ collocations

• **Collocation**: *n.* a ‘turn-of-phrase’ or usage where a sequence of words is perceived to have a meaning ‘beyond’ the sum of its parts.

• **Idiom**: *n.* An expression with a **figurative** meaning **unrelated** to the literal meanings of its words.

• E.g.,

<table>
<thead>
<tr>
<th>Idiom</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spill the beans</td>
<td>Divulge a secret</td>
</tr>
<tr>
<td>Burn the midnight oil</td>
<td>Work late</td>
</tr>
<tr>
<td>Under the weather</td>
<td>Somewhat ill</td>
</tr>
<tr>
<td>Get out of hand</td>
<td>Become uncontrollable</td>
</tr>
</tbody>
</table>
Idioms

• **Idiom:** *n.* An expression with a **figurative** meaning **unrelated** to the literal meanings of its words.

• Like collocations, you cannot substitute near-synonyms, e.g.:
 - **Spill the beans:** *pour some beans*
 - **Burn the midnight oil:** *ignite the midnight petroleum*
 - **Under the weather:** *beneath the weather*
 - **Get out of hand:** *leave the hand*

• Although you *may* sometimes derive meanings of **idioms** from historical context, they remain highly **metaphorical**.
Collocations

• E.g., *soft drink* is a collocation because in practice you will not see substitutions of either word
 • You would not say *mild drink* or *soft beverage*.
 • However, it *is* a drink – the meaning of the phrase is related to its parts.

• Similarly, *disk drive* and *video recorder* are relatively immutable, but their meanings *are related* to their component words.
Week 4

• (Hidden) Markov models.
 • Using them.
 • Training them.
 • Loving them.
Observable Markov model

• We’ve seen this type of model:
 • e.g., consider the 7-word vocabulary:
 \{ship, pass, camp, frock, soccer, mother, tops\}

 • What is the probability of the sequence
 \textit{ship, ship, pass, ship, tops}?

• Assuming a \textbf{bigram} model (i.e., 1st-order Markov),
 \begin{align*}
P(\text{ship}|\langle s\rangle)P(\text{ship}|\text{ship})P(\text{pass}|\text{ship})
& \cdot P(\text{ship}|\text{pass})P(\text{tops}|\text{ship})
\end{align*}
Observable Markov model

- This can be conceptualized graphically.

- We start with N states, s_1, s_2, \ldots, s_N that represent unique observations in the world.

- Here, $N = 7$ and each state represents one of the words we can observe.
Observable Markov model

• We have discrete timesteps, $t = 0, t = 1, \ldots$

• On the t^{th} timestep the system is in exactly one of the available states, q_t.
 • $q_t \in \{s_1, s_2, \ldots, s_N\}$

• We could start in any state. The probability of starting with a particular state s is $P(q_0 = s) = \pi(s)$
Observable Markov model

- At each step we must move to a state with some probability.

- Here, an arrow from q_t to q_{t+1} represents $P(q_{t+1}|q_t)$

- $P(ship|ship)$
- $P(tops|ship)$
- $P(pass|ship)$
- $P(frock|ship) = 0$
Observable Markov model

• Probabilities on all outgoing arcs must sum to 1.

• $P(ship|ship) + P(tops|ship) + P(pass|ship) = 1$

• $P(ship|tops) + P(tops|tops) + P(mother|tops) = 1$

• ...
A multivariate system

- What if the probabilities of observing words depended *only* on some *other* variable, like *mood*?

<table>
<thead>
<tr>
<th>word</th>
<th>$P(\text{word})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.1</td>
</tr>
<tr>
<td>pass</td>
<td>0.05</td>
</tr>
<tr>
<td>camp</td>
<td>0.05</td>
</tr>
<tr>
<td>flock</td>
<td>0.6</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.1</td>
</tr>
<tr>
<td>tops</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>word</th>
<th>$P(\text{word})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.25</td>
</tr>
<tr>
<td>pass</td>
<td>0.25</td>
</tr>
<tr>
<td>camp</td>
<td>0.05</td>
</tr>
<tr>
<td>flock</td>
<td>0.3</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.09</td>
</tr>
<tr>
<td>tops</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>word</th>
<th>$P(\text{word})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.3</td>
</tr>
<tr>
<td>pass</td>
<td>0</td>
</tr>
<tr>
<td>camp</td>
<td>0</td>
</tr>
<tr>
<td>flock</td>
<td>0.2</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.05</td>
</tr>
<tr>
<td>tops</td>
<td>0.4</td>
</tr>
</tbody>
</table>
A multivariate system

- What if this variable changes over time?
 - e.g., I’m happy one second and disgusted the next.
- Here, state ≡ mood
 observation ≡ word.

<table>
<thead>
<tr>
<th>word</th>
<th>P(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.1</td>
</tr>
<tr>
<td>pass</td>
<td>0.05</td>
</tr>
<tr>
<td>camp</td>
<td>0.05</td>
</tr>
<tr>
<td>flock</td>
<td>0.6</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.1</td>
</tr>
<tr>
<td>tops</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>word</th>
<th>P(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.3</td>
</tr>
<tr>
<td>pass</td>
<td>0.0</td>
</tr>
<tr>
<td>camp</td>
<td>0.0</td>
</tr>
<tr>
<td>flock</td>
<td>0.2</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.05</td>
</tr>
<tr>
<td>tops</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Observable multivariate systems

- Imagine you have access to my emotional state somehow.
- All your data are completely observable at every timestep.
- E.g.,

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>😊</td>
<td>😊</td>
<td>😊</td>
<td>...</td>
</tr>
<tr>
<td>word</td>
<td>mother</td>
<td>flock</td>
<td>soccer</td>
<td>...</td>
</tr>
</tbody>
</table>

\equiv

\[\langle \text{mother}, \text{frock}, \text{soccer} \rangle, \langle 😊, 😊, 😊 \rangle \]
Observable multivariate systems

• What is the probability of a sequence of words and states?
 \[P(w_{0:t}, q_{0:t}) = P(q_{0:t})P(w_{0:t} | q_{0:t}) \approx \prod_{i=0}^{t} P(q_{i} | q_{i-1})P(w_{i} | q_{i}) \]

• e.g.,
 \[P(\langle \text{ship, pass} \rangle, \langle \smiley, \\smiley \rangle) = P(q_{0} = \smiley)P(\text{ship} | \smiley)P(\smiley | \smiley)P(\text{pass} | \smiley) \]
Observable multivariate systems

• **Q:** How do you **learn** these probabilities?

 • $P(w_{0:t}, q_{0:t}) = \prod_{i=0}^{t} P(q_i|q_{i-1})P(w_i|q_i)$

• **A:** When all data are observed, basically the same as before.

 • $P(q_i|q_{i-1}) = \frac{P(q_{i-1}q_i)}{P(q_{i-1})}$ is learned with MLE from training data.

 • $P(w_i|q_i) = \frac{P(w_i,q_i)}{P(q_i)}$ is also learned with MLE from training data.
Hidden variables

• Q: What if you don’t know the states during testing?
 • e.g., compute \(P((ship, ship, pass, flock)) \)

• Q: What if you don’t know the states during training?
Examples of hidden phenomena

• We want to represent **surface** (i.e., **observable**)
 phenomena as the **output** of **hidden** underlying systems.
• e.g.,
 • **Words** are the outputs of hidden **parts-of-speech**,
 • **French phrases** are the outputs of hidden **English phrases**,
 • **Speech sounds** are the outputs of hidden **phonemes**.

• in other fields,
 • **Encrypted symbols** are the outputs of hidden **messages**,
 • **Genes** are the outputs of hidden **functional relationships**,
 • **Weather** is the output of hidden **climate conditions**,
 • **Stock prices** are the outputs of hidden **market conditions**,
 • ...
Definition of an HMM

- A hidden Markov model (HMM) is specified by the 5-tuple \(\{ S, W, \Pi, A, B \} \):

 - \(S = \{ s_1, ..., s_N \} \): set of states (e.g., moods)
 - \(W = \{ w_1, ..., w_K \} \): output alphabet (e.g., words)

 \[\theta \]

 - \(\Pi = \{ \pi_1, ..., \pi_N \} \): initial state probabilities
 - \(A = \{ a_{ij} \}, i, j \in S \): state transition probabilities
 - \(B = b_i(w), i \in S, w \in W \): state output probabilities

 yielding

 - \(Q = \{ q_0, ..., q_T \}, q_i \in S \): state sequence
 - \(O = \{ \sigma_0, ..., \sigma_T \}, \sigma_i \in W \): output sequence
A hidden Markov production process

- An HMM is a **representation** of a process in the world.
- This is how an HMM **generates** new sequences:

 - \(t := 0 \)
 - **Start** in state \(q_0 = s_i \) with probability \(\pi_i \)
 - **Emit** observation symbol \(\sigma_0 = w_k \) with probability \(b_i(\sigma_0) \)
 - **While** (not forever)
 - **Go** from state \(q_t = s_i \) to state \(q_{t+1} = s_j \) with probability \(a_{ij} \)
 - **Emit** observation symbol \(\sigma_{t+1} = w_k \) with probability \(b_j(\sigma_{t+1}) \)
 - \(t := t + 1 \)
Fundamental questions for HMMs

1. Given a model with particular parameters $\theta = \langle \Pi, A, B \rangle$, how do we efficiently compute the likelihood of a particular observation sequence, $P(\mathcal{O}; \theta)$?

We previously computed the probabilities of word sequences using N-grams.

The probability of a particular sequence is usually useful as a means to some other end.
Fundamental questions for HMMs

2. Given an observation sequence \mathcal{O} and a model θ, how do we choose a state sequence $Q = \{q_0, \ldots, q_T\}$ that best explains the observations?

This is the task of inference – i.e., guessing at the best explanation of unknown (‘latent’) variables given our model.

This is often an important part of classification.
Fundamental questions for HMMs

3. Given a large observation sequence \mathcal{O}, how do we choose the best parameters $\theta = \langle \Pi, A, B \rangle$ that explain the data \mathcal{O}?

This is the task of **training**.

As before, we want our parameters to be set so that the available training data is maximally likely,
But doing so will involve guessing unseen information.
Question 1: Computing $P(\mathcal{O}; \theta)$

• We’ve seen the probability of a joint sequence of observations and states:

\[P(\mathcal{O}, Q; \theta) = P(\mathcal{O}|Q; \theta)P(Q; \theta) \]
\[= \pi q_0 b_{q_0}(\sigma_0) a_{q_0q_1} b_{q_1}(\sigma_1) a_{q_1q_2} b_{q_2}(\sigma_2) \ldots \]

• To get the probability of our observations without seeing the state, we must sum over all possible state sequences:

\[P(\mathcal{O}; \theta) = \sum_Q P(\mathcal{O}|Q; \theta)P(Q; \theta). \]
Computing $P(\mathcal{O}; \theta)$ naïvely

• To get the total probability of our observations, we could sum over all possible state sequences:

$$P(\mathcal{O}; \theta) = \sum_Q P(\mathcal{O}|Q; \theta)P(Q; \theta).$$

• For observations of length T, each state sequence involves $2T + 1$ multiplications (1 for each state transition, 1 for each observation, 1 for the start state).

• There are N^T possible state sequences of length T given N states.

$\therefore \sim (1 + T + T) \cdot N^T$ multiplications 😞
Computing $P(\mathcal{O}; \theta)$ cleverly

• To avoid this complexity, we use dynamic programming; we remember rather than recompute partial results.

• We make a trellis which is an array of states vs. time.
 • The element at (i, t) is $\alpha_i(t)$ the probability of being in state i at time t after seeing all previous observations:
 \[P(\sigma_{o:t-1}, q_t = s_i; \theta) \]
Trellis

Probability of being in state s_3 at time $t = 2$
Alternative paths through the trellis

Probability of being in state s_3 at time $t = 2$
Alternative paths through the trellis

Probability of being in state s_3 at time $t = 2$
Alternative paths through the trellis

State

S_1

S_2

S_3

S_N

Time, t

0

1

2

$T - 1$

Probability of being in state s_3 at time $t = 2$
Alternative paths through the trellis

Notice that I already computed a path through this node

Probability of being in state s_3 at time $t = 2$
Alternative paths through the trellis

Notice that I already computed a path through this node

Probability of being in state s_3 at time $t = 2$
AND SO ON...
To compute the probabilities of the black node and the yellow node, I need (among others) the probabilities of the orange node and the purple node:

I compute once, and save them.
The Forward procedure

• To compute

\[\alpha_i(t) = P(\sigma_{0:t}, q_t = s_i; \theta) \]

we can compute \(\alpha_j(t - 1) \) for possible previous states \(s_j \), then use our knowledge of \(a_{ij} \) and \(b_i(\sigma_t) \).

• We compute the trellis **left-to-right** (because of time) and **top-to-bottom** (because of convention).

• Remember: \(\sigma_t \) is fixed and known.

\(\alpha_i(t) \) is agnostic of the future.
The Forward procedure

• The trellis is computed **left-to-right** and **top-to-bottom**.

• There are three steps in this procedure:
 • **Initialization**: Compute the nodes in the *first column* of the trellis \((t = 0)\).

 • **Induction**: Iteratively compute the nodes in the *rest* of the trellis \((1 \leq t < T)\).

 • **Conclusion**: Sum over the nodes in the *last column* of the trellis \((t = T - 1)\).
Initialization of Forward procedure

\[\alpha_i(0) := \pi_i b_i(\sigma_0), \quad i := 1..N \]

(Probability of starting in state \(i \) and reading the first symbol there)
Induction of Forward procedure

\[\alpha_j(t + 1) := \sum_{i=1}^{N} \alpha_i(t) a_{ij} b_j(\sigma_{t+1}), \]

for \(j := 1..N, t := 0..(T - 2) \)

(Probability of getting to state \(j \) at time \(t + 1 \))
Induction of Forward procedure

\[
\begin{align*}
\alpha_1(t) &= s_1 \\
\alpha_2(t) &= s_2 \\
\alpha_3(t) &= s_3 \\
\alpha_N(t) &= s_N \\
\end{align*}
\]

\[
\begin{align*}
\alpha_j(t + 1) &= a_1 b_j(\sigma_{t+1}) \\
&\quad + a_2 b_j(\sigma_{t+1}) \\
&\quad + a_3 b_j(\sigma_{t+1}) \\
&\quad + a_N b_j(\sigma_{t+1}) \\
\end{align*}
\]
Conclusion of Forward procedure

Sum over all possible final states.

\[P(\Omega; \theta) = \sum_{i=1}^{N} \alpha_i(T - 1) \]
The Forward procedure

• The naïve approach needed $(2T + 1) \cdot N^T$ multiplications.

• The Forward procedure (using dynamic programming) needs only $2N^2T$ multiplications.

• The Forward procedure gives us $P(\mathcal{O}; \theta)$.

• Clearly, but less intuitively, we can also compute the trellis from back-to-front, i.e., backwards in time...
The Backward procedure

• In the \((i, t)^{th}\) node of the trellis, we store
 \[\beta_i(t) = P(\sigma_{t:T}, q_t = s_i; \theta) \]
 which is computed by summing probabilities on outgoing arcs from that node.

\(\beta_i(t)\) is the probability of starting in state \(i\) at time \(t\) then observing everything that comes thereafter.

• The trellis is computed right-to-left and top-to-bottom.
The Backward procedure

• Initialization
 \[\beta_i(T - 1) = 1, \quad i := 1..N \]

• Induction
 \[\beta_i(t) = \sum_{j=1}^{N} a_{ij} b_j(\sigma_{t+1}) \beta_j(t + 1), \quad i := 1..N \]
 \[t := T - 1..0 \]

• Conclusion
 \[P(\emptyset; \theta) = \sum_{i=1}^{N} \pi_i b_i(\sigma_0) \beta_i(0) \]
The Backward procedure – so what?

• The combination of Forward and Backward procedures will be vital for solving parameter re-estimation, i.e., training.

• Generally, we can combine α and β at any point in time to represent the probability of an entire observation sequence:

(Next slide, please)
Combining α and β

$$P(\mathcal{O}, q_t = i; \theta) = \alpha_i(t)\beta_i(t)$$

$$\therefore P(\mathcal{O}; \theta) = \sum_{i=1}^{N} \alpha_i(t)\beta_i(t)$$
Question 2: Choosing $Q = \{q_0 \ldots q_T\}$

• The purpose of finding the best state sequence Q^* out of all possible state sequences Q is that it tells us what is most likely to be going on ‘under the hood’.
 • E.g., it tells us the most likely part-of-speech tags,
 • E.g., it tells us the most likely English words given French translations.

• With the Forward algorithm, we didn’t care about specific state sequences – we were summing over all possible state sequences.
Question 2: Choosing $Q = \{q_0 \ldots q_T\}$

• In other words,

$$Q^* = \arg\max_Q P(O, Q; \theta)$$

where

$$P(O, Q; \theta) = \pi_{q_0} b_{q_0}(\sigma_0) \prod_{t=1}^{T} \alpha_{q_{t-1}q_t} b_{q_t}(\sigma_t)$$
Recall

• Observation likelihoods depend on the state, which changes over time

• We cannot simply choose the state that maximizes the probability of o_t without considering the state sequence.

<table>
<thead>
<tr>
<th>word</th>
<th>P(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.25</td>
</tr>
<tr>
<td>pass</td>
<td>0.25</td>
</tr>
<tr>
<td>camp</td>
<td>0.05</td>
</tr>
<tr>
<td>flock</td>
<td>0.3</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.09</td>
</tr>
<tr>
<td>tops</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>word</th>
<th>P(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.3</td>
</tr>
<tr>
<td>pass</td>
<td>0.0</td>
</tr>
<tr>
<td>camp</td>
<td>0.0</td>
</tr>
<tr>
<td>flock</td>
<td>0.2</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.05</td>
</tr>
<tr>
<td>tops</td>
<td>0.4</td>
</tr>
</tbody>
</table>
The Viterbi algorithm

• **The Viterbi algorithm** is an inductive dynamic-programming algorithm that uses a *new kind* of trellis.

• We define the **probability of the most probable path** leading to the trellis node at (state i, time t) as

\[
\delta_i(t) = \max_{q_0 \ldots q_{t-1}} P(q_0 \ldots q_{t-1}, \sigma_0 \ldots \sigma_{t-1}, q_t = s_i; \theta)
\]

• $\psi_i(t)$: The best possible previous state, if I’m in state i at time t.

Viterbi example

• For illustration, we assume a simpler state-transition topology:

<table>
<thead>
<tr>
<th>word</th>
<th>P(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.25</td>
</tr>
<tr>
<td>pass</td>
<td>0.25</td>
</tr>
<tr>
<td>camp</td>
<td>0.05</td>
</tr>
<tr>
<td>flock</td>
<td>0.3</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.09</td>
</tr>
<tr>
<td>tops</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>word</th>
<th>P(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.1</td>
</tr>
<tr>
<td>pass</td>
<td>0.05</td>
</tr>
<tr>
<td>camp</td>
<td>0.05</td>
</tr>
<tr>
<td>flock</td>
<td>0.6</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.1</td>
</tr>
<tr>
<td>tops</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Step 1: Initialization of Viterbi

- Initialize with $\delta_0(i) = \pi_i b_i(\sigma_0)$ and $\psi_0(i) = 0$ for all states.
Step 1: Initialization of Viterbi

- For example, let’s assume
 \[\pi_d = 0.8, \pi_h = 0.2 \]
 and
 \[\mathcal{O} = \text{ship}, \text{frock}, \text{tops} \]

\[\delta: \text{max probability} \]
\[\psi: \text{backtrace} \]

\[\sigma_0 = \text{ship} \]
\[\sigma_1 = \text{frock} \]
\[\sigma_2 = \text{tops} \]

Observations, \(\sigma_t \)
Step 2: Induction of Viterbi

The best path to state s_j at time t, $\delta_t(j)$, depends on the best path to each possible previous state, $\delta_{t-1}(i)$, and their transitions to j, a_{ij}.

$$\delta_t(j) = \max_i \left[\delta_{t-1}(i)a_{ij} \right] b_j(\sigma_t)$$

$$\psi_t(j) = \arg\max_i \left[\delta_{t-1}(i)a_{ij} \right]$$

Observations, σ_t

$\sigma_0 = \text{ship}$

$\sigma_1 = \text{frock}$

$\sigma_2 = \text{tops}$
Step 2: Induction of Viterbi

Specifically...

\[\delta_1(s) = \max_i [\delta_0(i)a_{is}] b_s(\sigma_1)\]
\[\psi_1(s) = \arg\max_i [\delta_0(i)a_{is}]\]

\[\delta_1(h) = \max_i [\delta_0(i)a_{ih}] b_h(\sigma_1)\]
\[\psi_1(h) = \arg\max_i [\delta_0(i)a_{ih}]\]

\[\delta_1(d) = \max_i [\delta_0(i)a_{id}] b_d(\sigma_1)\]
\[\psi_1(d) = \arg\max_i [\delta_0(i)a_{id}]\]

\(\sigma_0 = \text{ship}\)
\(\sigma_1 = f\text{rock}\)
\(\sigma_2 = \text{tops}\)

Observations, \(\sigma_t\)
Step 2: Induction of Viterbi

\[
\begin{align*}
\delta_0(s) &= 0, a_{sd} = 0, \quad \therefore \delta_0(s)a_{sd} = 0 \\
\delta_0(h) &= 0.06, a_{hd} = 0, \quad \therefore \delta_0(h)a_{hd} = 0 \\
\delta_0(d) &= 0.08, a_{dd} = 0.4, \quad \therefore \delta_0(d)a_{dd} = 0.032
\end{align*}
\]

\[\psi_1(h) = \arg\max_i [\delta_0(i)a_{ih}]\]

\[\max_i [\delta_0(i)a_{id}] b_d(\sigma_1)\]

\[\arg\max_i [\delta_0(i)a_{id}]\]

\(\sigma_0 = \text{ship}\)

\(\sigma_1 = \text{frock}\)

\(\sigma_2 = \text{tops}\)

Observations, \(\sigma_t\)
Step 2: Induction of Viterbi

\[\delta_1(s) = \max_i \left[\delta_0(i) a_{is} \right] b_s(o_1) \]

\[\delta_0(d) a_{dd} = 0.032, \quad b_d(f \text{rock}) = 0.6 \]

\[\therefore \max_i \left[\delta_0(i) a_{id} \right] b_d(o_1) = 1.92 \times 10^{-2} = 1.92E^{-2} \]

\[\phi_1(n) = \arg\max_i [\delta_0(t) a_{in}] \]

\[d \] was the most likely previous state

\[\sigma_0 = \text{ship} \quad \sigma_1 = f \text{rock} \quad \sigma_2 = \text{tops} \]

Observations, \(\sigma_t \)
Step 2: Induction of Viterbi

\[\delta_0(s) = 0, a_{sh} = 0, \quad \therefore \delta_0(s)a_{sh} = 0 \]

\[\delta_0(h) = 0.06, a_{hh} = 0.8, \quad \therefore \delta_0(h)a_{hh} = 0.048 \]

\[\delta_0(d) = 0.08, a_{dh} = 0.5, \quad \therefore \delta_0(d)a_{dh} = 0.04 \]

Observations, \(\sigma_t \):

\(\sigma_0 = ship \)

\(\sigma_1 = f\text{rock} \)

\(\sigma_2 = tops \)
Step 2: Induction of Viterbi

\[\delta_0(h) a_{hh} = 0.048, \quad b_h(frock) = 0.2 \]

\[\therefore \max_i [\delta_0(i) a_{ih}] b_h(\sigma_1) = 9.6 \times 10^{-3} = 9.6E^{-3} \]

Observations, \(\sigma_t \)

\(\sigma_0 = ship \) \quad \sigma_1 = frock \quad \sigma_2 = tops
Step 2: Induction of Viterbi

Observations, σ_t

$\sigma_0 = \text{ship}$

$\sigma_1 = \text{frock}$

$\sigma_2 = \text{tops}$

$\delta_0(s) = 0, a_{ss} = 1.0, \quad \therefore \delta_0(s)a_{ss} = 0$

$\delta_0(h) = 0.06, a_{hs} = 0.2, \quad \therefore \delta_0(h)a_{hs} = 0.012$

$\delta_0(d) = 0.08, a_{ds} = 0.1, \quad \therefore \delta_0(d)a_{ds} = 0.008$
Step 2: Induction of Viterbi

\[\delta_0(h) a_{hh} = 0.012, \quad b_s(f\text{rock}) = 0.3 \]

\[\therefore \max_i [\delta_0(i) a_{is}] b_s(\sigma_1) = 3.6 \times 10^{-3} = 3.6E^{-3} \]

\(\sigma_0 = ship \)

\(\sigma_1 = f\text{rock} \)

\(\sigma_2 = tops \)

Observations, \(\sigma_t \)
Step 2: Induction of Viterbi

\begin{align*}
\delta_2(s) &= \max_i \left[\delta_1(i) a_{is} \right] b_s(\sigma_2) \\
\psi_2(s) &= \arg\max_i \left[\delta_1(i) a_{is} \right]
\end{align*}

\begin{align*}
\delta_2(h) &= \max_i \left[\delta_1(i) a_{ih} \right] b_h(\sigma_2) \\
\psi_2(h) &= \arg\max_i \left[\delta_1(i) a_{ih} \right]
\end{align*}

\begin{align*}
\delta_2(d) &= \max_i \left[\delta_1(i) a_{id} \right] b_s(\sigma_2) \\
\psi_2(d) &= \arg\max_i \left[\delta_1(i) a_{id} \right]
\end{align*}

\begin{align*}
\sigma_0 &= \text{ship} \\
\sigma_1 &= \text{frock} \\
\sigma_2 &= \text{tops}
\end{align*}

Observations, σ_t
Step 2: Induction of Viterbi

\[
\begin{align*}
\delta_0(s) &= 3.6E^{-3}, a_{sd} = 0, \\
\therefore \delta_0(s)a_{sd} &= 0 \\
\delta_1(h) &= 9.6E^{-3}, a_{hd} = 0, \\
\therefore \delta_1(h)a_{hd} &= 0 \\
\delta_1(d) &= 1.92E^{-2}, a_{dd} = 0.4, \\
\therefore \delta_1(d)a_{dd} &= 0.00768
\end{align*}
\]

\[
\begin{align*}
\psi_2(h) &= \arg\max_i [\delta_1(i)a_{ih}] \\
\psi_2(d) &= \arg\max_i [\delta_1(i)a_{id}]
\end{align*}
\]

\[
\begin{align*}
\delta_2(d) &= \max_i [\delta_1(i)a_{is}] b_s(\sigma_2) \\
\psi_2(d) &= \arg\max_i [\delta_1(i)a_{id}]
\end{align*}
\]

Observations, \(\sigma_t\)

\[
\begin{align*}
\sigma_0 &= ship \\
\sigma_1 &= f\text{rock} \\
\sigma_2 &= tops
\end{align*}
\]
Step 2: Induction of Viterbi

Continuing...

Observations, σ_t

$\sigma_0 = \text{ship}$

$\sigma_1 = \text{frock}$

$\sigma_2 = \text{tops}$

$\delta_2(s) = 1.92E^{-3} \cdot 0.01$

$\psi_2(s) = h$

$\delta_2(h) = 9.6E^{-3} \cdot 0.4$

$\psi_2(h) = d$

$\delta_2(d) = 7.68E^{-3} \cdot 0.05$

$\psi_2(d) = d$
Step 2: Induction of Viterbi

Note:
When computing $\delta_2(s)$, you will have a tie between $\delta_1(h)a_{hs}$ and $\delta_1(d)a_{ds}$.
It does not (yet) matter how you break this tie.

$\delta_2(s) = 1.92E^{-3} \cdot 0.01$
$\psi_2(s) = h$

$\delta_2(h) = 9.6E^{-3} \cdot 0.4$
$\psi_2(h) = d$

$\delta_2(d) = 7.68E^{-3} \cdot 0.05$
$\psi_2(d) = d$

$\sigma_0 = ship$
$\sigma_1 = f rock$
$\sigma_2 = tops$

Observations, σ_t
Step 3: Conclusion of Viterbi

Choose the best final state:

\[Q_T^* = \arg\max_i \delta_i(T) \]

\(Q_T^* \) = argmax \(\delta_i(T) \)

Observations, \(\sigma_t \):

- \(\sigma_0 = \text{ship} \)
- \(\sigma_1 = \text{frock} \)
- \(\sigma_2 = \text{tops} \)

Values:

- 0.06
- 9.6E-3
- 1.92E-2
- 3.84E-3
- 3.84E-4

Step 1:

- 0

Step 2:

- h
 - 1.92E-5
 - h
 - d
 - 3.84E-3
 - d
 - d

Step 3:

Choose the best final state.
Step 3: Conclusion of Viterbi

Recursively choose the best previous state:

\[Q_{t-1}^* = \psi_{Q_t^*}(t) \]

- **\(\sigma_0 = \text{ship} \)**
- **\(\sigma_1 = \text{frock} \)**
- **\(\sigma_2 = \text{tops} \)**

Observations, \(\sigma_t \):

- **\(0.06 \)**
- **\(9.6 \times 10^{-3} \)\(\text{h} \)**
- **\(3.84 \times 10^{-3} \)\(\text{d} \)**

- **\(0.08 \)**
- **\(1.92 \times 10^{-2} \)\(\text{d} \)**
- **\(3.84 \times 10^{-4} \)\(\text{d} \)**
Step 3: Conclusion of Viterbi

Sequence probability:

\[P(\mathcal{O}, Q^*; \theta) = \max_i \delta_i(T) \]
Why did we choose $Q^* = \{q_0 \ldots q_T\}$?

- Recall the purpose of HMMs:
 - To represent multivariate systems where some variable is unknown/hidden/latent.

- Finding the best hidden-state sequence Q^* allows us to:
 - Identify unseen parts-of-speech given words,
 - Identify equivalent English words given French words,
 - Identify unknown phonemes given speech sounds,
 - Decipher hidden messages from encrypted symbols,
 - Identify hidden relationships from gene sequences,
 - Identify hidden market conditions given stock prices,
 - ...
Working in the log domain

- Our formulation was

\[Q^* = \text{argmax}_Q P(\mathcal{O}, Q; \theta) \]

this is equivalent to

\[Q^* = \text{argmin}_Q -\log_2 P(\mathcal{O}, Q; \theta) \]

where

\[-\log_2 P(\mathcal{O}, Q; \theta) = -\log_2 \left(\pi q_0 b q_0 (\sigma_0) \right) - \sum_{t=1}^{T} \log_2 \left(a_{q_{t-1} q_t} b q_t (\sigma_t) \right) \]
Reading

• Manning & Schütze: Section 9.2—9.4.1

• Hidden Markov Model Toolkit (http://htk.eng.cam.ac.uk/) (if you’re interested)