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Contents
Today we will discuss some building blocks:
• Input features.
• Gaussian Mixtures Model.
• Clustering.

In next lecture (Wednesday) will discuss ASR systems:
• Putting together an ASR system
• Evaluating with word error rate
• Neural speech recognition systems.



FEATURES
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Recall our input to ASR

Frequency (Hz)

Am
pl

itu
de

SpectrumFrame

Is the spectrum the best input for our
ASR systems?
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The mel-scale
• Human hearing is not equally sensitive to all frequencies.
• We are less sensitive to frequencies > 1 kHz.

• A mel (after the word ”melody”) is a unit of pitch. Pairs of sounds which are 
perceptually equidistant in pitch are separated by an equal 
number of mels.

𝑀𝑒𝑙 𝑓 = 2595 log!" 1 +
𝑓
700

m
el

s

Hertz

(No need to 
memorize this 
either)
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The mel-scale filter bank
• To mimic the response of the human ear (and because it can

improve speech recognition), we often discretize the spectrum 
using 𝑀 triangular filters.
• Uniform in mel-scale, logarithmic in the frequency scale.
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Aside - Mel-Frequency Cepstral Coefficients

• Earlier ASR required additional Cepstral processing on the Mel 
Spectrum
• Used to separate the source (glottal waveform) from filter

(vocal tract resonances)
• MFCCs are used in Assignment 3
• Details on how to calculate them will be discussed in tutorial.
• Neural ASR usually uses the Mel-Spectrum as input
• Good at de-correlating source and filter by itself
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GAUSSIAN MIXTURES
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Classifying speech sounds

• Speech sounds can cluster. This graph shows vowels, each in 
their own colour, according to the 1st two formants.

Note: The vowel trapezoid’s
dimensions were physical
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Classify speakers by cluster attributes

• Similarly, all of the speech produced by one speaker will cluster 
differently in the Mel space than speech from another speaker.
• We can ∴ decide if a given observation comes from one 

speaker or another.

Time, 𝒕
0 1 … T

M
FC

C

1 …

2 …

3 …

… … … … …

42 …

Observation matrix

P(  |      ) >

P(  |      )
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Fitting continuous distributions

• Since we are operating with continuous variables, we need to 
fit continuous probability functions to a 
discrete number of observations.

• If we assume the 1-dimensional 
data in this histogram is Normally 
distributed, we can fit a 
continuous Gaussian function 
simply in terms of the mean 𝜇
and variance 𝜎!.
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(Aside) Univariate (1D) Gaussians

• Also known as Normal distributions, 𝑁(𝜇, 𝜎)

• 𝑃 𝑥; 𝜇, 𝜎 =
"#$ % !"# $

$%$

!&'

• The parameters we can modify are 𝜽 = 𝝁, 𝝈𝟐
• 𝜇 = 𝐸 𝑥 = ∫𝑥 2 𝑃 𝑥 𝑑𝑥 (mean)
• 𝜎! = 𝐸 𝑥 − 𝜇 ! = ∫ 𝑥 − 𝜇 !𝑃 𝑥 𝑑𝑥 (variance)

But we don’t have samples for all 𝑥…
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Maximum likelihood estimation

• Given data 𝑋 = 𝑥), 𝑥!, … , 𝑥* , MLE produces an estimate of 
the parameters 7𝜃 by maximizing the likelihood, 𝐿(𝑋, 𝜃):

7𝜃 = argmax
+

𝐿(𝑋, 𝜃)

where 𝑳 𝑿, 𝜽 = 𝑷 𝑿; 𝜽 = ∏,-)
* 𝑃(𝑥,; 𝜃).

• Since 𝐿(𝑋, 𝜃) provides a surface over all 𝜽, in order to find the 
highest likelihood, we look at the derivative

𝛿
𝛿𝜃
𝐿 𝑋, 𝜃 = 0

to see at which point the likelihood stops growing.
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MLE with univariate Gaussians

• Estimate 𝜇:

𝐿 𝑋, 𝜇 = 𝑃 𝑋; 𝜇 =(
!"#

$

𝑃(𝑥!; 𝜃) =(
!"#

$ exp − 𝑥! − 𝜇 %

2𝜎%

2𝜋𝜎

log 𝐿 𝑋, 𝜇 = −
∑! 𝑥! − 𝜇 %

2𝜎%
− 𝑛 log 2𝜋𝜎

𝛿
𝛿𝜇 log 𝐿 𝑋, 𝜇 =

∑! 𝑥! − 𝜇
𝜎% = 0

𝜇 =
∑! 𝑥!
𝑛

• Similarly, 𝜎% = ∑! '!() "

$



CSC401/2511 – Spring 2022 15

Multivariate Gaussians

• When data is d-dimensional, the 
input variable is

𝑥⃗ = 𝑥 1 , 𝑥 2 , … , 𝑥[𝑑]
the mean is

𝜇⃗ = 𝐸 𝑥⃗ = 𝜇 1 , 𝜇 2 , … , 𝜇[𝑑]
the covariance matrix is

Σ 𝑖, 𝑗 = 𝐸 𝑥 𝑖 𝑥 𝑗 − 𝜇 𝑖 𝜇 𝑗
and

𝑃 𝑥⃗ =
exp − 𝑥⃗ − 𝜇⃗ ⊺Σ%) 𝑥⃗ − 𝜇⃗

2

2𝜋
/
! Σ

)
!

𝐴⊺ is the transpose of 𝐴
𝐴&! is the inverse of 𝐴
𝐴 is the determinant of 𝐴
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Intuitions of covariance

• As values in Σ become larger, the Gaussian spreads out.
• (I is the identity matrix)

𝜇 = 0 0
Σ = I

𝜇 = 0 0
Σ = 0.6I

𝜇 = 0 0
Σ = 2.0I
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Intuitions of covariance

• Different values on the diagonal result in different variances 
in their respective dimensions

Σ = 1 0
0 1 Σ = 2 0

0 0.6
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Non-Gaussian observations

• Speech data are generally not unimodal.
• The observations below are bimodal, so fitting one Gaussian 

would not be representative.
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Mixtures of Gaussians
• Gaussian mixture models (GMMs) are a weighted linear 

combination of 𝑀 component Gaussians, Γ), Γ!, … , Γ0 :

𝑃 𝑥⃗ =R
1-)

0

𝑃 Γ1 𝑃(𝑥⃗|Γ1)



CSC401/2511 – Spring 2022 20

Observation likelihoods
• Assuming MFCC dimensions are independent of one another, 

the covariance matrix is diagonal – i.e., 0 off the diagonal.
• Therefore, the probability of an observation vector given a 

Gaussian becomes

𝑃 𝑥⃗|Γ2 =
exp −12∑,-)

/ 𝑥 𝑖 − 𝜇2 𝑖 !

Σ2 [𝑖]

2𝜋
/
! ∏,-)

/ Σ2 [𝑖]
)
!

• Imagine that a GMM first chooses a Gaussian, then emits an 
observation from that Gaussian.
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Mixtures of Gaussians
• If we knew which Gaussian generated each sample (which we don’t), 

then 𝝁𝒎, 𝚺𝒎 can be learned by MLE.
• We must learn 𝑃(Γ1) as well.

𝑃 𝑥⃗ =R
1-)

0

𝑃 Γ1 𝑃(𝑥⃗|Γ1)
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Expectation-Maximization for GMMs
• Overall idea:
• First, initialize a set of model parameters.
• “Expectation”: Compute the expected probabilities of 

observation, given these parameters.
• “Maximization”: Update the parameters to maximize the 

aforementioned probabilities.
• Repeat.

• Let’s look at the detailed steps in the next a few slides…
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Expectation-Maximization for GMMs
• Let 𝝎𝒎 = 𝑃(Γ2) and   𝒃𝒎 𝒙𝒕 = 𝑃(𝑥5|Γ2),

𝑃+ 𝑥5 = R
2-)

0

𝜔2𝑏2(𝑥5)

where 𝜽 = 𝝎𝒎, 𝝁𝒎, 𝚺𝒎 for 𝑚 = 1. .𝑀

• To estimate 𝜃, we solve 𝛻+ log 𝐿 𝑋, 𝜃 = 0 where

log 𝐿 𝑋, 𝜃 =R
5-)

6

log 𝑃+ 𝑥5 =R
5-)

6

log R
2-)

0

𝜔2𝑏2 𝑥5

‘weight’

‘component observation
likelihood’
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Expectation-Maximization for GMMs
• We differentiate the log likelihood function w.r.t . 𝜇2[𝑛] and 

set this to 0 to find the value of 𝜇2 𝑛 at which the likelihood 
stops growing.

𝛿 log 𝐿(𝑋, 𝜃)
𝛿𝜇2[𝑛]

=R
5-)

6
1

𝑃+ 𝑥5
𝛿

𝛿𝜇2 𝑛
𝜔2𝑏2(𝑥5) = 0
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Expectation-Maximization for GMMs
• The expectation step gives us:

𝑏* 𝑥+ = 𝑃(𝑥+|Γ*)

𝑃 Γ* 𝑥+; 𝜃 =
𝜔*𝑏* 𝑥+
𝑃, 𝑥+

• The maximization step gives us:

?𝜇* =
∑+ 𝑃 Γ* 𝑥+; 𝜃 𝑥+
∑+ 𝑃 Γ* 𝑥+; 𝜃

?Σ* =
∑+ 𝑃 Γ* 𝑥+; 𝜃 𝑥+

%

∑+ 𝑃 Γ* 𝑥+; 𝜃
− ?𝜇*

%

A𝜔* =
1
𝑇D+"#

-
𝑃 Γ* 𝑥+; 𝜃

Proportion of overall 
probability contributed by 𝑚

Recall from slide
13, MLE wants:

𝜇 =
∑! 𝑥!
𝑛

𝜎" =
∑! 𝑥! − 𝜇 "

𝑛
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Some notes…
• In the previous slide, the square of a vector, 𝑎⃗!, is 

elementwise (i.e., numpy.multiply)
• E.g., 2, 3, 4 ! = [4, 9, 16]

• Since Σ is diagonal, it can be represented as a vector.

• Can 
f
𝜎2! =

∑& 8 Γ2 𝑥5; 𝜃 9&
$

∑& 8 Γ2 𝑥5; 𝜃
− f𝜇2

!
become negative?

• No. 
• This is left as an exercise, but only if you’re interested.
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Speaker recognition
• Speaker recognition: n. the identification of a speaker 

among several speakers given only 
acoustics.

• Each speaker will produce speech according to different
probability distributions.
• We train a Gaussian mixture model for each speaker, 

given annotated data (mapping utterances to speakers).
• We choose the speaker whose model gives the highest 

probability for an observation.



Recipe for GMM EM
• For each speaker, we learn a GMM given all 𝑇 frames of their 

training data.

1. Initialize: Guess 𝜃 = 𝜔*, 𝜇*, Σ* for 𝑚 = 1. .𝑀
either uniformly, randomly, or by k-means 
clustering.

2. E-step: Compute 𝑏*(𝑥+) and 𝑃(Γ*|𝑥+; 𝜃).

3. M-step: Update parameters for 𝜔*, 𝜇*, Σ* as 
described on slide 21.
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CLUSTERING 
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Clustering

X

• Clustering is unsupervised learning.
• Number and form of clusters often unknown.

1

2

3
4

• Observation X is in 
Cluster One, so we 
replace it with 1.
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Aspects of clustering
• What defines a particular cluster?
• Is there some prototype representing each cluster?

• What defines membership in a cluster?
• Usually, some distance metric 𝑑(𝑥, 𝑦) (e.g., Euclidean distance).

• How well do clusters represent unseen data?
• How is a new point assigned to a cluster?
• How do we modify that cluster as a result?
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K-means clustering
• Used to group data into 𝐾 clusters, {𝐶), … , 𝐶:}.

• Each cluster is represented by the mean of its assigned data.
• (sometimes it’s called the cluster’s centroid).

• Iterative algorithm converges to local optimum:
1. Select 𝐾 initial cluster means {𝜇!, … , 𝜇.} from among data points.
2. Until (stopping criterion),

a) Assign each data sample to closest cluster
𝑥 ∈ 𝐶/ 𝑖𝑓 𝑑 𝑥, 𝜇/ ≤ 𝑑 𝑥, 𝜇0 , ∀𝑖 ≠ 𝑗

b) Update 𝐾 means from assigned samples
𝜇/ = 𝐸 𝑥 ∀ 𝑥 ∈ 𝐶/, 1 ≤ 𝑖 ≤ 𝐾
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K-means example (𝑲 = 𝟑)
• Initialize with a random selection of 3 data samples.
• Euclidean distance metric 𝑑(𝑥, 𝜇)
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K-means stopping condition
• The total distortion, 𝒟, is the sum of squared error,

𝒟 =R
,-)

:

R
9∈<'

𝑥 − 𝜇, !

• 𝒟 decreases between 𝑛5= and 𝑛 + 1 5= iteration.

• We can stop training when 𝒟 falls below some threshold 𝒯.

1 −
𝒟 𝑛 + 1
𝒟 𝑛

< 𝒯
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Acoustic clustering example
• 12 clusters of spectra, after training.
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Number of clusters
• The number of true clusters is unknown.
• We can iterate through various values of 𝐾.
• As 𝐾 approaches the size of the data, 𝒟 approaches 0…
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Hierarchical clustering
• Hierarchical clustering clusters data into hierarchical ‘class’ 

structures.

• Two types: top-down (divisive) or bottom-up (agglomerative).

• Often based on greedy formulations.

• Hierarchical structure can be used for hypothesizing classes.
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Divisive clustering
• Creates hierarchy by successively splitting clusters into 

smaller groups.

uniformNon-uniform
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Agglomerative clustering
• Agglomerative clustering starts with 𝑁 ‘seed’ clusters and 

iteratively combines these into a hierarchy.

• On each iteration, the two most similar clusters are merged
together to form a new meta-cluster.

• After 𝑁 − 1 iterations, the hierarchy is complete.

• Often, when the similarity scores of new meta-clusters are 
tracked, the resulting graph (i.e., dendrogram) can yield 
insight into the natural grouping of data.
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Dendrogram example

12

3

4

5
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Speaker clustering
• 23 female and 53 male speakers from TIMIT.
• Data are vectors of average F1 and F2 for 9 vowels.
• Distance 𝑑(𝐶, , 𝐶1) is average of distances between members.
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Acoustic-phonetic hierarchy

(this is basically an upside-down dendogram)
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Word clustering

numbers

Time,
price

modifiers
city

names



SPEECH RECOGNITION

CSC401/2511 – Spring 2022 44



CSC401/2511 – Spring 2022 45

Consider what we want speech to do

Put this 
there.

My hands are in 
the air.

Buy ticket...
AC490...

yes

Telephony

Dictation

Multimodal interaction

…
Can we just use GMMs?
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Aspects of ASR systems in the world
• Speaking mode: Isolated word (e.g., “yes”) vs. continuous

(e.g., “Hey Siri, ask Cortana for the weather”)
• Speaking style: Read speech vs. spontaneous speech;

the latter contains many dysfluencies
(e.g., stuttering, uh, like, …)

• Enrolment: Speaker-dependent (all training data from 
one speaker) vs. speaker-independent 
(training data from many speakers).

• Vocabulary: Small (<20 words) or large (>50,000 words).
• Transducer: Cell phone? Noise-cancelling microphone? 

Teleconference microphone?
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Recognizing speakers phones
• A first idea: since GMM can be used to recognize speakers, it 

can be used to recognize phonemes.
• For each frame (15~25ms), GMM classifies a phone.
• Then we can look up a phone dictionary to assemble into 

words!

/ow p ah n /

/ow ow ow ow ow p p p p ah ah ah ah ah n/

Open
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Speech is dynamic

• Speech changes over time.
• GMMs are good for high-level clustering, but they encode 

no notion of order, sequence, nor time.

• Speech is an expression of language.
• We want to incorporate knowledge of how phonemes and 

words are ordered with language models.
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Speech is sequences of phonemes

“open the pod bay doors”

open(podBay.doors);

We want to convert a series of (e.g.) MFCC 
vectors into a sequence of phonemes.

/ow p ah n dh ah p aa d b ey d ao r z/

(*)

(*) not really
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Continuous HMMs (CHMM)
• A continuous HMM has observations that are distributed 

over continuous variables.
• Observation probabilities, 𝑏,, are also continuous.
• E.g., here 𝑏>(𝑥⃗) tells us the probability of seeing the 

(multivariate) continuous observation 𝑥⃗ while in state 0.

b0 b1 b2
4.32957

2.48562

1.08139

…

0.45628

𝑥⃗ =
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GMM-HMM as Continuous HMM
• Continuous HMMs are very similar to discrete HMMs.
• 𝑆 = {𝑠), … , 𝑠?} : set of states (e.g., phonemes)
• 𝑋 = ℝ/ : continuous observation space

• Π = {𝜋), … , 𝜋?} : initial state probabilities
• 𝐴 = 𝑎,1 , 𝑖, 𝑗 ∈ 𝑆 : state transition probabilities
• 𝐵 = 𝑏, 𝑥⃗ , 𝑖 ∈ 𝑆, 𝑥⃗ ∈ 𝑋 : state output probabilities

(i.e., Gaussian mixtures) 
yielding
• 𝑄 = {𝑞>, … , 𝑞6}, 𝑞, ∈ 𝑆 : state sequence
• 𝒪 = ℴ>, … , ℴ6 , ℴ, ∈ 𝑋 : observation sequence

𝜃
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Using CHMMs
• As before, these HMMs are generative models that encode 

statistical knowledge of how output is generated.

• We train CHMMs with Baum-Welch (a type of Expectation-
Maximization), as we did before with discrete HMMs.
• Here, the observation parameters, 𝑏, 𝑥⃗ , are adjusted 

using the GMM training ‘recipe’ from earlier.

• We find the best state sequences using Viterbi, as before.
• Here, the best state sequence gives us a sequence of 

phonemes.
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Phoneme dictionaries
• How do we convert our phoneme sequence into words?
• There are many phonemic dictionaries that map words to 

pronunciations (i.e., lists of phoneme sequences).
• The CMU dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) is 

popular.
• 127K words transcribed with the ARPAbet.
• Includes some rudimentary prosody markers.

…
EVOLUTION EH2 V AH0 L UW1 SH AH0 N
EVOLUTION(2) IY2 V AH0 L UW1 SH AH0 N 
EVOLUTION(3)  EH2 V OW0 L UW1 SH AH0 N 
EVOLUTION(4)  IY2 V OW0 L UW1 SH AH0 N 
EVOLUTIONARY  EH2 V AH0 L UW1 SH AH0 N EH2 R IY0

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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A noisy channel model for ASR

Source
𝑷(𝑾)

Language model
Channel
𝑷(𝑿|𝑾)

Acoustic model
W′

Decoder

𝑋′

𝑾∗ Observed 𝑿

𝑊∗ = argmax
A

𝑃 𝑊 𝑋 = argmax
A

𝑃(𝑋|𝑊)𝑃(𝑊)

Word 
sequence 𝑊

Acoustic 
sequence 𝑋
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An HMM-based ASR system
𝑊∗ = argmax

A
𝑃 𝑊 𝑋 = argmax

A
𝑃(𝑋|𝑊)𝑃(𝑊)

• Use a CHMM to compute 𝑃(𝑋|𝑊)
• This CHMM is trained on a phonemic corpus {WB, 𝑋/}

• Use a language model to compute 𝑃(𝑊)
• The parameters of the language model is trained on a 

corpora {𝑊C}
• Use the CHMM and the LM jointly to find 𝑊∗.



Remember Viterbi

𝟎. 𝟎𝟖
𝟎

Observations, ℴ#

𝟎. 𝟎𝟔
𝟎

𝜹𝒋 𝒕 = max
𝒊

𝜹𝒊 𝒕 − 𝟏 𝒂𝒊𝒋 𝒃𝒋(ℴ𝒕)

𝝍𝒋 𝒕 = argmax
𝒊

𝜹𝒊 𝒕 − 𝟏 𝒂𝒊𝒋

The best path to state 𝑠. at time 𝑡, 𝛿. 𝑡 , 
depends on the best path to each 

possible previous state, 𝛿! 𝑡 − 1 , and 
their transitions to 𝑗, 𝑎!.

ℴ& = 𝑠ℎ𝑖𝑝 ℴ' = 𝑓𝑟𝑜𝑐𝑘 ℴ" = 𝑡𝑜𝑝𝑠

𝟎
𝟎
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Do these probabilities need to 
be GMMs?
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Replacing GMMs with DNNs
• Obtain 𝑏. 𝑥 = 𝒑(𝒙|𝒔𝒋) with a neural network. 
• Instead of learning a continuous distribution directly, we can use 

Bayes’ rule:

𝒑 𝒙 𝒔𝒋 =
𝒑 𝒔𝒋 𝒙 ⋅ 𝑝(𝑥)

𝑝(s.)

ℎ(

𝑥(
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Replacing GMMs with DNNs
• The probability of a word sequence 𝑊 comes loosely from 
𝑃 𝑋|𝑊

• Considering the states 𝑞#, … , 𝑞- during the frames of a word:
P(X|W)

≈ max
L!⋯L"

O
NO!

P

𝑃 𝑞N|𝑞N&! 𝑃 𝑥N|𝑞N ≈ max
L!⋯L"

O
NO!

P

𝑃 𝑞N|𝑞N&!
𝑃(𝑞N|𝑥N)
𝑃(𝑞N)

HMM handles 
the temporal 
dependency

GMM DNN
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Training the DNN
• Maximize 𝑃 𝑞5 𝑥5
• The order which we transition through states (≈ phonemes) is 

known by the transcription (ignoring alternate pronunciations)

• At what frames these transitions happen are unknown
• ∴ 𝑞5 is unknown!

• One solution: bootstrapping
• Use another model (e.g., GMM-HMM) to determine 𝑞5
• The acquired 𝑞5 is used to train the DNN.

• Other, advanced methods exist.



CSC401/2511 – Spring 2022 60

Hybrid DNN-HMM Systems

G Hinton et al (Nov 2012). “Deep neural networks for acoustic modeling in speech recognition”, IEEE Signal 
Processing Magazine, 29(6):82–97. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296526

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296526
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Aside: What did these DNNs learn?

Mohamed, A., Hinton, G., & Penn, G. (2012). Understanding
how deep belief networks perform acoustic modelling. In ICASSP (pp. 6–9).

• t-SNE (stochastic neighbour embedding using t-distribution) 

visualizations in 2D (colours=speakers).
• Deeper layers encode information 

about the segment

Mel S. 1st layer

8th layer
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Aside: What did these DNNs learn?

Vu, N. T., Weiner, J., & Schultz, T. (2014). Investigating the learning effect of multilingual bottle-neck 
features for ASR. Interspeech, 825–829.

• DNN trained to 
classify phonemes
• t-SNE visualizations 

of hidden layer.
• Lower layers detect 

manner of 
articulation
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End-to-end neural networks
• Neural networks are typically trained at the frame level.
• This requires a separate training target for every frame, which in turn requires the 

alignment between the audio and transcription sequences to be known.
• However, the alignment is only reliable once the classifier is trained. 

• “End-to-end” ≈ an objective function that allows sequence 
transcription without requiring prior alignment between the 
input 𝑋 (frames of audio) and target 𝑌 (output strings) sequences with 
arbitrary lengths, i.e.

𝑃 𝑌 𝑋
• Target tokens can be words, sub-words, or just characters
• Two popular choices of 𝑃 𝑌 𝑋 :

1. Seq2seq (encoder/decoder, transformers)
2. Connectionist Temporal Classification
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End-to-end architectures for ASR
• The same architectures we saw in NMT work for ASR!
• Replace source embedding vector 𝑥! with Mel 

spectrum vector
• Replace target sequence 𝐸 with transcription 

sequence 𝑌

…

And train with Connectionist Temporal Classification (in 
aside – please refer to https://distill.pub/2017/ctc/.

https://distill.pub/2017/ctc/
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End-to-end architectures for ASR

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JMLR 
Workshop Conf Proc, 32:1764–1772. 

DNN/HMM
hybrid

http://jmlr.org/proceedings/papers/v32/graves14.pdf
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The open-source Kaldi ASR

• Kaldi is the de-facto open-source ASR toolkit: 
http://kaldi-asr.org
• It has pretrained models, including the ASpIRE chain model trained 

on Fisher English, augmented with impulse responses and noises to 
create multi-condition training. 

• There are docker images for environments running Kaldi.
• It often (anecdotally) performs better than Google’s SpeechAPI. 
• It is originally in C++, but a wrapper (PyTorch-Kaldi) exists in the 

much easier Python.
• Pro-sanity tip: don’t read news about its progenitor.

http://kaldi-asr.org/
http://kaldi-asr.org/models.html
https://hub.docker.com/r/kaldiasr/kaldi
https://cloud.google.com/speech-to-text/
https://github.com/mravanelli/pytorch-kaldi
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Evaluating ASR accuracy
• How can you tell how well an ASR system recognizes speech?
• E.g., if somebody said

Reference: how to recognize speech 
but an ASR system heard

Hypothesis: how to wreck a nice beach
how do we quantify the error?

• One measure is word accuracy: #CorrectWords/#ReferenceWords
• E.g., 2/4, above
• This runs into problems similar to those we saw with SMT.
• E.g., the hypothesis ‘how to recognize speech boing boing

boing boing boing’ has 100% accuracy by this measure.
• Normalizing by #HypothesisWords also has problems…
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Word-error rates (WER)
• ASR enthusiasts are often concerned with word-error rate 

(WER), which counts different kinds of errors that can be 
made by ASR at the word-level.
• Substitution error: One word being mistook for another

e.g., ‘shift’ given ‘ship’
• Deletion error: An input word that is ‘skipped’

e.g. ‘I Torgo’ given ‘I am Torgo’
• Insertion error: A ‘hallucinated’ word that was not in 

the input.
e.g., ‘This Norwegian parrot is no more’
given ‘This parrot is no more’
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Levenshtein distance

Allocate matrix 𝑅[𝑛 + 2,𝑚 + 2] // where 𝑛 is the number of reference words 
// and 𝑚 is the number of hypothesis words

Add <s> to beginning of each sequence, and </s> to their ends.
Fill [0:end] along the first row and column.
for 𝑖 ≔ 1. . 𝑛 + 1 // #ReferenceWords

for 𝑗 ≔ 1. .𝑚 + 1 // #Hypothesis words
𝑅[𝑖, 𝑗] ≔ min( 𝑅 𝑖 − 1, 𝑗 + 1, // deletion

𝑅 𝑖 − 1, 𝑗 − 1 , // if the 𝑖!" reference word  and 
// the 𝑗!" hypothesis word match

𝑅 𝑖 − 1, 𝑗 − 1 + 1, // if they differ, i.e., substitution
𝑅 𝑖, 𝑗 − 1 + 1 ) // insertion

Return 100× 𝑅 𝑛,𝑚 /𝑛 // WER

• The Levenshtein distance (and WER) is straightforward to 
calculate using dynamic programming
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Levenshtein distance – initialization

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1

to 2

recognize 3

speech 4

</s> 5

The value at cell (𝑖, 𝑗) is the minimum number of errors
necessary to align 𝑖 with 𝑗.
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Levenshtein distance

• 𝑅 1,1 = min 𝐿𝐸𝐹𝑇 + 1, (0), 𝐴𝐵𝑂𝑉𝐸 + 1 = 0 (match)
• We put a little arrow in place to indicate the choice.
• ‘Arrows’ are normally stored in a backtrace matrix.

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0

to 2

recognize 3

speech 4

</s> 5
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Levenshtein distance

• We continue along for the first reference word…
• These are all insertion errors

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0 1 2 3 4 5 6

to 2

recognize 3

speech 4

</s> 5
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Levenshtein distance

• Since recognize ≠ wreck, we have a substitution error.
• At some points, you have >1 possible path as indicated.
• We can prioritize types of errors arbitrarily.

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0 1 2 3 4 5 6

to 2 1 0 1 2 3 4 5

recognize 3 2 1 1 2 3 4 5

speech 4

</s> 5
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Levenshtein distance

• And we finish the grid.
• There are 𝑅 𝑒𝑛𝑑, 𝑒𝑛𝑑 = 4 word errors and a WER of ⁄4 4 = 100%.
• WER can be greater than 100% (relative to the reference).

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0 1 2 3 4 5 6

to 2 1 0 1 2 3 4 5

recognize 3 2 1 1 2 3 4 5

speech 4 3 2 2 2 3 4 5

</s> 5 4 3 3 3 3 4 4
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Levenshtein distance

• If we want, we can backtrack using our arrows (in a backtrace matrix).
• Here, we estimate 2 substitution errors and 2 insertion errors.

hypothesis

<s> how to wreck a nice beach </s>

Re
fe

re
nc

e

<s> 0 1 2 3 4 5 6 7

how 1 0 1 2 3 4 5 6

to 2 1 0 1 2 3 4 5

recognize 3 2 1 1 2 3 4 5

speech 4 3 2 2 2 3 4 5

</s> 5 4 3 3 3 3 4 4



Summary
• We’ve seen how to:
• Extract useful speech features with Mel-scale filter 

banks
• Model speech data with Gaussian mixture models.
• Cluster data with unsupervised algorithms.
• Recognize speech with GMM-HMM, DNN-HMM and 

end-to-end DNN. 
• Evaluate ASR performance with Levenshtein distance.

• Next lecture: synthesize artificial speech.
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