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Contents

Today we will discuss some building blocks:
® Input features.

® Gaussian Mixtures Model.

® Clustering.

In next lecture (Wednesday) will discuss ASR systems:
® Putting together an ASR system

® Evaluating with word error rate

* Neural speech recognition systems.
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FEATURES
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Recall our input to ASR
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Is the spectrum the best input for our Frequency (Hz)

ASR systems?
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The mel-scale

°* Human hearing is not equally sensitive to all frequencies.
* We are less sensitive to frequencies > 1 kHz.

® A mel (er the word "melody) IS @ UNit Of pitch. Pairs of sounds which are
perceptually equidistant in pitch are separated by an equal
number of mels.
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The mel-scale filter bank

* To mimic the response of the human ear (and because it can

improve speech recognition), we often discretize the spectrum
using M triangular filters.

* Uniform in mel-scale, logarithmic in the frequency scale.
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Aside - Mel-Frequency Cepstral Coefficients

* Earlier ASR required additional Cepstral processing on the Mel
Spectrum
* Used to separate the source (glottal waveform) from filter
(vocal tract resonances)
®* MFCCs are used in Assignment 3
* Details on how to calculate them will be discussed in tutorial.
® Neural ASR usually uses the Mel-Spectrum as input
* Good at de-correlating source and filter by itself

S
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GAUSSIAN MIXTURES
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Classifying speech sounds

Note: The vowel trapezoid’s
dimensions were physical
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* Speech sounds can cluster. This graph shows vowels, each in
their own colour, according to the 1% two formants.
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Classify speakers by cluster attributes

* Similarly, all of the speech produced by one speaker will cluster
differently in the Mel space than speech from another speaker.
* We can .. decide if a given observation comes from one
speaker or another.

.n-

Observation matrix

&

3«-’ UNIVERSITY OF
CSC401/2511 — Spring 2022 10 % TORONTO



Fitting continuous distributions

* Since we are operating with continuous variables, we need to

fit continuous probability functions to a
discrete number of observations.

* If we assume the 1-dimensional
data in this histogram is Normally
distributed, we can fit a
continuous Gaussian function
simply in terms of the mean u
and variance g?.

S
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(Aside) Univariate (1D) Gaussians

* Also known as Normal distributions, N(u, o)
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* P(x;u,0) =

4 “u T ——— —— 15

®* The parameters we can modify are 8 = (u, 02)
*u=E(x)=[x-P(x)dx (mean)
* 62 = E((x —w)?) = [(x — u)?P(x)dx (variance)

But we don’t have samples for all x...

S5
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Maximum likelihood estimation

* Given data X = {xq, x5, ..., X,,}, MLE produces an estimate of
the parameters 8 by maximizing the likelihood, L(X,0):
6 = argmax L(X, 6)
0

where L(X,0) = P(X;0) = [[}L, P(x;; 8).

* Since L(X, 8) provides a surface over all 8, in order to find the
highest likelihood, we look at the derivative

o
—L(X,0)=0
—L(X,6)

to see at which point the likelihood stops growing.

s
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MLE with univariate Gaussians

* Estimate u:

i " exp (_ (x; — )2)
L(X, 1) = P(X; )=Hp(xi;9)=l_[ \/z_nia

i=1 =1
N2
log L(X, 1) = —Zi(legz ) — nlog(\/Zna)
o) 2ilx; — )
ElogL(X, ) = — =0
_ Z;lxl y ' |

 Similarly, 0% = ZI0° £y

n
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Multivariate Gaussians

* When data is d-dimensional, the
input variable is
x = (x[1],x[2], ..., x[d])
the mean is
= EX) = (u[1], ul2], ..., u[d])
the covariance matrix is
2[i, j] = E(xlilx[jD — ulilulj]

and

S oNTv—=1(2 _ 2\
exp (— (X —@) %" (x — ,u)) A' is the transpose of A
2 A~ 1is the inverse of A

P(%) =
d 1 . .
(2m)2 |X|2 - |A] is the determinant of A

‘T-?,' UNIVERSITY OF
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Intuitions of covariance

* As values in X become larger, the Gaussian spreads out.
* (Iis the identity matrix)

m-
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Intuitions of covariance
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* Different values on the diagonal result in different variances
in their respective dimensions
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Non-Gaussian observations

® Speech data are generally not unimodal.
* The observations below are bimodal, so fitting one Gaussian
would not be representative.

-50 150 «m
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Mixtures of Gaussians

* Gaussian mixture models (GMMs) are a weighted linear
combination of M component Gaussians, (I';, I, ..., Ty):
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Observation likelihoods

* Assuming MFCC dimensions are independent of one another,
the covariance matrix is diagonal —i.e., 0 off the diagonal.

* Therefore, the probability of an observation vector given a
Gaussian becomes

- (__Zd (el i L1

1

(27'[)5 (H?:l X [i])E

* Imagine that a GMM first chooses a Gaussian, then emits an
observation from that Gaussian.

o
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Mixtures of Gaussians

* If we knew which Gaussian generated each sample which we o),
then(it,,, X,,) can be learned by MLE.
* We must learn P(I;) as well.
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Expectation-Maximization for GMMs

® Overall idea:
* First, initialize a set of model parameters.
* “Expectation”: Compute the expected probabilities of
observation, given these parameters.
* “Maximization”: Update the parameters to maximize the
aforementioned probabilities.
® Repeat.
* Let’s look at the detailed steps in the next a few slides...

e
UNIVERSITY OF

CSC401/2511 — Spring 2022 22 6 TORONTO



Expectation-Maximization for GMMs

° - ‘component observation |
let w,, = P(I'n) and y ’ likelihood’ '
’ ‘weight’
— =Y o
m=1

where @ = (w,,,, h,,, Z,,,) form = 1..M

* To estimate 6, we solve Vy log L(X,0) = 0 where
T T M
logL(X,0) = 2 log Py (x;) = 2 log z Wy,
t=1 t=1 m=1

S5
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Expectation-Maximization for GMMs

* We differentiate the log likelihood function w.r.t . i,,,|n| and
set this to 0 to find the value of 1,,,[n] at which the likelihood
stops growing.

mgii(x . zpeut) laum =0

S5
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Expectation-Maximization for GMMs

°* The expectation step gives us:
= P(%;|Tm)

— Wi Proportion of overall |
P(T,, |x;; 0) = | P | '
mirt — robability contributed by m
Po(xe) & Y Y

°* The maximization step gives us:

—

,Ll - —
m Zt P(lext; 8)
— —2
— th(rmlxt; H)Xt —,2

—

— Zt P(Fm Ix_{, Q)X_t) . Recall from slide
— 13, MLE wants:

Yy = — — U
. th(rmlxt; 6) m
T
Dy = = P(Tplxs; 6)
T £at=q

£
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Some notes...

* In the previous slide, the square of a vector, a?, is
elementwise (i.e., numpy.multiply)

* Eg.,[23,4]2 = [4,9,16]

* Since X is diagonal, it can be represented as a vector.

—2
° Can a,fl = Z;}:( (mllx‘;t’ )) — ﬁ{z become negative?

* No.
* This is left as an exercise, but only if you're interested.

ﬂ’h
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Speaker recognition

* Speaker recognition: n. the identification of a speaker
among several speakers given only
acoustics.

* Each speaker will produce speech according to different
probability distributions.
* We train a Gaussian mixture model for each speaker,
given annotated data (mapping utterances to speakers).
* We choose the speaker whose model gives the highest
probability for an observation.

/PN
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Recipe for GMM EM

* For each speaker, we learn a GMM given all T frames of their
training data.

1. Initialize: Guess 0 = (w,,,, [y, 20y) form = 1.. M
either uniformly, randomly, or by k-means
clustering.

2. E-step:  Compute and P(I',,|x;; 0).

3. M-step: Update parameters for (w,,,, [1,,,, 2,,,) @S
described on slide 21.

S5
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CLUSTERING
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Clustering

® Clustering is unsupervised learning.
* Number and form of clusters often unknown.

®* Observation X is in
Cluster One, so we
replace it with 1.

£
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Aspects of clustering

* What defines a particular cluster?
* |Is there some prototype representing each cluster?

* What defines membership in a cluster?
* Usually, some distance metric d(x, y) (e.g., Euclidean distance).

°* How well do clusters represent unseen data?
®* How is a new point assigned to a cluster?
* How do we modify that cluster as a result?

S
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K-means clustering

* Used to group data into K clusters, {C;, ..., Cx}.

* Each cluster is represented by the mean of its assigned data.
* (sometimes it’s called the cluster’s centroid).

* |terative algorithm converges to local optimum:
1. Select K initial cluster means {u4, ..., ux} from among data points.
2. Until (stopping criterion),
a) Assign each data sample to closest cluster
x€C; if dlxu) < d(x,/,tj), Vi#]j
b) Update K means from assigned samples
,Lli=E(X)VXECi, 1<i<K

S
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K-means example (K = 3)

* |nitialize with a random selection of 3 data samples.
* Euclidean distance metric d(x, u)

,.'o .:‘:" :'....
_I_"'t'i '°e?=’,5'. ::..’o;.ts'- o : ‘I‘&;i”

0 3 0%
‘ \ A
‘ N ¢
. :":.' ?.'f'.—l— vx'. 5 }—‘E :
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K-means stopping condition

* The total distortion, D, is the sum of squared error,

K
D=> > lx—wl?

=1 x€C;

* D decreases between nt" and (n + 1)" iteration.

* We can stop training when D falls below some threshold T'.
Dn+1)

D) T

5
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Acoustic clustering example

® 12 clusters of spectra, after training.
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Number of clusters

®* The number of true clusters is unknown.
* We can iterate through various values of K.
* As K approaches the size of the data, D approaches O...

ol voss .
.%If 5 e
S 2 A K=2
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Hierarchical clustering

* Hierarchical clustering clusters data into hierarchical ‘class’
structures.

* Two types: top-down (divisive) or bottom-up (agglomerative).
* Often based on greedy formulations.

* Hierarchical structure can be used for hypothesizing classes.

L
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Divisive clustering

* Creates hierarchy by successively splitting clusters into
smaller groups.

[Non-uniform] [ uniform ]
3 e .'v“:.. ..:.. " -..'g:.
O .0.0 ) LT
.:?E' .-:l“.; '.—|—.“&‘°-.;s | Tl; :ﬁ % '.+"T 3
] .0.0
.:,'.. ,:_1;_'
: J o T , d % 4% T
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Agglomerative clustering

* Agglomerative clustering starts with N ‘seed’ clusters and
iteratively combines these into a hierarchy.

®* On each iteration, the two most similar clusters are merged
together to form a new meta-cluster.

* After N — 1 iterations, the hierarchy is complete.

* Often, when the similarity scores of new meta-clusters are
tracked, the resulting graph (i.e., dendrogram) can yield
insight into the natural grouping of data.

e
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Dendrogram example
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Speaker clustering

* 23 female and 53 male speakers from TIMIT.
* Data are vectors of average F1 and F2 for 9 vowels.

i
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Acoustic-phonetic hierarchy
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(this is basically an upside-down dendogram)
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ing

Word cluster
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SPEECH RECOGNITION
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Consider what we want speech to do

@ My hands arein \ | Dictation |
the air.

Buy ticket...
AC490...
yes

[ Telephony ] @

Put this
there.

[ Multimodal interaction ]

Can we just use GMMs?

£
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Aspects of ASR systems in the world

* Speaking mode: Isolated word (e.g., “yes”) vs. continuous

* Speaking style:

* Enrolment:

* Vocabulary:
* Transducer:

CSC401/2511 — Spring 2022

(e.g., “Hey Siri, ask Cortana for the weather”)
Read speech vs. spontaneous speech;

the latter contains many dysfluencies

(e.g., stuttering, uh, like, ...)
Speaker-dependent (all training data from
one speaker) vs. speaker-independent
(training data from many speakers).

Small (<20 words) or large (>50,000 words).
Cell phone? Noise-cancelling microphone?
Teleconference microphone?

s
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Recognizing speakers phones

* Afirst idea: since GMM can be used to recognize speakers, it
can be used to recoghize phonemes.
® For each frame (15~25ms), GMM classifies a phone.
®* Then we can look up a phone dictionary to assemble into
words!

/ow ow ow ow ow p p p p ah ah ah ah ah n/

e |

Jowpahn/

|

Open

e
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Speech is dynamic

* Speech changes over time.
* GMMs are good for high-level clustering, but they encode
no notion of order, sequence, nor time.

* Speech is an expression of language.
* We want to incorporate knowledge of how phonemes and
words are ordered with language models.

L0
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Speech is sequences of phonemes

We want to convert a series of (e.g) MFCC
vectors into a sequence of phonemes.

) not really
B
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Continuous HMMs (CHMM)

* A continuous HMM has observations that are distributed
over continuous variables.
* Observation probabilities, b;, are also continuous.
* E.g., here by (x) tells us the probability of seeing the
(multivariate) continuous observation X while in state O.

4.32957
2.48562
1.08139

=1
I

0.45628

&
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GMM-HMM as Continuous HMIM

® Continuous HMMs are very similar to discrete HMMs.

°* S = {Sl' ...,SN}
*X =R

° I = {my, ..., Ty}
V) ‘A={aij},i,jES
* B = bl(.?_C)),l ES,.?_C) e X

vielding

Q=190 91} G ES
°* 0 ={0y,..,00}L0;EX

CSC401/2511 — Spring 2022

51

. set of states (e.g., phonemes)
. continuous observation space

. initial state probabilities
. state transition probabilities
. state output probabilities

(i.e., Gaussian mixtures)

. state sequence
: observation sequence

S5

% TORONTO



Using CHMMs @—@—@
7 \ 4 \¥ 4

* As before, these HMMs are generative models that encode
statistical knowledge of how output is generated.

* We train CHMMs with Baum-Welch (a type of Expectation-
Maximization), as we did before with discrete HMMs.
* Here, the observation parameters, b;(x), are adjusted
using the GMM training ‘recipe’ from earlier.

* We find the best state sequences using Viterbi, as before.

* Here, the best state sequence gives us a sequence of
phonemes.

e
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Phoneme dictionaries

®* How do we convert our phoneme sequence into words?
®* There are many phonemic dictionaries that map words to

pronunciations (i.e., lists of phoneme sequences).

* The CMU dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) is

popular.

* 127K words transcribed with the ARPAbet.
® Includes some rudimentary prosody markers.

EVOLUTION EH2

EVOLUTION (2) IY2
EVOLUTION (3) EH2
EVOLUTION (4) IY2
EVOLUTIONARY EH2

CSC401/2511 — Spring 2022

V AHO
V AHO
V. OWO
V. OWO
V AHO

53

o e e e

UW1
UW1
UW1
UW1
UW1

SH
SH
SH
SH
SH

AHO
AHO
AHO
AHO
AHO

N
N
N
N
N

EH2 R IYO

S
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http://www.speech.cs.cmu.edu/cgi-bin/cmudict

A noisy channel model for ASR

Language model Acoustic model
W Channel X'
PX|w) P,

——

W e Observed X
[ Acoustic

{ Word | |
sequence W

sequence X
W* = argmax P(W|X) :(argmaxP(X [W)P(W)
w w

llllllllllll
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An HMM-based ASR system
W* = argmax P(W|X) = argmax P(X|W)P(W)
w w

* Usea CHMM to compute P(X|W)
* This CHMM is trained on a phonemic corpus {Wy, X4}
® Use alanguage model to compute P(W)
°* The parameters of the language model is trained on a
corpora {W.}
* Use the CHMM and the LM jointly to find W*.

s
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Remember Viterbi

" The best path to state sj attime t, §;(¢t), |
depends on the best path to each
possible previous state, 6;(t — 1), and

. their transitions to j, a;;

\

;
(53/

6](t) = ml_aX [8l(t = 1)ai]- b](O’t)

P;(t) = argmax [6:(t — Dayj]

Do these probabilities need to
- be GMMs?

0y = Ship o1 = frock o, = tops

Observations, ¢

&

wws

UNIVERSITY OF

CSC401/2511 — Spring 2022 56



Replacing GMMs with DNNs

* Obtain b;(x) = p(x|s;) with a neural network.
* |nstead of learning a continuous distribution directly, we can use
Bayes’ rule:

p(sj|x) - p(x)
p(sj)

p(x|s;) =

/

=

&
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Replacing GMMs with DNNs

The probability of a word sequence W comes loosely from
P(X|W)

* Considering the states gy, ..., gt during the frames of a word:
P(X|W)

P(qt|xt)
~ max HP(thqt 1) P(x¢|qe) = max HP(CH qt—1)

P(q¢)
HMM handles I /
the temporal GMM DNN
dependency

eﬁs-
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Training the DNN

* Maximize P(q.|x;)
* The order which we transition through states (= phonemes) is
known by the tra nSCFiption (ignoring alternate pronunciations)

* At what frames these transitions happen are unknown
® = @¢ is unknown!

® One solution: bootstrapping
* Use another model (e.g., GMM-HMM) to determine q;
* The acquired g; is used to train the DNN.

®* Other, advanced methods exist.

e
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Hybrid DNN-HMM Systems

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND

GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF GMM-HMM GMM-HMM
TASK TRAINING DATA DNN-HMM WITH SAME DATA WITH MORE DATA
SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)
SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)
ENGLISH BROADCAST NEWS 50 145 18.8
BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2
GOOGLE VOICE INPUT 5,870 12.3 16.0 (>> 5,870 H)
YOUTUBE 1,400 47.6 52.3

G Hinton et al (Nov 2012). “Deep neural networks for acoustic modeling in speech recognition”, IEEE Signal
Processing Magazine, 29(6):82—97. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296526

k-
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http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6296526

Aside: What did these DNNs learn?

¢ t'SN E (stochastic neighbour embedding using t-distribution)
visualizations in 2D (colours=speakers).

* Deeper layers encode information
about the segment

Mohamed, A., Hinton, G., & Penn, G. (2012). Understanding
how deep belief networks perform acoustic modelling. In ICASSP (pp. 6-9). &
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Aside: What did these DNNs learn?

°* DNN trained to
classify phonemes

* t-SNE visualizations
of hidden layer.

F2 (Hz) _. eat_

oo | X0 oo * Lower layers detect
manner of

8002 s 20, articulation

1T 1
200 400 600 800 F1(Hz)

Figure 1: Multilingual BN features of five vowels from
French (+), German ([]) and Spanish (5/): /a/ (black), /i/ (blue),
/el (green), /o/ (red), and /u/ (yellow)

Vu, N. T., Weiner, J., & Schultz, T. (2014). Investigating the learning effect of multilingual bottle-neck
features for ASR. Interspeech, 825-829.
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End-to-end neural networks

* Neural networks are typically trained at the frame level.

* This requires a separate training target for every frame, which in turn requires the
alignment between the audio and transcription sequences to be known.
* However, the alignment is only reliable once the classifier is trained.

* “End-to-end” = an objective function that allows sequence
transcription without requiring prior alignment between the
iﬂpUt X (frames of audio) and target Y (output strings) SEqUENCES with
arbitrary lengths, i.e.

P(Y|X)
* Target tokens can be words, sub-words, or just characters
* Two popular choices of P(Y|X):

1. Seqg2seq (encoder/decoder, transformers)
2. Connectionist Temporal Classification

S
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End-to-end architectures for ASR

* The same architectures we saw in NMT work for ASR!
* Replace source embedding vector x; with Mel
spectrum vector

* Replace target sequence E with transcription
sequence Y

And train with Connectionist Temporal Classification (in
aside — please refer to https://distill.pub/2017/ctc/.
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End-to-end architectures for ASR

Table 1. Wall Street Journal Results. All scores are word er-
ror rate/character error rate (where known) on the evaluation set.
‘LM’ is the Language model used for decoding. ‘14 Hr’ and ‘81
Hr’ refer to the amount of data used for training.

SYSTEM LM 14 HR 81 HR
RNN-CTC NONE 74.2/30.9 | 30.1/9.2
RNN-CTC DICTIONARY | 69.2/30.0 | 24.0/8.0
RNN-CTC MONOGRAM | 25.8 15.8
RNN-CTC BIGRAM 159 10.4
RNN-CTC TRIGRAM 13.5 8.7
RNN-WER NONE 74.5/31.3 | 27.3/8.4
RNN-WER DICTIONARY | 69.7/31.0 | 21.9/7.3
RNN-WER MONOGRAM | 26.0 15:2
RNN-WER BIGRAM 15.3 9.8
RNN-WER TRIGRAM 13.5 8.2
BASELINE NONE — —
BASELINE DICTIONARY | 56.1 il B |
DNN/HMM BASELINE MONOGRAM | 23.4 19.9
hybrid BASELINE BIGRAM 11.6 9.4
BASELINE TRIGRAM 9.4 7.8
COMBINATION | TRIGRAM — 6.7

Graves A, Jaitly N. (2014) Towards End-To-End Speech Recognition with Recurrent Neural Networks. JIMLR
Workshop Conf Proc, 32:1764-1772.
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The open-source Kaldi ASR

o KALDI

* Kaldi is the de-facto open-source ASR toolkit:

http://kaldi-asr.org

* |t has pretrained models, including the ASpIRE chain model trained
on Fisher English, augmented with impulse responses and noises to
create multi-condition training.

* There are docker images for environments running Kaldi.

* |t often (anecdotally) performs better than Google’s SpeechAPI.

* Itis originally in C++, but a wrapper (PyTorch-Kaldi) exists in the
much easier Python.

® Pro-sanity tip: don’t read news about its progenitor.
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http://kaldi-asr.org/
http://kaldi-asr.org/models.html
https://hub.docker.com/r/kaldiasr/kaldi
https://cloud.google.com/speech-to-text/
https://github.com/mravanelli/pytorch-kaldi

EVALUATING SPEECH RECOGNITION

@
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Evaluating ASR accuracy

* How can you tell how well an ASR system recognizes speech?
* E.g., if somebody said
Reference: how to recognize speech
but an ASR system heard
Hypothesis: how to wreck a nice beach
how do we quantify the error?

* One measure is word accuracy: #CorrectWords/#ReferenceWords
° E.g., 2/4, above
® This runs into problems similar to those we saw with SMT.
* E.g., the hypothesis ‘how to recognize speech boing boing
boing boing boing’ has 100% accuracy by this measure.
* Normalizing by #HypothesisWords also has problems
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Word-error rates (WER)

* ASR enthusiasts are often concerned with word-error rate
(WER), which counts different kinds of errors that can be
made by ASR at the word-level.

* Substitution error: One word being mistook for another
e.g., ‘shift’ given ‘ship’

* Deletion error: An input word that is ‘skipped’
e.g. ‘| Torgo’ given ‘I am Torgo’

* Insertion error: A ‘hallucinated’ word that was not in
the input.

e.g., ‘This Norwegian parrot is no more’
given ‘This parrot is no more’
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Levenshtein distance

* The Levenshtein distance (and WER) is straightforward to
calculate using dynamic programming

Allocate matrix R[n + 2,m + 2] // where nis the number of reference words
// and m is the number of hypothesis words

Add <s> to beginning of each sequence, and </s> to their ends.

Fill [0:end] along the first row and column.

fori ;== 1..n+ 1 // #ReferenceWords

forj :=1..m + 1 // #Hypothesis words
R[i,j] = min( R[i—-1,j]+1, // deletion
R[i—1,j—1], // if the it" reference word and

// the jt™ hypothesis word match
R[i—1,j — 1] + 1, //if they differ, i.e., substitution

R[i,j—1]+1) //insertion
Return 100X R[n,m]/n // WER
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Levenshtein distance — initialization

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

how 1

N -
B
B -
E2N -

The value at cell (i, j) is the minimum number of errors
necessary to align i with j.

Q
(@)
C
Q
S
Q
Y4—
)
o
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

N

how 1 0

N -
B
B -
E2N -

°* R[1,1] = min(LEFT + 1, (0), ABOVE + 1) = 0 (match)
* We put a little 2rrow in place to indicate the choice.

* ‘Arrows’ are normally stored in a backtrace matrix. ®
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

how 1~0»1»2»3»4»5»6

N -
B
B -
E2N -

* We continue along for the first reference word...
* These are all insertion errors

Q
(@)
C
Q
S
Q
Y4—
)
o
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

how 1‘ -{1-}2-}3-}4-}5-}6

0 = 1 = 2 = 3 =) 4 =) 5

T L X

2
3
B
S -

* Since recognize + wreck, we have a substitution error.
* At some points, you have >1 possible path as indicated.
* We can prioritize types of errors arbitrarily. N
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o

how 1 2

N -
B
B -
E2N -

* And we finish the grid.
* There are R[end, end]| = 4 word errors and a WER of 4/4 = 100%.
* WER can be greater than 100% (relative to the reference). B sty on
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Levenshtein distance

hypothesis
> Trow [ o Jwrear] 5 L oee Jomse] 5o
0 1 2 3 4 5 6 7

= 5 B 6
= 4 B 5
=
=Y

how

TP

= 1=
Y
R
N

Reference

> s
> s
2 DR ¢
</s>

* |f we want, we can backtrack using our arrows (in a backtrace matrix).
* Here, we estimate 2 substitution errors and 2 insertion errors.

=
=
=
=
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Summary

* We've seen how to:

* Extract useful speech features with Mel-scale filter
banks

°* Model speech data with Gaussian mixture models.

® Cluster data with unsupervised algorithmes.

* Recognize speech with GMM-HMM, DNN-HMM and
end-to-end DNN.

* Evaluate ASR performance with Levenshtein distance.

* Next lecture: synthesize artificial speech.

Lo
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