This lecture

- Acoustics.
- Speech production.
- Speech perception.

- Some images from Gray’s Anatomy, Jim Glass’ course 6.345 (MIT), the Jurafsky & Martin textbook, Encyclopedia Britannica, the Rolling Stones, the Pink Floyds.
acoustics
What is sound?

- **Sound** is a time-variant pressure wave created by a vibration.
 - Air particles **hit** each other, setting others in motion.
 - High pressure \(\equiv \text{compressions} \) in the air (C).
 - Low pressure \(\equiv \text{rarefactions} \) within the air (R).
What is sound?

Frequency $F = 1/T$

phase ϕ is displacement of a signal in time. E.g., with $\phi = \pi/2$,

$$\sin(x + \phi) = \cos(x)$$

sine, cosine
What is sound?

• A single **tone** is a sinusoidal function of pressure and time.

 • **Amplitude**: \(n. \) The degree of the displacement in the air. This is similar to ‘loudness’.
 Often measured in **Decibels (dB)**.

 • **Frequency**: \(n. \) The number of cycles within a unit of time.
 e.g., 1 Hertz (Hz) = 1 oscillation/second
Speech waveforms

“Two plus seven is less than ten”
Superposition of sinusoids

- **Superposition**: *n.* the adding of sinusoids together.

- **Phase**: *n.* The horizontal offset of a sinusoid (ϕ).
Extracting sinusoids from waveforms

• As we will soon see, the relative **amplitudes** and **frequencies** of the sinusoids that combine in speech are often **extremely indicative** of the **speech units** being uttered.
 • ⊳ If we could **separate** the waveform into its component sinusoids, it would help us **classify** the speech being uttered.
 • **But the shape of the signal changes over time**

 (it’s not a single repeating pattern)...
Short-time windowing

- Speech waveforms change drastically over time.
- We move a short analysis window (assumed to be time-invariant) across the waveform in time.
 - E.g. frame shift: 5—10 ms
 - E.g. frame length: 10—25 ms
Window types

Hamming eliminates ‘clipping’ at the boundaries of windows.
Extracting a spectrum

White light

Any Colour You Like (track 8)
Extracting a spectrum in a window

Frame → Spectrum

Amplitude

Frequency (Hz)
Aside – Euler’s formula

- Extracting sinusoids uses a relationship between natural exponent e and sinusoids expressed in **Euler’s formula**:

\[e^{ix} = \cos(x) + i \sin(x) \]

\[e^{i\pi} = -1 \]
The continuous Fourier transform

- **Input:** Continuous signal $x(t)$.

- **Output:** Spectrum $X(F)$

$$X(F) = \int_{-\infty}^{\infty} x(t)e^{-i2\pi Ft} \, dt$$

- It’s **invertible**, i.e., $x(t) = \int_{-\infty}^{\infty} X(F)e^{i2\pi Ft} \, dF$.

- It’s **linear**, i.e., for $a, b \in \mathbb{C}$,
 - if $h(t) = ax(t) + by(t)$,
 - then $H(F) = aX(F) + bY(F)$

Fun fact: Fourier instructed Champollion.

It needs **continuous** input $x(t)$... *uh oh?*
Discrete signal representation

- **Sampling**: measuring the amplitude of a signal at regular intervals.
- e.g., 44.1 kHz (CD), 8 kHz (telephone).
- These amplitudes are initially measured as continuous values at discrete time steps.

How quickly should we sample?
Discrete signal representation

• **Nyquist rate**: n. the *minimum* sampling rate necessary to preserve a signal’s *maximum* frequency.
 - i.e., *twice* the maximum frequency, since we need ≥ 2 samples/cycle.
 - Human speech is very informative ≤ 4 kHz, \therefore 8 kHz sampling.
Discrete Fourier transform (DFT)

• **Input:** Windowed signal $x[0] \ldots x[N - 1]$.

• **Output:** N complex numbers $X[k] \ (k \in \mathbb{Z})$

\[
X[k] = \sum_{n=0}^{N-1} x[n] e^{-i2\pi k \frac{n}{N}}
\]

• **Algorithm(s):** the **Fast Fourier Transform** (FFT) with complexity $O(N \log N)$.
 • (Aside) The **Cooley-Tukey algorithm** divides-and-conquers by breaking the DFT into smaller ones $N = N_1 N_2$. (No need to memorize these)
Discrete Fourier transform (DFT)

- Below is a 25 ms Hamming-windowed signal from /iy/ as in ‘bull sheeep’, and its spectrum as computed by the DFT.

But this is all just for a small window...
Spectrograms

- **Spectrogram**: *n.* a 3D plot of **amplitude** and **frequency** over **time** (higher ‘redness’ → higher amplitude).
Effect of window length

Wide-band (better time resolution)

Narrow-band (better frequency resolution)
Spectrograms

“How two plus seven is less than ten”

How are these obvious patterns made and perceived?
Aside – Filtering

• Sometimes you only want **part** of a signal.
 • E.g., you have measurements of lip aperture over time – you know that they can’t move > 5-10 Hz.
 • E.g., you know there’s some low-frequency Gaussian noise in either the environment or transmission medium.

• Low- and high-pass filters can be combined in series, yielding a **band-pass** filter.
speech production
The vocal tract

- Many physical structures are co-ordinated in the production of speech.

- Generally, sound is *generated* by passing air through the vocal tract.

- Sound is *modified* by constricting airflow in particular ways.
The neurological origins of speech

• Studying how systems break down can indicate how they work.

- **Broca’s aphasia**
 - Reduced **hierarchical syntax**.
 - **Anomia**.
 - Reduced “mirroring” between **observation** and **execution**.

- **Wernicke’s aphasia**
 - **Normal** intonation/rhythm.
 - **Meaningless** words.
 - ‘**Jumbled**’ syntax.
 - Reduced **comprehension**.
The neurological origins of speech

- Cranial nerves carry messages from the brain to the various **articulators**.

- **Cranial nerves** carry messages from the brain to the various **articulators**.
 - **Damage** to these nerves can result in **neuro-motor** disorders such as cerebral palsy.
 - These may be another example of the noisy channel.
Fundamental frequency

- F_0: n. (fundamental frequency), the rate of vibration of the glottis – often very indicative of the speaker.

<table>
<thead>
<tr>
<th></th>
<th>Avg F_0 (Hz)</th>
<th>Min F_0 (Hz)</th>
<th>Max F_0 (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>125</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>Women</td>
<td>225</td>
<td>150</td>
<td>350</td>
</tr>
<tr>
<td>Children</td>
<td>300</td>
<td>200</td>
<td>500</td>
</tr>
</tbody>
</table>
Prosody

• **Sonorant**: *n.* Any **sustained** sound in which the **glottis** is vibrating (i.e., the sound is ‘**voiced**’).
 • Includes some consonants (e.g., /w/, /m/).

• **Prosody**: *n.* the **modification** of speech acoustics in order to convey some **extra-lexical** meaning:
 • **Pitch**: Changing of F_0 over time.
 • **Duration**: The length in time of sonorants.
 • **Loudness**: The amount of **energy** produced by the **lungs**.
Pitch prosody example
Pitch can modify meaning

- e.g., I ask you “who is that?”

- e.g., I ask you “what is his job?”

Pitch tends to rise when uttering novel or important information.
Pitch can modify meaning

- *I* never said she stole my money. (Someone else said it)
- **never** said she stole my money. (It never happened)
- I never *said* she stole my money. (I just hinted at it)
- I never said *she* stole my money. (Someone else stole it)
- I never said she *stole* my money. (She just borrowed it)
- I never said she stole *my* money. (She stole someone else’s)
- I never said she stole my *money*. (She stole my heart).
Phonemes

- **Phoneme**: *n.* a distinctive unit of speech sound.
- Phonemes can be partitioned into **manners of articulation**:
 - **Vowels**: open vocal tract, no nasal air.
 - **Fricatives**: noisy, with air passing through a tight constriction (e.g., ‘*shift*’).
 - **Stops/plosives**: complete vocal tract constriction and burst of energy (e.g., ‘*papa*’).
 - **Nasals**: air passes through the nasal cavity (e.g., ‘*mama*’).
 - **Semivowels**: similar to vowels, but typically with more constriction (e.g., ‘*wall*’).
 - **Affricates**: Alveolar stop followed by fricative.
Place of articulation

- The **location** of the *primary constriction* can be:
 - **Alveolar**: constriction near the alveolar ridge (e.g., /t/)
 - **Bilabial**: touching of the lips together (e.g., /m/, /p/)
 - **Dental**: constriction of/at the teeth (e.g., /th/)
 - **Labiodental**: constriction between lip and teeth (e.g., /f/)
 - **Velar**: constriction at or near the velum (e.g., /k/).
Phonemic alphabets

• There are several alphabets that categorize the sounds of speech.
 • The International Phonetic Alphabet (IPA) is popular, but it uses non-ASCII symbols.
 • The TIMIT phonemic alphabet will be used by default in this course.

• Other popular alphabets include ARPAbet, Worldbet, and OGIbet, usually adding special cases.
 • E.g., /pcl/ is the period of silence immediately before a /p/.

<table>
<thead>
<tr>
<th>TIMIT</th>
<th>IPA</th>
<th>e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/iy/</td>
<td>/iᵢ/</td>
<td>beat</td>
</tr>
<tr>
<td>/ih/</td>
<td>/i/</td>
<td>bit</td>
</tr>
<tr>
<td>/eh/</td>
<td>/ɛ/</td>
<td>bet</td>
</tr>
<tr>
<td>/ae/</td>
<td>/æ/</td>
<td>bat</td>
</tr>
<tr>
<td>/aa/</td>
<td>/ɑ/</td>
<td>Bob</td>
</tr>
<tr>
<td>/ah/</td>
<td>/ʌ/</td>
<td>but</td>
</tr>
<tr>
<td>/ao/</td>
<td>/ɔ/</td>
<td>bought</td>
</tr>
<tr>
<td>/uh/</td>
<td>/ʊ/</td>
<td>book</td>
</tr>
<tr>
<td>/uw/</td>
<td>/u/</td>
<td>boot</td>
</tr>
<tr>
<td>/ux/</td>
<td>/u̯/</td>
<td>suit</td>
</tr>
<tr>
<td>/ax/</td>
<td>/ə/</td>
<td>about</td>
</tr>
</tbody>
</table>
TIMIT Phonemic alphabet (incomplete)

<table>
<thead>
<tr>
<th>Vowel</th>
<th>e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/iy/</td>
<td>beat</td>
</tr>
<tr>
<td>/ih/</td>
<td>bit</td>
</tr>
<tr>
<td>/eh/</td>
<td>bet</td>
</tr>
<tr>
<td>/ae/</td>
<td>bat</td>
</tr>
<tr>
<td>/aa/</td>
<td>Bob</td>
</tr>
<tr>
<td>/ah/</td>
<td>but</td>
</tr>
<tr>
<td>/ao/</td>
<td>bought</td>
</tr>
<tr>
<td>/uh/</td>
<td>book</td>
</tr>
<tr>
<td>/uw/</td>
<td>boot</td>
</tr>
<tr>
<td>/ux/</td>
<td>suit</td>
</tr>
<tr>
<td>/ax/</td>
<td>about</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>stop</th>
<th>e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/b/</td>
<td>Bilbo</td>
</tr>
<tr>
<td>/d/</td>
<td>dad</td>
</tr>
<tr>
<td>/g/</td>
<td>Gaga</td>
</tr>
<tr>
<td>/p/</td>
<td>Pippin</td>
</tr>
<tr>
<td>/t/</td>
<td>Toots</td>
</tr>
<tr>
<td>/k/</td>
<td>kick</td>
</tr>
<tr>
<td>/m/</td>
<td>Mama</td>
</tr>
<tr>
<td>/n/</td>
<td>noon</td>
</tr>
<tr>
<td>/ng/</td>
<td>thing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fricative</th>
<th>e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/s/</td>
<td>Sea</td>
</tr>
<tr>
<td>/f/</td>
<td>Frank</td>
</tr>
<tr>
<td>/z/</td>
<td>Zappa</td>
</tr>
<tr>
<td>/th/</td>
<td>this</td>
</tr>
<tr>
<td>/sh/</td>
<td>Ship</td>
</tr>
<tr>
<td>/zh/</td>
<td>azure</td>
</tr>
<tr>
<td>/v/</td>
<td>Vogon</td>
</tr>
<tr>
<td>/dh/</td>
<td>then</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>nasal</th>
<th>e.g.</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ng/</td>
<td>thing</td>
</tr>
</tbody>
</table>

(Incomplete)
Phoneme sequences

- Often, we assume that a spoken utterance can be partitioned into a sequence of non-overlapping phonemes.
 - Demarking the periods during which certain phonemes are being uttered is called transcription or annotation (*).
 - This approach has problems (e.g., when exactly does one phoneme end and another begin?), but it’s useful for classification.

What are some characteristics of the six manners of articulation?
Vowels (1/6)

- There are approximately 19 vowels in Canadian English, including diphthongs in which the articulators move over time.

- Vowels are distinguished primarily by their formants. (?)

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Diphthong</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>/iy/</td>
<td>beat</td>
<td></td>
</tr>
<tr>
<td>/ih/</td>
<td>bit</td>
<td></td>
</tr>
<tr>
<td>/eh/</td>
<td>bet</td>
<td></td>
</tr>
<tr>
<td>/ae/</td>
<td>bat</td>
<td></td>
</tr>
<tr>
<td>/aa/</td>
<td>Bob</td>
<td></td>
</tr>
<tr>
<td>/ao/</td>
<td>bought</td>
<td></td>
</tr>
<tr>
<td>/ah/</td>
<td>but</td>
<td></td>
</tr>
<tr>
<td>/uh/</td>
<td>book</td>
<td></td>
</tr>
<tr>
<td>/uw/</td>
<td>boot</td>
<td></td>
</tr>
<tr>
<td>/ax/</td>
<td>about</td>
<td></td>
</tr>
<tr>
<td>/ix/</td>
<td>roses</td>
<td></td>
</tr>
</tbody>
</table>

- There are approximately 19 vowels in Canadian English, including diphthongs in which the articulators move over time.

- Vowels are distinguished primarily by their formants. (?)

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Monophthong</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>/er/</td>
<td>Bert</td>
<td></td>
</tr>
<tr>
<td>/axr/</td>
<td>butter</td>
<td></td>
</tr>
<tr>
<td>/oy/</td>
<td>boy</td>
<td></td>
</tr>
<tr>
<td>/ow/</td>
<td>boat</td>
<td></td>
</tr>
<tr>
<td>/ay/</td>
<td>bite</td>
<td></td>
</tr>
<tr>
<td>/ah/</td>
<td>but</td>
<td></td>
</tr>
<tr>
<td>/uh/</td>
<td>book</td>
<td></td>
</tr>
<tr>
<td>/uw/</td>
<td>boot</td>
<td></td>
</tr>
<tr>
<td>/ax/</td>
<td>about</td>
<td></td>
</tr>
<tr>
<td>/ix/</td>
<td>roses</td>
<td></td>
</tr>
</tbody>
</table>
The positions of the tongue, jaw, and lips change the **shape** and **cross-sectional area** of the vocal tract.
Uniform tubes in practice

- Many **musical instruments** are based on the idea of uniform (or, in many cases, bent) tubes.

- Longer tubes produce ‘**deeper**’ sounds (lower frequencies).
 - A tube $\frac{1}{2}$ the length of another will be 1 octave higher.
Vowels as concatenated tubes

- The vocal tract can be modelled as the concatenation of dozens, hundreds, or thousands of tubes.
Aside – waves in concatenated tubes

- We model the **volume velocity** U_k and the **pressure variation** p_k at position x in the k^{th} lossless tube (whose area is A_k) at time t

\[
U_k(x, t) = U_k^+(t - \frac{x}{c}) - U_k^-(t + \frac{x}{c})
\]

\[
p_k(x, t) = \rho c \frac{A_k}{A_{k+1}} \left[U_k^+(t - \frac{x}{c}) + U_k^-(t + \frac{x}{c}) \right]
\]

where

- c is the speed of sound,
- ρ is the density of air.
Waves in concatenated tubes

- Because of partial wave reflections that occur at tube boundaries, we can generate spectra with particular resonances.
Formants and vowels

- **Formant**: *n*. A concentration of energy within a frequency band. Ordered from low to high bands (e.g., F_1, F_2, F_3).
The vowel trapezoid
Tongues and formants

Front/low

Front/high

Back/high
Fricatives (2/6)

- Fricatives are caused by acoustic turbulence at a narrow constriction whose position determines the sound.
Fricatives

- **Fricatives** have four places of articulation.
- Each place of articulation has a **voiced** fricative (i.e., the glottis can be vibrating), and an **unvoiced** fricative.

<table>
<thead>
<tr>
<th>Place of Articulation</th>
<th>Unvoiced</th>
<th>Voiced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labio-dental</td>
<td>/f/</td>
<td>\textit{fee}</td>
</tr>
<tr>
<td>Dental</td>
<td>/\textit{th}/</td>
<td>\textit{thief}</td>
</tr>
<tr>
<td>Alveolar</td>
<td>/s/</td>
<td>\textit{see}</td>
</tr>
<tr>
<td>Palatal</td>
<td>/\textit{sh}/</td>
<td>\textit{she}</td>
</tr>
</tbody>
</table>
Unvoiced fricatives
Plosives (3/6)

- **Plosives** build pressure behind a complete closure in the vocal tract.
- A **sudden release** of this constriction results in brief noise.

![Diagram of plosive sounds](image)
Plosives

- **Plosives** have three places of articulation:

<table>
<thead>
<tr>
<th></th>
<th>Unvoiced</th>
<th>Voiced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labial</td>
<td>/p/</td>
<td>porpoise /b/</td>
</tr>
<tr>
<td>Alveolar</td>
<td>/t/</td>
<td>tort /d/</td>
</tr>
<tr>
<td>Velar</td>
<td>/k/</td>
<td>kick /g/</td>
</tr>
</tbody>
</table>

- **Voiced** stops are usually characterized by a “**voice bar**” during closure, indicating the vibrating glottis.
- **Formant transitions** are very **informative** in classification.
Voicing in plosives

The “voice bar”
Formant transitions in plosives

- Despite a common vowel, the motion of F_2 and F_3 into (and out of) the vowel helps identify the plosive.
Nasals (4/6)

- **Nasals** involve lowering the velum so that air passes through the nasal cavity.
- **Closures** in the oral cavity (at same positions as plosives) change the resonant characteristics of the nasal sonorant.
Formant transitions among nasals

- Despite a common vowel, the motion of F_2 and F_3 before and after each nasal helps to identify it.

Nasals often appear as two formants.
Semivowels (5/6)

- **Semivowels** act as consonants in syllables and involve constriction in the vocal tract, but there is less turbulence.
 - They also involve slower articulatory motion.
- **Laterals** involve airflow around the **sides** of the tongue.
Semivowels

• Semivowels are often sub-classified as glides or liquids.

<table>
<thead>
<tr>
<th></th>
<th>Semivowel</th>
<th>Nearest vowel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/w/</td>
<td>Wow</td>
<td>/uw/</td>
</tr>
<tr>
<td>/y/</td>
<td>yoyoyoyo</td>
<td>/iy/</td>
</tr>
<tr>
<td>Liquids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/r/</td>
<td>rear</td>
<td>/er/</td>
</tr>
<tr>
<td>/l/</td>
<td>Lulu</td>
<td>/ow/</td>
</tr>
</tbody>
</table>

• Semivowels are more constricted versions of corresponding vowels.
 • Similar formants, though generally weaker.
Semivowels

- Note the drastic formant transitions which are more typical of semivowels.
Affricates and aspirants (6/6)

- There are two affricates: /jh/ (voiced; e.g., *judge*) and /ch/ (unvoiced; e.g., *church*).
 - These involve an alveolar stop followed by a fricative.
 - Voicing in /jh/ is normally indicated by voice bars, as with plosives.

- There’s only one aspirant in Canadian English: /h/ (e.g., *hat*).
 - This involves turbulence generated at the glottis.
 - In Canadian English, there is no constriction in the vocal tract.
Affricates and aspirants
Alternative pronunciations

• Pronunciations of words can vary significantly, but with observable frequencies.
 • The Switchboard corpus is a phonetically annotated database of speech recorded in telephone conversations.
Known effects of pronunciation

- Speakers tend to **drop** or **change** pronunciations in **predictable** ways in order to reduce the effort required to **co-ordinate** the various articulators.
 - **Palatalization** generally refers to a **conflation** of phonemes closer to the frontal palate than they ‘should’ be.
 - **Final t/d deletion** is simply the **omission** of alveolar plosives from the ends of words.

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Palatalization</th>
<th>Final t/d Deletion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lexical</td>
<td>Reduced</td>
</tr>
<tr>
<td>set your</td>
<td>s eh t y ow r</td>
<td>s eh ch er</td>
</tr>
<tr>
<td>not yet</td>
<td>n aa t y eh t</td>
<td>n aa ch eh t</td>
</tr>
<tr>
<td>did you</td>
<td>d ih d y uw</td>
<td>d ih jh y ah</td>
</tr>
</tbody>
</table>
Variation at syllable boundaries
Phonological variation

- The acoustics of a phoneme depend strongly on the context in which that phoneme occurs.

That must make recognizing phonemes hard, right? How do humans do it?
The inner ear

- Time-variant waves enter the ear, vibrating the tympanic membrane.
- This membrane causes tiny bones (incl. malleus) to vibrate.
- These bones in turn vibrate a structure within a shell-shaped bony structure called the cochlea.
The cochlea and basilar membrane

• The **basilar membrane** is covered with tiny hair-like nerves – some near the **base**, some near the **apex**.

• **High** frequencies are picked up near the base, **low** frequencies near the apex.

• These nerves fire when activated, and communicate to the brain.
The Mel-scale

• Human hearing is **not** equally sensitive to all frequencies.
 • We are **less** sensitive to frequencies > 1 kHz.

• A **mel** is a unit of pitch. Pairs of sounds which are **perceptually** equidistant in pitch are separated by an equal number of **mels**.

\[
Mel(f) = 2595 \log_{10} \left(1 + \frac{f}{700} \right)
\]

(No need to memorize this either)
Aside – Challenges of perception

• **Cochlear implants** replace the basilar membrane and stimulate the auditory nerve directly.
Next...

• How the Mel scale is used in ASR.

• Automatic speech recognition.