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This lecture

* Information theory.
®* Entropy.
* Mutual information, etc.
® Decisions.
* Classification.
* Significance and hypothesis testing.

Can we quantify the statistical structure in a model of communication?
Can we quantify the meaningful difference between statistical models?
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Information

* Imagine Darth Vader is about to say either “yes” or
“no” with equal probability.
®* You don’t know what he’ll say.

® You have a certain amount of uncertainty — a lack of
information.

Darth Vader is © D|sney
eeeeeeeeeeeeeeeeeeee /Finn Star Wars suck ‘*-'r‘“
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Information

* Imagine you then observe Darth Vader saying “no”
® Your uncertainty is gone; you’ve received information.

°* How much information do you receive about event x
when you observe it?

“Choosing 1 out of 2” gives
a bit of information

I(x) = 1 bit for P(x) = %

e
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Information

* Imagine there is both Darth Vader and Varth Dader.
* Observing what both DV and VD say gives us 2 bits of

information.
* There are 22 scenarios with equal possibilities:

* Yes/Yes, Yes/No, No/Yes, No/No

Darth Vader arth Da_der
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Information

* So I(x)=2 bits is brought by P(x) = 2%
I(x) doubles when — (x)

* Let’s describe I(x) with negative log likelihood:

IS squared.

I(x) =1
(x) 052 P(x) Going back to the “yes/no” example:

= 1 bit

I(no) = 10g2 P(no) — 10g2 7
2

For capturing the

Logarithm relationship Note 1: Negative log likelihood is also called
surprisal.
I(x) = —log,P(x); Note 2: information contents computed with log

So here comes the negation base 2 has unit “bit”. Log base e => unit “nat”.

;aqs
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Information

* Imagine Darth Vader is about to roll a fair die.
* You have more uncertainty about an event because

there are more possibilities.
* You receive more information when you observe it.

1
1
082 P(6)
log, i ~ 2.58 bits

£
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Information can be additive

* One property of I(x) = log, ﬁ is additivity.

°* From kindependent events x; ... xi:
®* DoesI(xq ...xy) =1(xy) +1(xy) + -+ 1(xp) ?
®* The answer is yes!

1
I1(x; ...x;) = log,

P(xq..xp)

1
= lo = lo + -+ 1o
S2p0c) - POr) P2 P(xy) °2 P ()

=1(x;) +1(xy) + -+ 1(xy)

e
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Aside: Information in computers

®* The unit bit appears familiar to the units describing file sizes...
®* And they are related!
* 1 GB = 21MB = 24°KB = 23%Bytes, where:
* 1 Byte = 8 bits.
* Historically: 1 byte was used to store one character.
* File sizes in computers are described by the amount of
information.
* The file sizes also depend on the method of encoding
(approx. “file format”)

s
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Events and random variables

°* An event x is a sample from a random variable X.
°* Example 1:
* X: Darth Vader saying something (either yes or no)
* x: What DV says (x = “no”
°* Example 2:
* X:Darth Vader rolling a die
® x: The side facing upwards (e.g., x = 3)
® x is deterministic. X is random.
® x is the output emitted by the “source” X.

e
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Information with unequal events

®* The random variable X can take possible values:

{vl) 172, ") U’I’l}'
° Each value has its own probability {p,, p,, ..., Py}

* What is the average amount of
information we get in observing
the output of X?

® You still have 6 events that are
M Yes (0.1) = No (0.7) possible — but you’re fairly

® Maybe (0.04) m Sure (0.03) sure it will be ‘No’.
m Darkside (0.06) ® Destiny (0.07)

S5
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Entropy

°* Entropy: n. the expected information gaining from observing
the events of the random variable X.

HOO = EI()] = ) p(x)log

CSC401/2511 — Spring 2022

p(x)

ENTROPY -

Notes:

1. Entropy is defined towards a random variable.

2. Entropy is the average uncertainty inherent in a random
variable.
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Entropy — examples

1
: Pi
m Yes (0.1) = No (0.7) = 0.7log,(1/0.7) + 0.1log,(1/0.1) + -
® Maybe (0.04) m Sure (0.03) = 1.542 bits

m Darkside (0.06) m Destiny (0.07)

H(X)—Z 1 1—6(11 1)
’ ~ P02 T P 6052 16
B1 2 m3 M4 Bm5 m6 =2.585b1tS
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Entropy characterizes the distribution

* ‘Flatter’ distributions have a higher entropy because the

choices are more equivalent, on average.
* So which of these distributions has a lower entropy?

0.25 0.25
0.2 0.2
iy iy
£ 0.15 £ 0.15
= c
8 0.1 8 0.1
(a8 ('
0.05 ¢ : 0.05
AT M| I TR Ul
Values Values
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Low entropy makes decisions easier

* When predicting the next event, we’d like a distribution with

lower entropy.

* Low entropy = less uncertainty

0.25 .‘
0.2 = )
=
2_7220.15
(¢°]
8 0.1
o
0.05 | :
AT M| O TR

high
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Bounds on entropy

* Maximum: uniform distribution X;. Given M choices,

1
H(X,) = szl logz zﬁlogz M = log, M

0
°* Minimum: only one choice, H(X,) = p; logzg = 110,1_3’2 1=0

0.1 1
0.08 0.8
2 2
= 0.06 = 0.6
© ©
S 0.04 S 0.4
a a
0.02 0.2
0
Values Values
16 © TORONTO
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Understanding entropy in coding

* We can encode a random variable X :
® For a lossless encoding, X can be recovered.

®* There are many possible codes to encode a random variable.
* They may involve different codelengths (num. bits)

Word Linear
(sorted) | Code

No 000

Yes 001

Destiny 010

Darkside 011

Maybe 100
M Yes (0.1) m No (0.7)

Sure 101

® Maybe (0.04) m Sure (0.03)

m Darkside (0.06) ® Destiny (0.07) Average codelength = 3 bits

- UNIVERSITY OF
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Coding with fewer bits is better

* If we want to transmit Vader’s words efficiently, we can
encode them so that more probable words require fewer bits.
° On average fewer bits will need to be transmitted.

Word Linear Probabll Huffman
(sorted) Code Code

Yes 001 0.1 100

Destiny 010 0.07 101

Darkside 011 0.06 110
M Yes (0.1) m No (0.7)

Maybe 100 0.04 1110
™ Maybe (0.04) m Sure (0.03)

Sure 101 0.03 1111

m Darkside (0.06) m Destiny (0.07)

Average codelength (Huffman) = 1*0.7+43*(0.1+.07+.06)+
4*(.04+.03) = 1.67 bits

gm
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Huffman codes: build tree

* Start with the words: each word is a leaf node.
* Merge the two least possible nodes into one.
* Repeat until the Huffman tree is constructed.

1.00

0.30

No
0.70
0.7\
Darkside Destiny ~ Yes
0.06 0.07 0.10
Maybe Sure
0.04 0.03 More frequent nodes

are “shallower” in the
Huffman tree!
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Word | probabity

No 0.7
Yes 0.1
Destiny 0.07
Darkside 0.06
Maybe 0.04
Sure 0.03

S5
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Huffman codes: assign codes

®* Then assign code values based on the tree branching.

More frequent nodes
are assigned shorter
codes!

0.17
Ve

110 101 100

Maybe Sure
1111 1110
CSC401/2511 — Spring 2022 20

1.0 Probabil | Huffman
1 Q\0A 14" Code
No No 0.7 0
0

Yes 0.1 100

Destiny  0.07 101
Darkside 0.06 110
Maybe 0.04 1110

0.03

Sure 1111
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Coding symbols efficiently

* What is the minimal possible average codelength needed to
losslessly encode a random variable X?
°* Answer: entropyI

. H(X) = Zx log, — (x) = 1.542 bits

Remark: This is Shannon’s
Source Coding Theorem

M Yes (0.1) m No (0.7)
® Maybe (0.04) m Sure (0.03)
m Darkside (0.06) m Destiny (0.07)

‘aﬁ»
UNIVERSITY OF

CSC401/2511 — Spring 2022 21 W TORONTO



Alternative notions of entropy

* Entropy is equivalently:

* The average amount of information provided
by an observation of a random variable,

* The average amount of uncertainty you have before
an observation of a random variable,

* The average amount of ‘surprise’ you receive during the
observation,

®* The number of bits needed to communicate that random

variable
* Aside: Shannon showed that you cannot have a coding scheme
that can communicate it more efficiently than H(S)

L0
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Some information-theoretic terms

* Joint entropy
* Conditional entropy
®* Mutual information

e
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Entropy of several variables

®* Consider the vocabulary of a meteorologist describing
Temperature and Wetness.
* Temperature = {hot, mild, cold}
°* Wetness = {dry, wet}

P(W = d'}"y) = 06’ 3 i L_ |
PW = wet) = 0.4 W) = 06loga g+ Ocklogs 57 = 0.970951 bis

P(T = hot) = 0.3,

1 1 1 _

P(T = cold) = 0.2

But W and T are not independent,
P(W,T) = P(W)P(T)

Example from Roni Rosenfeld =, uiversity oF
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Joint entropy

* Joint Entropy: n. the average amount of information needed
to specify multiple variables simultaneously.

O 1
H(X,Y) = %%m, y)log o —

* Hint: this is very similar to univariate entropy — we just replace
univariate probabilities with joint probabilities and sum over
everything.

S
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Entropy of several variables

* Consider joint probability, P(W,T)

* Joint entropy, H(W,T), computed as a sum over the space
of joint events (W =w,T =1t)

HW,T) = 0.1log, /o1 + 0.4log, /94 + 0.1l0g, */o 4
+0.2log, /5, + 0.1log, /51 + 0.1log, /o1 = 2.32193 hits

&
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Entropy given knowledge

* In our example, joint entropy of two variables together is

lower than the sum of their individual entropies
* HW,T) = 232< 246 = HW) + H(T)

°* Why?

* Information is shared among variables
®* There are dependencies, e.g., between temperature and
wetness.
* E.g., if we knew exactly how wet it is, is there less
confusion about what the temperature is ... ?

S
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Conditional entropy

* Conditional entropy: n. the average amount of information

needed to specify one variable given
that you know another.

* A.k.a ‘equivocation’

HOVIX) = ) pCOH(YIX = x)

xeX

* Hint: this is very similar to how we compute expected values in
general distributions.

e
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Entropy given knowledge

* Consider conditional probability, P(T |W)

P(W,T) m“_

PeT W
0.1/ 0.4/
BT o o
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Entropy given knowledge

* Consider conditional probability, P(T |W)

mm—
e
e —
(1 2 1) .
H(T|W = dry) = H (5,5@) — 1.25163 bits
e H(T|W = wet) = H( (et ) — 1.5 bits
2 4 4,

* Conditional entropy combines these:

H(T|W) 0.6 0.4
) [p<w{4w>ﬂmw — )] + (W= Wet) 1 (111 — wer)]
= 1.350978 bits

UNIVERSITY OF
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Equivocation removes uncertainty

* Remember H(T) = 1.48548 bits Entropy (i.e., confusion) about
o I—I(W’ T) = 2.32193 bits temperature is reduced if we know
o H(TlW) — 1.350978 bits how wet it is outside.

®* How much does I/ tell us about 7°?
* H(T) — H(T|W) = 1.48548 — 1.350978 ~ 0.1345 bits

* Well, a little bit!

e
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Perhaps T is more informative?

* Consider another conditional probability, P(W|T)

PUWIT) | T=cod | mid | hor
0.1/0.3 0.4/0.5 0.1/0.2

- wet  [PIE 0.1/0.5 0.1/0.2

e H(WI|T = cold) = H ({%%}) — 0.918295 bits
o H(WIT = mild) = H ({%%}) — 0.721928 bits
e H(WI|T = hot) = H({%%}) — 1 bit

* H(W|T) = 0.8364528 bits

&
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Equivocation removes uncertainty

* H(T) = 1.48548 bits

e H(W) = 0.970951 bits

e H(W,T) = 2.32193 bits

o H(T|W) = 1.350978 hits (

Previously
computed

° H(T) — H(T|W) = 0.1345 bits

°* How much does T tell us about I/ on average?
* HW) - H(W|T) = 0.970951 — 0.8364528
~ 0.1345 bits

®° Interesting ... is that a coincidence?

e
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Mutual information

®* Mutual information: n. the average amount of information
shared between variables.

1(X;Y) = H(X) — HX|Y) = H(Y) — H(Y|X)

. p(x,y)
B Zx,y p(x' y) logz p(x)p(y)

* Hint: The amount of uncertainty removed in variable X if you know Y.

° Hint2: If X and Y are independent, p(x,y) = p(x)p(y), then
log p(x,y)
2 p()p()

= log, 1 = 0 Vx, y —there is no mutual information!

e
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Relations between entropies

H(XY)

H(X,Y) = H(X) + H(Y) — [(X;Y)

&
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Reminder — the noisy channel

* Messages can get distorted when passed through a noisy
conduit — how much information is lost/retained?

° Signals A% 7

* Symbols -
Channel

®* Languages

Hello, computer 2 Bonjour, ordinateur

Eo
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Relating corpora

UNIVERSITY OF
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Relatedness of two distributions

°* How similar are two probability distributions?
° e.g., Distribution P learned from Kylo Ren
Distribution Q learned from Darth Vader

Probability
Probability

Words Words

:: UNIVERSITY OF
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Relatedness of two distributions

* A Huffman code based on Vader (Q) instead of Kylo (P) will

be less efficient at coding symbols that Kylo will say.
* What is the average number of extra bits required to code

symbols from P when using a code based on Q?

Probability
Probability

Words

s
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Kullback-Leibler divergence

* KL divergence: n. the average log difference between the
distributions P and Q, relative to Q.
a.k.a. relative entropy.
caveat: we assume Olog0 =0

Probability
Probability

Words Words

:: UNIVERSITY OF
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Kullback-Leibler divergence

P(i)

D (PIIQ) = Z P()log 5 S

P(i) L .
+10g 2~ 0g P(D) ~ 10g @) = log (2) - log (=)

* If word w; is less probable in Q than P (i.e., it carries more

information), it will be Huffman encoded in more bits, so

when we see w; from P, we need log% more bits.

et
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Kullback-Leibler divergence

* KL divergence:
* is somewhat like a ‘distance’ :

* D (P[|Q) =20 VP,Q
®* Di (P||Q) = 0iff P and Q are identical.

° is not symmetric, Dy; (P||Q) # Dy (Q||P)
* Aside 1: Jensen-Shannon divergence is symmetric.

* Aside 2:
I(P; Q) = Dg(P(X, V)||P(X)P(Y))

?-.:- UNIVERSITY OF
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Kullback-Leibler divergence

* KL divergence generalizes to continuous distributions.
* Below, Dy; (blue||green) > Dg; (blue||purple)

purple

0.4

llllllllllll
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Applications of KL divergence

* Often used towards some other purpose, e.g.,
* |[n evaluation to say that purple is a better model
than green of the true distribution blue.
* [n machine learning to adjust the parameters of

purple to be, e.g., less like green and more like blue.
purple
().4~ /— ‘

\ green

S5
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Entropy as intrinsic LM evaluation

* Cross-entropy measures how difficult it is to encode
an event drawn from a true probability p given a
model based on a distribution gq.

* What if we don’t know the true probability p?
* We’d have to estimate the CE using a test corpus C:

log, P, (C)

* What'’s the probability of a corpus P, (C)?

?-.:- UNIVERSITY OF
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Probability of a corpus?

* The probability P(C) of a corpus C requires similar
assumptions that allowed us to compute the probability
P(s;) of a sentence s;.

T N

Chain P(s;) = P(C) =
rule  Pwp) [TE—z PWelwie—1))  P(wy) TTIIEh P(Welwy.e-1y)
Approx. P(s;) = | lP(Wt) P(C) = | lP(Si)

t i

* Regardless of the LM used for P(s;), we can assume
complete independence between sentences.

e
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Intrinsic evaluation — Cross-entropy

® Cross-entropy of a LM Mand a new test corpus C
with size ||C|| (total number of words), where sentence
s; € C, is approximated by:

logz Pu(€) _ ilog; Pu(s)

A == > 1l

* Perplexity comes from this definition:
PPy (C) = 2H(GM)

.;' UNIVERSITY OF
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Cross-entropy in Machine Learning

* Cross-entropy in ML measures the quality of a
predicted distribution g(Y) with respect to p(Y):

H(p,q) = z p(y) log
y

q(y)

°* Note 1: ML usually uses log with base e.

°* Note 2: Cross entropy is usually used as the target
for optimization, i.e., cross-entropy loss.

°* Note 3: This is also called log-loss, or negative log-
likelihood loss.
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Decisions
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Deciding what we know

* Anecdotes are often useless except as proofs by contradiction.
* E.g., “I saw Google used as a verb” does not mean that Google is
always (or even likely to be) a verb, just that it is not always a noun.

* Shallow statistics are often not enough to be truly meaningful.
* E.g., “My ASR system is 95% accurate on my test data. Yours is only
94.5% accurate, you horrible knuckle-dragging idiot.”
°* What if the test data was biased to favor my system?
°* What if we only used a very small amount of data?

* Given all this potential ambiguity, we need a test to see if our
statistics actually mean something.

Lo
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Differences due to sampling

* We saw that KL divergence essentially measures how different
two distributions are from each other.

® But what if their difference is due to randomness in sampling?

°* How can we tell that a distribution is really different from
another?

04 ~
/' 03 ;,"“1‘ \ .“"\
,‘" Lf \, Xoof
,/" “:“‘ ‘a,‘ /
f‘ ‘} A A
/ /1 \ /\
.“"’ :“ [ l“ 'a‘.‘
/ /,a“"‘“O.I T \
// N\
— e T = e e L0
-2 4

e
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Hypothesis testing

* Often, we assume a null hypothesis, Hy, which states that the
two distributions are the same (i.e., come from the same
underlying model, population, or phenomenon).

* We reject the null hypothesis if the probability of it being true
is too small.

* This is often our goal — e.g., if my ASR system beats yours by 0.5%,
| want to show that this difference is not a random accident.

° | assume it was an accident, then show how nearly impossible that is.

* As scientists, we have to be very careful to not reject Hy too hastily.
°* How can we ensure our diligence?

S
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Confidence

* We reject Hy if it is too improbable based on the evidence.
* How do we determine the value of ‘too’?

* Significance level a (0 < a < 1) is the maximum probability that
two distributions are identical allowing us to disregard H,,.
* In practice, a < 0.05. Usually, it’s much lower.
* Confidencelevelisy =1 —«
° E.g., a confidence level of 95% (¢ = 0.05) implies that we
expect that our decision is correct 95% of the time,
regardless of the test data.

e
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Confidence

* We will briefly see three types of statistical tests that can tell us
how confident we can be in a claim:

1. A t-test, which usually tests whether the means of two
models are the same. There are many types,
but most assume Gaussian distributions.

2. An analysis of variance (ANOVA), which generalizes the
t-test to more than two groups.

3. The y* test, which evaluates categorical (discrete) outputs.

L0
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1. The t-test

®* The t-test is a method to compute if distributions are
significantly different from one another.

* |t is based on the mean (X) and variance (%) of N samples.
®* |t compares x and o to Hy which states that the samples are
drawn from a distribution with a mean L.

If t = \/l (the “t-statistic”) IS large enough, we can reject H,,.
02/
N

An example would be

nice...
There are actually several types of t-tests for different situations...

Lo
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Example of the t-test: tails

* Imagine the average tweet length of a McGill ‘student’ is © = 158 chars.
* Wesample N = 200 UofT students and find that our average tweet is

X = 169 chars (with 0% = 2600).
* Are UofT tweets significantly longer than McGill tweets?

* We use a ‘one-tailed’ test because we want to see if UofT tweet lengths
are significantly higher.
° |f we just wanted to see if UofT tweets were significantly different,
we’d use a two-tailed test.

datk biue is 025
nnnnnnnnnnnnn

two tails
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Example of the t-test: freedom

* Imagine the average tweet length of a McGill ‘student’ is © = 158 chars.
* Wesample N = 200 UofT students and find that our average tweet is

X = 169 chars (with % = 2600).
* Are UofT tweets significantly longer than McGill tweets?

* Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the
number of observations, minus 1 (the number

of sample sets).

* In our example, we have Ny, rr = 200 for UofT students, meaning
d.f.=199
* (this example is adapted from Manning & Schiitze)

e
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Example of the t-test

* Imagine the average tweet length of a McGill ‘student’ is © = 158 chars.

* Wesample N = 200 UofT students and find that our average tweet is
X = 169 chars (with % = 2600).

* Are UofT tweets significantly longer than McGill tweets?

X_p _ 169-158 4 ¢
GZ/N \/2600/200 .

® Sot =

® |n a t-test table, we look up the minimum value of t necessary to reject
Hyata = 0.005 (we want to be quite confident) for a 1-tailed test...

L0
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Example of the t-test

X—U 169—158
= ~ 3.05
/GZ/N \/2600/200

® Sot =

* |n a t-test table, we look up the minimum value of t necessary to reject
Hy at a = 0.005, and find 2.576 (using d. f.= 199 = )
* Since 3.05 > 2.576, we can reject H at the 99.5% level of confidence
(y =1 —a = 0.995) ; UofT students are significantly more verbose.

-mmmmm

6.314 12.71 31.82 63.66 318.3 636.6

iy 10 1.812 2.228 2.764 3.169 4.144 4.587
- 20 1.725 2.086 2.528 2.845 3.552 3.850
oo 1.645 1.960 2.326 2.576 3.091 3.291
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Example of the t-test

®* Some things to observe about the t-test table:

* We need more evidence, t, if we want to be
more confident (left-right dimension).
* We need more evidence, t, if we have

fewer measurements (top-down dimension).

* A common criticism of the t-test is that picking « is ad-hoc.
There are ways to correct for the selection of .

-mmmmm

6.314 12.71 31.82 63.66 318.3 636.6

iy 10 1.812 2.228 2.764 3.169 4.144 4.587
- 20 1.725 2.086 2.528 2.845 3.552 3.850
o0 1.645 1.960 2.326 2.576 3.091 3.291
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Another example: collocations

* Collocation: n. a ‘turn-of-phrase’ or usage where a
sequence of words is ‘perceived’ to have a
meaning ‘beyond’ the sum of its parts.

* E.g., ‘disk drive’, ‘video recorder’, and * drink’ are
collocations. ‘cylinder drive’, ‘video storer’, drink’
are not despite some near-synonymy between alternatives.

* Collocations are not just highly frequent bigrams, otherwise
‘of the’, and ‘and the’ would be collocations.

°* How can we test if a bigram is a collocation or not?
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Hypothesis testing collocations

* For collocations, the null hypothesis H, is that there is no
association between two given words beyond pure chance.

° |.e., the bigram’s actual distribution and pure chance are the same.
* We compute the probability of those words occurring together
if Hy were true. If that probability is too low, we reject H,.

* E.g., we expect ‘of the’ to occur together, because they’re both likely
words to draw randomly
* We could probably not reject Hj in that case.
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Example of the t-test on collocations

* |s ‘new companies’ a collocation?
* |n our corpus of 14,307,668 word tokens, new appears 15,828 times

and companies appears 4,675 times.
* Our null hypothesis, H, is that they are independent, i.e.,

Hy: P(new companies) = P(new)P(companies)
_ 15828 4675

14307668~ 14307668

~ 3.615x10~7
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Example of the t-test on collocations

* The Manning & Schitze text claims that if the process of randomly
generating bigrams follows a Bernoulli distribution.

° j.e., assigning 1 whenever new companies appears and 0 otherwise
gives X = p = P(new companies)

* For Bernoulli distributions, 6% = p(1 — p). Manning & Schiitze claim
that we can assume 6% = p(1 — p) = p, since for most bigrams, p is
very small.
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Example of the t-test on collocations

* So, u = 3.615x1077 is the expected mean in H,.
* We actually count 8 occurrences of new companies in our corpus

- 8 N : : :
° vy — ~ 5591x%x10 7 ’ There is 1 fewer blgram instance
14307667 than word tokens in the corpus
~ 0% ~p=x=5591x10""
xX— 5.591x1077-3.615x107"
®* Sot = £ — ~

02/ 5.591><10—7/
N 14307667

* |n a t-test table, we look up the minimum value of t necessary to reject
Hy at a = 0.005, and find 2. 576.
* Since < 2.576, we cannot reject Hy at the 99.5% level of
confidence.
°* We don’t have enough evidence to think that new companies
is a collocation (we can’t say that it definitely isn’t, though!).
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Types of t-tests

* We usually use three types of t-tests:
®* One-sample t-test: whether a variable X equals a known value u.
* Both the previous two examples are one-sample t-tests.
* X is arandom variable: e.g., mean Tweet length of UofT students.
® uis aspecified constant. E.g., 0.
* Two-sample t-test: whether a variable X equals another variable Y.
° Example: X/Y: mean of UofT/McGill tweet lengths.
* Two-sample t-test is useful when you sample from both UofT and
McGill students.
* Paired t-test: whether X — Y equals a known value p.
* Example: X/Y: weight of the participant before/after an exercise. Test
whether the exercise reduces weight.
* Paired t-test is just one-sample t-test on the difference (i.e., X —Y)
* Paired t-test is useful when individual effects matter.
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The normality assumption of t-test

* t-tests assumes the random variables are normally distributed.
* Without a normality assumption, don’t use t-tests...
® You can use nonparametric tests instead, e.g., Mann-Whitney U test
* Next slide: For other tests, we can use ANOVA and y? tests too.

® Usually, the normality is supported by the central limit theorem:
°* The mean of n = o independent samples from any distribution
approximates a normal distribution (details omitted)

’ Most tests are one-liners in

®* There are some tests to check normality. either scipy or scikit-learn

* E.g., Shapiro-Wilks test
* As an exploratory analysis, just do a quantile-quantile plot (Q-Q plot)
against a normal distribution.
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2. Analysis of variance (aside)

= Analyses of variance (ANOVAS) (there are several types) Can be:
° A way to generalize t-tests to more than two groups.
° A way to determine which (ifany) of several variables are responsible
for the variation in an observation (and the interaction between them).

* An ANOVA usually involves these steps:
* Compute a statistic, F.
* Which is, approximately, a ratio between two variances (divided by their

degrees of freedom).
°* The F statistic, together with the two degrees of freedom, gives us a

p value.
* If this p value is smaller than the significance level a, reject Hj.
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3. Pearson’s y* test

* The y“ test applies to categorical data, like the output of a
classifier.

* Like the t-test, we decide on the degrees of freedom (number of
categories minus number of parameters), compute the test-statistic, then
look it up in a table. T T _

* The test statistic is: o bl
C : e
i 2 (OC _ Ec)z %0‘6-‘ — ks
X — E" : — k=5
c=1 EC QO"‘:“
where O, and E . are the observed o}
and expected number of ol T
0 2 4 6 8
Obse rvat|0n5 Of type C, respectlvely. X2 = Pearson's cumulative test statistic
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3. Pearson’s y“ test

®* For example, is the die of Darth Vader fair or not?

&

* Imagine we throw it 60 times. The expected number of

---

1
2
3
4
5
6

CSC401/2511 — Spring 2022

appearances of each side is 10.

8
9
8
10
20

10
10
10
10
10

] ] ]
o N = N U'l

10

I

0.4
0.1
0.4
0
10

* Withdf = 6-1=5,
the critical value is
11.07<13.4, so we
throw away H:
the die is biased.

* We'll see y? again

sSOoon...
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Entropy and decisions

* Information theory is a vast ocean that provides statistical
: models of communication at the heart of cybernetics.

* We've only taken a first step on the beach.

* See the ground-breaking work of Shannon & Weaver, e.g.

* So far, we’ve mainly dealt with random variables that the
world provides — e.g., words tokens, mainly.

°* What if we could transform those inputs into new random &
variables, or features, that are directly engineered to be
useful to decision tasks...
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Feature selection
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Determining a good set of features

* Restricting your feature set to a proper subset
qguickens training and reduces overfitting.

* There are a few methods that select good features,

e.g.,
1. Correlation-based feature selection
2. Minimum Redundancy, Maximum Relevance

3. yx*
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1. Pearson’s correlation

® Pearson is a measure of linear dependence
~cov(X,Y) X=X, -Y)

. ) J S, (X, — X)? JZ’;Ll(Yi — )3

* Does not measure ‘slope’ nor non-linear relations.

Ox Oy
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1. Spearman’s correlation

®* Spearman is a non-parametric measure of rank
correlation, 7.y = r(c, X).
®* |t is basically Pearson’s correlation, but on ‘rank variables’

that are monotonically increasing integers.
* |f the class ¢ can be ordered (e.g., in any binary case), then
we can compute the correlation between a feature X and

that class.
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1. Correlation-based feature selection

* ‘Good’ features should correlate strongly (+ or -) with
the predicted variable but not with other features.

* Scrs is some set S of k features f; that maximizes this
ratio, given class c:

Zfiesrfi

Scrs = argmax
S k—1yk
Jk + 20051 Ljmiv1 Pri;

77 % TORONTO



2. MRMR feature selection

* Minimum-redundancy-maximum-relevance (mRMR)
can use correlation, distance scores (e.g., Dy ) or
mutual information to select features.

* For feature set S of features f;, and class c,
D(S,c) :ameasure of relevance S has for ¢, and

R(S) : 2@ measure of the redundancy within S,

Smrmr = argmax [D(S,c) — R(S)]
S
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2. MRMR feature selection

* Measures of relevance and redundancy can make use
of our familiar measures of mutual information,

* D(S,0) = pes (i ©)

* R(S) =

||51||2 z:fies ijES I(f:; f])

* mRMR is robust but doesn’t measure interactions of
features in estimating ¢ (for that we could use ANOVAs).
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3. ¥* method

80

We adapt the ¥? method we saw when testing whether distributions
were significantly different:

2(0 _Ec)z ‘ 2 2 (0cf ch)

c=1f;=f

where O, r and E.  are the observed and expected number, respectively,
of times the class ¢ occurs together with the (discrete) feature f.
* The expectation E. r assumes c and [ are independent.

Now, every feature has a p-value. A lower p-value means c and [ are less
likely to be independent.
Select the k features with the lowest p-values.
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Multiple comparisons

* |f we're just ordering features, this y# approach is (mostly) fine.
* But what if we get a ‘significant’ p-value (e.g., p < 0.05)?
Can we claim a significant effect of the class on that feature?

* Imagine you’re flipping a coin to see if it’s fair. You claim that
if you get ‘heads’ in 9/10 flips, it’s biased.

* Assuming H,, the coin is fair, the probability that a fair coin
would come up heads = 9 out of 10 times is:

(10 + 1)x0.5° = 0.0107

||

Number of ways 9 Number of ways all 10
flips are heads flips are heads o
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Multiple comparisons

® But imagine that you’re simultaneously testing 173 coins —
you’re doing 173 (multiple) comparisons.
* If you want to see if a specific chosen coin is fair, you still have

only a 1.07% chance that it will give heads = % times.

® But if you don’t preselect a coin, what is the probability that
none of these fair coins will accidentally appear biased?

(1—-0.0107)'73 = 0.156

* |f you're testing 1000 coins?
(1 —0.0107)'%99 ~ 0.0000213

e
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Multiple comparisons

* The more features you evaluate with a statistical test (like y?),
the more likely you are to accidentally find spurious (incorrect)
significance accidentally.

® Bonferroni correction is an adjustment method:
* Divide your level of significance required «, by the number

of comparisons.

* E.g.,ifa = 0.05, and you’re doing 173 ¢W7
comparisons, each would need \
p < ==~ 0.00029 to be

con5|dered significant.
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Reading

®* Manning & Schitze: 2.2, 5.3-5.5
* Cover & Thomas Elements of Information Theory, Chapter 2
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