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This lecture

• Information theory.
• Entropy.
•Mutual information, etc.

• Decisions.
• Classification.
• Significance and hypothesis testing.

Can we quantify the statistical structure in a model of communication?
Can we quantify the meaningful difference between statistical models?
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Information

• Imagine Darth Vader is about to say either “yes” or 
“no” with equal probability.  
• You don’t know what he’ll say.

• You have a certain amount of uncertainty – a lack of 
information.

Darth Vader is © Disney
And the prequels and Rey/Finn Star Wars suck

3
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Information

• Imagine you then observe Darth Vader saying “no”
• Your uncertainty is gone; you’ve received information.
• How much information do you receive about event 𝑥

when you observe it?

𝐼 𝑥 = 1 bit for 𝑃 𝑥 = !
"

4

“Choosing 1 out of 2” gives 
a bit of information
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Information

• Imagine there is both Darth Vader and Varth Dader.
• Observing what both DV and VD say gives us 2 bits of 

information.
• There are 2! scenarios with equal possibilities:
• Yes/Yes, Yes/No, No/Yes, No/No

Darth Vader Varth Dader
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Information

• So 𝐼 𝑥 =2 bits is brought by 𝑃 𝑥 = "
!!

• 𝐼 𝑥 doubles when "
# $

is squared. 

• Let’s describe 𝐼 𝑥 with negative log likelihood:

Going back to the “yes/no” example:

𝐼 𝑛𝑜 = log"
1

𝑃(𝑛𝑜)
= log"

1
-1 2
= 1 bit

𝐼 𝑥 = log"
1

𝑃(𝑥)

For capturing the 
Logarithm relationship

6

Note 1: Negative log likelihood is also called 
surprisal.
Note 2: information contents computed with log 
base 2 has unit “bit”. Log base e => unit “nat”.

𝐼 𝑥 = −log!𝑃(𝑥);
So here comes the negation 
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Information

• Imagine Darth Vader is about to roll a fair die.
• You have more uncertainty about an event because 

there are more possibilities.
• You receive more information when you observe it.

𝐼 𝑥 = log"
1

𝑃(6)
= log"

!
⁄! "
≈ 2.58 bits
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Information can be additive

• One property of I 𝑥 = log!
"

#(%)
is additivity.

• From k independent events 𝑥"…𝑥':
• Does 𝐼 𝑥"…𝑥' = 𝐼 𝑥" + 𝐼 𝑥! +⋯+ 𝐼(𝑥') ?

• The answer is yes!
𝐼 𝑥"…𝑥' = log!

"
# %!…%"

= log!
1

𝑃 𝑥")…𝑃(𝑥'
= log!

1
𝑃(𝑥")

+ ⋯+ log!
1

𝑃(𝑥')
= 𝐼 𝑥" + 𝐼 𝑥! +⋯+ 𝐼(𝑥')
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Aside: Information in computers
• The unit bit appears familiar to the units describing file sizes…
• And they are related!
• 1 𝐺𝐵 = 2")𝑀𝐵 = 2!)𝐾𝐵 = 2*)𝐵𝑦𝑡𝑒𝑠, where:
• 1 Byte = 8 bits.
• Historically: 1 byte was used to store one character.

• File sizes in computers are described by the amount of 
information.
• The file sizes also depend on the method of encoding 

(approx. “file format”)
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Events and random variables
• An event 𝑥 is a sample from a random variable 𝑋.
• Example 1: 
• 𝑋: Darth Vader saying something (either yes or no)
• 𝑥: What DV says (𝑥 = “no”)

• Example 2:
• 𝑋: Darth Vader rolling a die
• 𝑥: The side facing upwards (e.g., 𝑥 = 3)

• 𝑥 is deterministic. 𝑋 is random.
• 𝑥 is the output emitted by the “source” 𝑋.
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Information with unequal events
• The random variable 𝑋 can take possible values: 
{𝑣", 𝑣!, … , 𝑣+}. 
• Each value has its own probability {𝑝", 𝑝!, … , 𝑝+}

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

• What is the average amount of 
information we get in observing 
the output of 𝑋?

• You still have 6 events that are 
possible – but you’re fairly 
sure it will be ‘No’.

11
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Entropy
• Entropy: n. the expected information gaining from observing 

the events of the random variable 𝑋.

𝐻 𝑋 = 𝐸$ 𝐼 𝑥 =)
$

𝑝 𝑥 log
1

𝑝(𝑥)

ENTROPY

12

Notes:
1. Entropy is defined towards a random variable.
2. Entropy is the average uncertainty inherent in a random 

variable.
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Entropy – examples

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

𝐻 𝑋 =:
.

𝑝. log"
1
𝑝.

= 0.7 log"(1/0.7) + 0.1 log"(1/0.1) + ⋯
= 1.542 bits

1 2 3 4 5 6

𝐻 𝑋 =:
.

𝑝. log"
1
𝑝.
= 6

1
6
log"

1
1/6

= 2.585 bits

There is less average uncertainty when the 
probabilities are ‘skewed’.
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Entropy characterizes the distribution
• ‘Flatter’ distributions have a higher entropy because the 

choices are more equivalent, on average.
• So which of these distributions has a lower entropy?
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Low entropy makes decisions easier
• When predicting the next event, we’d like a distribution with 

lower entropy.
• Low entropy ≡ less uncertainty

LowHigh

15
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Bounds on entropy
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• Maximum: uniform distribution 𝑋". Given 𝑀 choices, 

𝐻 𝑋! =:
.

𝑝. log"
1
𝑝.
=:

.

1
𝑀
log"

1
1/𝑀

= 𝐥𝐨𝐠𝟐𝑴

• Minimum: only one choice, 𝐻 𝑋! = 𝑝" log!
#
$!
= 1 log! 1 = 𝟎

0

16



CSC401/2511 – Spring 2022

Understanding entropy in coding
• We can encode a random variable 𝑋 :
• For a lossless encoding, 𝑋 can be recovered.

• There are many possible codes to encode a random variable.
• They may involve different codelengths (num. bits)

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

Word
(sorted)

Linear 
Code

No 000

Yes 001

Destiny 010

Darkside 011

Maybe 100

Sure 101

17

Average codelength = 3 bits
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Coding with fewer bits is better
• If we want to transmit Vader’s words efficiently, we can 

encode them so that more probable words require fewer bits.
• On average, fewer bits will need to be transmitted. 

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

Word
(sorted)

Linear 
Code

Probabil
ity

Huffman 
Code

No 000 0.7 0

Yes 001 0.1 100

Destiny 010 0.07 101

Darkside 011 0.06 110

Maybe 100 0.04 1110

Sure 101 0.03 1111

18

Average codelength (Huffman) = 1*0.7+3*(0.1+.07+.06)+ 
4*(.04+.03) = 1.67 bits 
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Huffman codes: build tree
• Start with the words: each word is a leaf node.
• Merge the two least possible nodes into one. 
• Repeat until the Huffman tree is constructed.

Word Probability

No 0.7

Yes 0.1

Destiny 0.07

Darkside 0.06

Maybe 0.04

Sure 0.03Sure
0.03

Maybe
0.04

No
0.70

Darkside
0.06

Destiny
0.07

Yes
0.10

19

0.07

0.13 0.17

0.30

1.00

More frequent nodes 
are “shallower” in the 
Huffman tree!
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Huffman codes: assign codes
• Then assign code values based on the tree branching.

Word Probabil
ity

Huffman 
Code

No 0.7 0

Yes 0.1 100

Destiny 0.07 101

Darkside 0.06 110

Maybe 0.04 1110

Sure 0.03 1111

20

SureMaybe

No

Darkside Destiny Yes0.07

0.13 0.17

0.30

1.00
1 0

0

010

1

0

1

1

0

101 100110

1111 1110

More frequent nodes 
are assigned shorter 
codes!
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Coding symbols efficiently
• What is the minimal possible average codelength needed to 

losslessly encode a random variable 𝑋?
• Answer: entropy!
• 𝐻 𝑋 = ∑% log!

"
#(%)

= 1.542 bits

21

Yes (0.1) No (0.7)
Maybe (0.04) Sure (0.03)
Darkside (0.06) Destiny (0.07)

Remark: This is Shannon’s 
Source Coding Theorem
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Alternative notions of entropy

• Entropy is equivalently:
• The average amount of information provided

by an observation of a random variable,
• The average amount of uncertainty you have before

an observation of a random variable,
• The average amount of ‘surprise’ you receive during the 

observation,
• The number of bits needed to communicate that random 

variable
• Aside: Shannon showed that you cannot have a coding scheme 

that can communicate it more efficiently than 𝐻(𝑆)

22
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Some information-theoretic terms
• Joint entropy
• Conditional entropy
• Mutual information

2323
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Entropy of several variables
• Consider the vocabulary of a meteorologist describing 

Temperature and Wetness.
• Temperature = {hot, mild, cold}
• Wetness = {dry, wet}

24
Example from Roni Rosenfeld 

𝑃 𝑊 = 𝑑𝑟𝑦 = 0.6, 
𝑃 𝑊 = 𝑤𝑒𝑡 = 0.4

𝑃 𝑇 = ℎ𝑜𝑡 = 0.3, 
𝑃 𝑇 = 𝑚𝑖𝑙𝑑 = 0.5, 
𝑃 𝑇 = 𝑐𝑜𝑙𝑑 = 0.2

𝑯 𝑾 = 0.6 log!
1
0.6 + 0.4 log!

1
0.4 = 𝟎. 𝟗𝟕𝟎𝟗𝟓𝟏 bits

𝑯 𝑻 = 0.3 log!
1
0.3 + 0.5 log!

1
0.5 + 0.2 log!

1
0.2 =𝟏. 𝟒𝟖𝟓𝟒𝟖

bits

But 𝑊 and 𝑇 are not independent, 
𝑃(𝑊, 𝑇) ≠ 𝑃 𝑊 𝑃(𝑇)

24
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Joint entropy
• Joint Entropy: n. the average amount of information needed 

to specify multiple variables simultaneously.

𝐻 𝑋, 𝑌 = )
$

)
%

𝑝(𝑥, 𝑦) log!
1

𝑝(𝑥, 𝑦)

• Hint: this is very similar to univariate entropy – we just replace 
univariate probabilities with joint probabilities and sum over 
everything.

25



CSC401/2511 – Spring 2022

Entropy of several variables
• Consider joint probability, 𝑃(𝑊, 𝑇)

26

cold mild hot

dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

• Joint entropy, 𝐻(𝑊, 𝑇), computed as a sum over the space 
of joint events (𝑊 = 𝑤, 𝑇 = 𝑡)
𝐻 𝑊,𝑇 = 0.1 log! ⁄" #."+ 0.4 log! ⁄" #.%+ 0.1 log! ⁄" #."

+0.2 log! ⁄" #.!+ 0.1 log! ⁄" #."+ 0.1 log! ⁄" #." = 𝟐. 𝟑𝟐𝟏𝟗𝟑 bits

Notice 𝐻 𝑊,𝑇 ≈ 2.32 < 2.46 ≈ 𝐻 𝑊 +𝐻(𝑇)

26
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Entropy given knowledge
• In our example, joint entropy of two variables together is 

lower than the sum of their individual entropies
• 𝐻 𝑊,𝑇 ≈ 2.32 < 2.46 ≈ 𝐻 𝑊 +𝐻(𝑇)

• Why?

• Information is shared among variables
• There are dependencies, e.g., between temperature and 

wetness.
• E.g., if we knew exactly how wet it is, is there less 

confusion about what the temperature is … ?

27
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Conditional entropy
• Conditional entropy: n. the average amount of information 

needed to specify one variable given 
that you know another.
• A.k.a ‘equivocation’

𝐻 𝑌|𝑋 = )
$∈'

𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥)

• Hint: this is very similar to how we compute expected values in 
general distributions.

28
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Entropy given knowledge
• Consider conditional probability, 𝑃(𝑇|𝑊)

𝑷(𝑾, 𝑻) 𝑻 = cold mild hot

𝑊 = dry 0.1 0.4 0.1 0.6

wet 0.2 0.1 0.1 0.4

0.3 0.5 0.2 1.0

𝑷(𝑻 |𝑾) 𝑻 = cold mild hot

𝑾 = dry 0.1/0.6 0.4/0.6 0.1/0.6 1.0

wet 0.2/0.4 0.1/0.4 0.1/0.4 1.0

𝑃 𝑇 𝑊 = 𝑃(𝑊, 𝑇)/𝑃(𝑊)

29
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Entropy given knowledge
• Consider conditional probability, 𝑃(𝑇|𝑊)

𝑷(𝑻 |𝑾) 𝑻 = cold mild hot

𝑾 = dry 1/6 2/3 1/6 1.0

wet 1/2 1/4 1/4 1.0

• 𝑯 𝑻 𝑾 = 𝒅𝒓𝒚 = 𝐻 "
5
, !
*
, "
5

= 𝟏. 𝟐𝟓𝟏𝟔𝟑 bits

• 𝑯 𝑻 𝑾 = 𝒘𝒆𝒕 = 𝐻 "
!
, "
6
, "
6

= 𝟏. 𝟓 bits
• Conditional entropy combines these:

𝑯 𝑻 𝑾
= 𝑝 𝑊 = 𝑑𝑟𝑦 𝐻 𝑇 𝑊 = 𝑑𝑟𝑦 + 𝑝 𝑊 = 𝑤𝑒𝑡 𝐻 𝑇 𝑊 = 𝑤𝑒𝑡
= 𝟏. 𝟑𝟓𝟎𝟗𝟕𝟖 bits

0.6 0.4

30
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Equivocation removes uncertainty
• Remember 𝐻 𝑇 = 1.48548 bits
• 𝐻 𝑊,𝑇 = 2.32193 bits
• 𝐻 𝑇 𝑊 = 1.350978 bits

• How much does 𝑊 tell us about 𝑇?
• 𝐻 𝑇 − 𝐻 𝑇 𝑊 = 1.48548 − 1.350978 ≈ 0.1345 bits
• Well, a little bit!

Entropy (i.e., confusion) about 
temperature is reduced if we know
how wet it is outside.

31
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Perhaps 𝑻 is more informative?
• Consider another conditional probability, 𝑃(𝑊|𝑇)

• 𝐻 𝑊 𝑇 = 𝑐𝑜𝑙𝑑 = 𝐻 "
#
, $
#

= 0.918295 bits

• 𝐻 𝑊 𝑇 = 𝑚𝑖𝑙𝑑 = 𝐻 %
&
, "
&

= 0.721928 bits

• 𝐻 𝑊 𝑇 = ℎ𝑜𝑡 = 𝐻 "
$
, "
$

= 1 bit

• 𝑯 𝑾 𝑻 = 𝟎. 𝟖𝟑𝟔𝟒𝟓𝟐𝟖 bits

𝑷(𝑾|𝑻) 𝑻 = cold mild hot

𝑾 = dry 0.1/0.3 0.4/0.5 0.1/0.2

wet 0.2/0.3 0.1/0.5 0.1/0.2

1.0 1.0 1.0

32
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Equivocation removes uncertainty
• 𝐻 𝑇 = 1.48548 bits
• 𝐻 𝑊 = 0.970951 bits
• 𝐻 𝑊,𝑇 = 2.32193 bits
• 𝐻 𝑇 𝑊 = 1.350978 bits
• 𝑯 𝑻 −𝑯 𝑻 𝑾 ≈ 𝟎. 𝟏𝟑𝟒𝟓 bits

• How much does 𝑇 tell us about 𝑊 on average?
• 𝑯 𝑾 −𝑯 𝑾 𝑻 = 0.970951 − 0.8364528

≈ 𝟎. 𝟏𝟑𝟒𝟓 bits

• Interesting … is that a coincidence?

Previously 
computed

33
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Mutual information
• Mutual information: n. the average amount of information 

shared between variables.

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋
= ∑$,% 𝑝(𝑥, 𝑦) log!

)($,%)
) $ )(%)

• Hint: The amount of uncertainty removed in variable 𝑋 if you know 𝑌.
• Hint2: If 𝑋 and 𝑌 are independent, 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝(𝑦), then 

log"
K(L,M)
K L K(M) = log" 1 = 0 ∀𝑥, 𝑦 – there is no mutual information!

34
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Relations between entropies

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐼(𝑋; 𝑌)

35
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Reminder – the noisy channel
• Messages can get distorted when passed through a noisy

conduit – how much information is lost/retained?

• Signals

• Symbols

• Languages

Sexual abuse Locker room talk

Hello, computer Bonjour, ordinateur

36
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Relatedness of two distributions
• How similar are two probability distributions?
• e.g., Distribution P learned from Kylo Ren

Distribution Q learned from Darth Vader

P Q

Words Words

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty
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Relatedness of two distributions
• A Huffman code based on Vader (Q) instead of Kylo (P) will 

be less efficient at coding symbols that Kylo will say.
• What is the average number of extra bits required to code 

symbols from P when using a code based on Q?

P Q

Words Words

Pr
ob

ab
ili

ty

Pr
ob

ab
ili

ty
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Kullback-Leibler divergence
• KL divergence: n. the average log difference between the 

distributions P and Q, relative to Q.
a.k.a. relative entropy.
caveat: we assume 0 log 0 = 0

P Q

Words Words
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ab
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Kullback-Leibler divergence

𝐷89(𝑃||𝑄) =5
:

𝑃 𝑖 log
𝑃(𝑖)
𝑄(𝑖)

• Why log # 7
8 7

?

• log # 7
8 7

= log𝑃 𝑖 − log𝑄 𝑖 = log "
8 7

− log "
# 7

• If word 𝑤7 is less probable in 𝑄 than 𝑃 (i.e., it carries more 
information), it will be Huffman encoded in more bits, so 
when we see 𝑤7 from 𝑃, we need log # 7

8 7
more bits.

41
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Kullback-Leibler divergence
• KL divergence:
• is somewhat like a ‘distance’ :

• 𝐷,-(𝑃||𝑄) ≥ 0 ∀𝑃, 𝑄
• 𝐷,-(𝑃||𝑄) = 0 iff 𝑃 and 𝑄 are identical.  

• is not symmetric, 𝐷,-(𝑃||𝑄) ≠ 𝐷,-(𝑄||𝑃)
• Aside 1: Jensen-Shannon divergence is symmetric.
• Aside 2:

𝐼 𝑃; 𝑄 = 𝐷,- 𝑃(𝑋, 𝑌)||𝑃 𝑋 𝑃 𝑌

42
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Kullback-Leibler divergence
• KL divergence generalizes to continuous distributions.
• Below, 𝐷,-(𝒃𝒍𝒖𝒆||𝒈𝒓𝒆𝒆𝒏) > 𝐷,-(𝒃𝒍𝒖𝒆||𝒑𝒖𝒓𝒑𝒍𝒆)

greenblue

purple

43
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Applications of KL divergence
• Often used towards some other purpose, e.g., 
• In evaluation to say that purple is a better model 

than green of the true distribution blue.
• In machine learning to adjust the parameters of 
purple to be, e.g., less like green and more like blue.

greenblue

purple

44
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Entropy as intrinsic LM evaluation

• Cross-entropy measures how difficult it is to encode 
an event drawn from a true probability 𝑝 given a 
model based on a distribution 𝑞.

• What if we don’t know the true probability 𝑝?
• We’d have to estimate the CE using a test corpus C:

𝐻 𝑝, 𝑞 ≈ −
log! 𝑃. 𝐶

𝐶

• What’s the probability of a corpus 𝑃.(𝐶)?

45
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Probability of a corpus?

• The probability 𝑃(𝐶) of a corpus 𝐶 requires similar 
assumptions that allowed us to compute the probability 
𝑃(𝑠:) of a sentence 𝑠:.

Sentence Corpus

Chain
rule

𝑃 𝑠. =
𝑃(𝑤!)∏NO"

P 𝑃(𝑤N|𝑤!: NR! )
𝑃 𝐶 =

𝑃(𝑤!)∏NO"
S 𝑃(𝑤N|𝑤!: NR! )

Approx. 𝑃 𝑠. ≈g
N

𝑃(𝑤N) 𝑃 𝐶 ≈g
.

𝑃(𝑠.)

• Regardless of the LM used for 𝑃(𝑠:), we can assume 
complete independence between sentences.
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Intrinsic evaluation – Cross-entropy

• Cross-entropy of a LM M and a new test corpus C
with size 𝐶 (total number of words), where sentence 
𝑠/ ∈ 𝐶, is approximated by:

𝐻(𝐶;𝑀) = −
log! 𝑃0 𝐶

𝐶
= −

∑/ log! 𝑃0(𝑠/)
∑/ 𝑠/

• Perplexity comes from this definition:
𝑃𝑃0 𝐶 = 21(2;0)
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Cross-entropy in Machine Learning

• Cross-entropy in ML measures the quality of a 
predicted distribution 𝑞(𝑌) with respect to 𝑝(𝑌):

𝐻 𝑝, 𝑞 =)
%

𝑝(𝑦) log
1

𝑞(𝑦)

• Note 1: ML usually uses log with base e.
• Note 2: Cross entropy is usually used as the target 

for optimization, i.e., cross-entropy loss.
• Note 3: This is also called log-loss, or negative log-

likelihood loss.
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Deciding what we know
• Anecdotes are often useless except as proofs by contradiction.
• E.g., “I saw Google used as a verb” does not mean that Google is 

always (or even likely to be) a verb, just that it is not always a noun.

• Shallow statistics are often not enough to be truly meaningful.
• E.g., “My ASR system is 95% accurate on my test data. Yours is only 

94.5% accurate, you horrible knuckle-dragging idiot.”
• What if the test data was biased to favor my system?
• What if we only used a very small amount of data?

• Given all this potential ambiguity, we need a test to see if our 
statistics actually mean something.
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Differences due to sampling
• We saw that KL divergence essentially measures how different

two distributions are from each other.

• But what if their difference is due to randomness in sampling?

• How can we tell that a distribution is really different from 
another?
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Hypothesis testing
• Often, we assume a null hypothesis, 𝐻), which states that the 

two distributions are the same (i.e., come from the same 
underlying model, population, or phenomenon).

• We reject the null hypothesis if the probability of it being true 
is too small.
• This is often our goal – e.g., if my ASR system beats yours by 0.5%, 

I want to show that this difference is not a random accident.
• I assume it was an accident, then show how nearly impossible that is.

• As scientists, we have to be very careful to not reject 𝐻T too hastily.
• How can we ensure our diligence?
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Confidence
• We reject 𝐻' if it is too improbable based on the evidence.
• How do we determine the value of ‘too’?

• Significance level 𝜶 (0 ≤ 𝛼 ≤ 1) is the maximum probability that 
two distributions are identical allowing us to disregard 𝐻'.
• In practice, 𝛼 ≤ 0.05. Usually, it’s much lower.
• Confidence level is 𝛾 = 1 − 𝛼
• E.g., a confidence level of 95% (𝛼 = 0.05) implies that we 

expect that our decision is correct 95% of the time, 
regardless of the test data.
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Confidence
• We will briefly see three types of statistical tests that can tell us 

how confident we can be in a claim:

1. A  t-test, which usually tests whether the means of two
models are the same. There are many types,
but most assume Gaussian distributions.

2. An analysis of variance (ANOVA), which generalizes the 
t-test to more than two groups.

3. The 𝝌𝟐 test, which evaluates categorical (discrete) outputs.
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1. The t-test
• The t-test is a method to compute if distributions are 

significantly different from one another.

• It is based on the mean (l𝒙) and variance (𝝈𝟐) of 𝑁 samples. 
• It compares 𝑥̅ and 𝜎 to 𝐻) which states that the samples are 

drawn from a distribution with a mean 𝝁.

• If   𝑡 = %̅;<

=#$
%

(the “t-statistic”) is large enough, we can reject 𝐻).

An example would be 
nice…

There are actually several types of t-tests for different situations…
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Example of the t-test: tails
• Imagine the average tweet length of a McGill ‘student’ is 𝜇 = 158 chars.
• We sample 𝑁 = 200 UofT students and find that our average tweet is 
𝑥̅ = 169 chars (with 𝜎" = 2600).

• Are UofT tweets significantly longer than McGill tweets?

• We use a ‘one-tailed’ test because we want to see if UofT tweet lengths 
are significantly higher.
• If we just wanted to see if UofT tweets were significantly different, 

we’d use a two-tailed test.

one tail two tails
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Example of the t-test: freedom
• Imagine the average tweet length of a McGill ‘student’ is 𝜇 = 158 chars.
• We sample 𝑁 = 200 UofT students and find that our average tweet is 
𝑥̅ = 169 chars (with 𝜎" = 2600).

• Are UofT tweets significantly longer than McGill tweets?

• Degrees of freedom (d.f.): n.pl. In this t-test, this is the sum of the 
number of observations, minus 1 (the number
of sample sets).

• In our example, we have 𝑁UVWX = 200 for UofT students, meaning
𝑑. 𝑓. = 199

• (this example is adapted from Manning & Schütze)
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Example of the t-test
• Imagine the average tweet length of a McGill ‘student’ is 𝜇 = 158 chars.
• We sample 𝑁 = 200 UofT students and find that our average tweet is 
𝑥̅ = 169 chars (with 𝜎" = 2600).

• Are UofT tweets significantly longer than McGill tweets?

• So 𝑡 = L̅RZ

[#$
%

= !\]R!^_
⁄$"&&
$&&

≈ 3.05

• In a t-test table, we look up the minimum value of 𝑡 necessary to reject 
𝐻T at 𝛼 = 0.005 (we want to be quite confident) for a 1-tailed test…
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Example of the t-test

𝜶 (one-tail) 0.05 0.025 0.01 0.005 0.001 0.0005

d.f.

1 6.314 12.71 31.82 63.66 318.3 636.6

10 1.812 2.228 2.764 3.169 4.144 4.587

20 1.725 2.086 2.528 2.845 3.552 3.850

∞ 1.645 1.960 2.326 2.576 3.091 3.291

• So 𝑡 = L̅RZ

[#$
%

= !\]R!^_
⁄$"&&
$&&

≈ 3.05

• In a t-test table, we look up the minimum value of 𝑡 necessary to reject 
𝐻T at 𝛼 = 0.005, and find 2.576 (using 𝑑. 𝑓. = 199 ≈ ∞)
• Since 3.05 > 2.576, we can reject 𝐻T at the 99.5% level of confidence 

(𝛾 = 1 − 𝛼 = 0.995) ; UofT students are significantly more verbose.
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Example of the t-test
• Some things to observe about the t-test table:
• We need more evidence, t, if we want to be 

more confident (left-right dimension).
• We need more evidence, t, if we have 

fewer measurements (top-down dimension).
• A common criticism of the t-test is that picking 𝛼 is ad-hoc. 

There are ways to correct for the selection of 𝛼.

𝜶 (one-tail) 0.05 0.025 0.01 0.005 0.001 0.0005

d.f.

1 6.314 12.71 31.82 63.66 318.3 636.6

10 1.812 2.228 2.764 3.169 4.144 4.587

20 1.725 2.086 2.528 2.845 3.552 3.850

∞ 1.645 1.960 2.326 2.576 3.091 3.291
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Another example: collocations
• Collocation: n. a ‘turn-of-phrase’ or usage where a 

sequence of words is ‘perceived’ to have a 
meaning ‘beyond’ the sum of its parts.

• E.g., ‘disk drive’, ‘video recorder’, and ‘soft drink’ are
collocations. ‘cylinder drive’, ‘video storer’, ‘weak drink’ 
are not despite some near-synonymy between alternatives.

• Collocations are not just highly frequent bigrams, otherwise 
‘of the’, and ‘and the’ would be collocations.

• How can we test if a bigram is a collocation or not?
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Hypothesis testing collocations
• For collocations, the null hypothesis 𝐻) is that there is no 

association between two given words beyond pure chance.
• I.e., the bigram’s actual distribution and pure chance are the same.
• We compute the probability of those words occurring together 

if 𝐻T were true. If that probability is too low, we reject 𝐻T.

• E.g., we expect ‘of the’ to occur together, because they’re both likely 
words to draw randomly 
• We could probably not reject 𝐻T in that case.
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Example of the t-test on collocations
• Is ‘new companies’ a collocation?
• In our corpus of 14,307,668 word tokens, new appears 15,828 times 

and companies appears 4,675 times.
• Our null hypothesis, 𝐻T is that they are independent, i.e., 

HT: 𝑃 𝑛𝑒𝑤 𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠 = 𝑃 𝑛𝑒𝑤 𝑃 𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠
= !^_"_

!bcTd\\_×
b\d^

!bcTd\\_

≈ 3.615×10Rd
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Example of the t-test on collocations
• The Manning & Schütze text claims that if the process of randomly 

generating bigrams follows a Bernoulli distribution.

• i.e., assigning 1 whenever new companies appears and 0 otherwise 
gives 𝑥̅ = 𝑝 = 𝑃(𝑛𝑒𝑤 𝑐𝑜𝑚𝑝𝑎𝑛𝑖𝑒𝑠)

• For Bernoulli distributions, 𝜎" = 𝑝(1 − 𝑝). Manning & Schütze claim 
that we can assume 𝜎" = 𝑝(1 − 𝑝) ≈ 𝑝, since for most bigrams, 𝑝 is 
very small.
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Example of the t-test on collocations
• So, 𝜇 = 3.615×10Rd is the expected mean in 𝐻T.
• We actually count 8 occurrences of new companies in our corpus
• 𝑥̅ = _

!bcTd\\d
≈ 5.591×10Rd

• So 𝑡 = L̅RZ

[#$
%

= ^.^]!×!T'(Rc.\!^×!T'(

[).)+!×!&'(
!-.&(""(

≈ 𝟎. 𝟗𝟗𝟗𝟗

• In a t-test table, we look up the minimum value of 𝑡 necessary to reject 
𝐻T at 𝛼 = 0.005, and find 𝟐. 𝟓𝟕𝟔.
• Since 𝟎. 𝟗𝟗𝟗𝟗 < 𝟐. 𝟓𝟕𝟔, we cannot reject 𝐻T at the 99.5% level of 

confidence. 
• We don’t have enough evidence to think that new companies

is a collocation (we can’t say that it definitely isn’t, though!).

There is 1 fewer bigram instance 
than word tokens in the corpus

∴ 𝜎! ≈ 𝑝 = 𝑥̅ = 5.591×10"#
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Types of t-tests
• We usually use three types of 𝑡-tests:
• One-sample 𝒕-test: whether a variable 𝑋 equals a known value 𝜇.
• Both the previous two examples are one-sample 𝑡-tests.
• 𝑋 is a random variable: e.g., mean Tweet length of UofT students.
• 𝜇 is a specified constant. E.g., 0.

• Two-sample t-test: whether a variable 𝑋 equals another variable 𝑌.
• Example: 𝑋/𝑌: mean of UofT/McGill tweet lengths. 
• Two-sample 𝑡-test is useful when you sample from both UofT and 

McGill students.
• Paired t-test: whether 𝑋 − 𝑌 equals a known value 𝜇.
• Example: 𝑋/Y: weight of the participant before/after an exercise. Test 

whether the exercise reduces weight.
• Paired 𝑡-test is just one-sample 𝑡-test on the difference (i.e., 𝑋 − 𝑌) 
• Paired 𝑡-test is useful when individual effects matter.

66



CSC401/2511 – Spring 2022

The normality assumption of t-test 
• 𝑡-tests assumes the random variables are normally distributed.
• Without a normality assumption, don’t use 𝑡-tests… 
• You can use nonparametric tests instead, e.g., Mann-Whitney U test
• Next slide: For other tests, we can use ANOVA and 𝜒" tests too.

• Usually, the normality is supported by the central limit theorem:
• The mean of n → ∞ independent samples from any distribution 

approximates a normal distribution (details omitted)

• There are some tests to check normality.
• E.g., Shapiro-Wilks test
• As an exploratory analysis, just do a quantile-quantile plot (Q-Q plot) 

against a normal distribution.
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2. Analysis of variance (aside)
• Analyses of variance (ANOVAs) (there are several types) can be:
• A way to generalize t-tests to more than two groups.
• A way to determine which (if any) of several variables are responsible

for the variation in an observation (and the interaction between them). 

• An ANOVA usually involves these steps:
• Compute a statistic, 𝐹.
• Which is, approximately, a ratio between two variances (divided by their 

degrees of freedom).
• The 𝐹 statistic, together with the two degrees of freedom, gives us a 
𝑝 value.

• If this 𝑝 value is smaller than the significance level 𝛼, reject 𝐻T.
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3. Pearson’s 𝝌𝟐 test
• The 𝝌𝟐 test applies to categorical data, like the output of a 

classifier.
• Like the t-test, we decide on the degrees of freedom (number of 

categories minus number of parameters), compute the test-statistic, then 
look it up in a table.  
• The test statistic is:

where 𝑂? and 𝐸? are the observed
and expected number of 
observations of type 𝑐, respectively.

𝜒" =:
kO!

S
𝑂k − 𝐸k "

𝐸k
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3. Pearson’s 𝝌𝟐 test
• For example, is the die of Darth Vader fair or not?
• Imagine we throw it 60 times. The expected number of 

appearances of each side is 10. 

𝑐 𝑶𝒄 𝑬𝒄 𝑶𝒄 − 𝑬𝒄 𝑶𝒄 − 𝑬𝒄 𝟐 𝑶𝒄 − 𝑬𝒄 𝟐/𝑬𝒄
1 5 10 -5 25 2.5

2 8 10 -2 4 0.4

3 9 10 -1 1 0.1

4 8 10 -2 4 0.4

5 10 10 0 0 0

6 20 10 10 100 10

Sum (𝜒!) 13.4

• With 𝑑𝑓 = 6 − 1 = 5, 
the critical value is 
11.07<13.4, so we 
throw away 𝐻): 
the die is biased.
• We’ll see 𝜒! again 

soon…
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Entropy and decisions
• Information theory is a vast ocean that provides statistical 

models of communication at the heart of cybernetics.
• We’ve only taken a first step on the beach.
• See the ground-breaking work of Shannon & Weaver, e.g.

• So far, we’ve mainly dealt with random variables that the 
world provides – e.g., words tokens, mainly.

• What if we could transform those inputs into new random 
variables, or features, that are directly engineered to be 
useful to decision tasks…
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Determining a good set of features

• Restricting your feature set to a proper subset 
quickens training and reduces overfitting.

• There are a few methods that select good features, 
e.g.,
1. Correlation-based feature selection
2. Minimum Redundancy, Maximum Relevance
3. 𝜒!
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1. Pearson’s correlation

• Pearson is a measure of linear dependence

𝜌EF =
𝑐𝑜𝑣(𝑋, 𝑌)
𝜎E𝜎F

=
∑7G"+ 𝑋7 − z𝑋 𝑌7 − z𝑌

∑7G"+ 𝑋7 − z𝑋 ! ∑7G"+ 𝑌7 − z𝑌 !

• Does not measure ‘slope’ nor non-linear relations.
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1. Spearman’s correlation

• Spearman is a non-parametric measure of rank
correlation, 𝑟4' = 𝑟(𝑐, 𝑋).
• It is basically Pearson’s correlation, but on ‘rank variables’ 

that are monotonically increasing integers.
• If the class 𝑐 can be ordered (e.g., in any binary case), then 

we can compute the correlation between a feature 𝑋 and 
that class.
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1. Correlation-based feature selection

• ‘Good’ features should correlate strongly (+ or -) with 
the predicted variable but not with other features.

• 𝑆256 is some set 𝑆 of 𝑘 features 𝑓/ that maximizes this 
ratio, given class 𝑐:

𝑆256 = argmax
6

∑7)∈6 𝑟47)

𝑘 + 2∑/8"
9:"∑;8/<"

9 𝜌7)7*



78

2. mRMR feature selection

• Minimum-redundancy-maximum-relevance (mRMR)
can use correlation, distance scores (e.g., 𝐷,-) or 
mutual information to select features.

• For feature set 𝑆 of features 𝑓/, and class 𝑐,
𝑫 𝑺, 𝒄 : a measure of relevance 𝑆 has for 𝑐, and
𝑹(𝑺) : a measure of the redundancy within 𝑆,

S=>0> = argmax
?

𝐷 𝑆, 𝑐 − 𝑅(𝑆)
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2. mRMR feature selection

• Measures of relevance and redundancy can make use 
of our familiar measures of mutual information,

• 𝐷 𝑆, 𝑐 = "
6
∑7)∈6 𝐼(𝑓/; 𝑐)

• 𝑅 𝑆 = "
6 !∑7)∈,∑7*∈6 𝐼(𝑓/; 𝑓;)

• mRMR is robust but doesn’t measure interactions of 
features in estimating 𝑐 (for that we could use ANOVAs).
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3. 𝝌𝟐 method
• We adapt the 𝜒" method we saw when testing whether distributions 

were significantly different:

where 𝑂k,W and 𝐸k,W are the observed and expected number, respectively, 
of times the class 𝑐 occurs together with the (discrete) feature 𝑓.
• The expectation  𝐸k,W assumes  𝑐 and 𝑓 are independent.

• Now, every feature has a p-value. A lower p-value means 𝑐 and 𝑓 are less
likely to be independent.

• Select the k features with the lowest p-values.

𝜒" =:
kO!

S
𝑂k − 𝐸k "

𝐸k
𝜒" =:

kO!

S

:
W/OW

q
𝑂k,W − 𝐸k,W

"

𝐸k,W
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Multiple comparisons
• If we’re just ordering features, this 𝜒! approach is (mostly) fine. 
• But what if we get a ‘significant’ p-value (e.g., 𝑝 < 0.05)? 

Can we claim a significant effect of the class on that feature?

• Imagine you’re flipping a coin to see if it’s fair. You claim that 
if you get ‘heads’ in 9/10 flips,  it’s biased.
• Assuming 𝐻), the coin is fair, the probability that a fair coin 

would come up heads ≥ 9 out of 10 times is:
10 + 1 ×0.5!T = 0.0107

Number of ways 9
flips are heads

Number of ways all 10
flips are heads



82

Multiple comparisons
• But imagine that you’re simultaneously testing 173 coins –

you’re doing 173 (multiple) comparisons.
• If you want to see if a specific chosen coin is fair, you still have 

only a 1.07% chance that it will give heads ≥ H
")

times.
• But if you don’t preselect a coin, what is the probability that 

none of these fair coins will accidentally appear biased?

• If you’re testing 1000 coins? 

1 − 0.0107 𝟏𝟕𝟑 ≈ 0.156

1 − 0.0107 𝟏𝟎𝟎𝟎 ≈ 0.0000213



83

Multiple comparisons
• The more features you evaluate with a statistical test (like 𝜒!), 

the more likely you are to accidentally find spurious (incorrect) 
significance accidentally.

• Bonferroni correction is an adjustment method:
• Divide your level of significance required 𝛼, by the number 

of comparisons.
• E.g., if 𝛼 = 0.05, and you’re doing 173 

comparisons, each would need 
𝑝 < ).)J

"K*
≈ 0.00029 to be 

considered significant. 
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Reading
• Manning & Schütze: 2.2, 5.3-5.5
• Cover & Thomas Elements of Information Theory, Chapter 2
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