Statistical significance and decision trees

CSC401/2511 – Natural Language Computing – Spring 2016

Lecture 3-2 Frank Rudzicz
University of Toronto
Aside – Knowledge

• **Anecdotes** are often useless except as proofs by contradiction.
 • E.g., “I saw Google used as a verb” does not mean that Google is always (or even likely to be) a verb, just that it is not always a noun.

• **Shallow statistics** are often not enough to be truly meaningful.
 • E.g., “My ASR system is 95% accurate on my test data. Yours is only 94.5% accurate, you horrible knuckle-dragging idiot.”
 • What if the test data was biased to favor my system?
 • What if we only used a very small amount of data?

• We need a test to see if our statistics actually mean something.
Differences due to sampling

• We previously saw KL divergence measure how different two distributions are from each other.

• But what if their difference is due to randomness in sampling?

• How can we tell that a distribution is really different from another?
Hypothesis testing

• Often, we assume a null hypothesis, H_0, which states that the two distributions are the same (i.e., come from the same underlying model, population, or phenomenon).

• We reject the null hypothesis if the probability of it being true is too small.
 • This is often our goal – e.g., if my ASR system beats yours by 0.5%, I want to show that this difference is not a random accident.

 • As scientists, we have to be very careful to not reject H_0 too hastily.
 • How can we ensure our diligence?
Confidence

• We stated that we reject H_0 if it is too improbable.
 • How do we determine the value of ‘too’?

• **Significance level** α ($0 \leq \alpha \leq 1$) is the **maximum** probability that two distributions are **identical** allowing us to **disregard** H_0.
 • In practice, $\alpha \leq 0.05$. Usually, it’s much lower.
 • **Confidence level** is $\gamma = 1 - \alpha$
 • E.g., a confidence level of 95% ($\alpha = 0.05$) implies that we expect that our decision is correct 95% of the time, regardless of the test data.
The *t*-test

- The **t-test** is a method to compute if distributions are significantly different from one another.

- It is based on the mean (\bar{x}) and variance (σ) of N samples.
- It compares \bar{x} and σ to H_0 which states that the samples are drawn from a distribution with a mean μ.

\[t = \frac{\bar{x} - \mu}{\sqrt{\frac{\sigma^2}{N}}} \] (the “t-statistic”) is large enough, we can reject H_0.

There are actually **several types** of *t*-tests for different situations...
Example of the t-test: tails

• Imagine that the average IQ of a UofT student is $\mu = 158$.
• We sample $N = 200$ UofT students from DCS and find that $\bar{x} = 169$ and $\sigma^2 = 2600$.
• Are DCS students significantly smarter than their peers?

• We use a ‘one-tailed’ test because we want to see if DCS students measure significantly higher.
 • If we just wanted to see if DCS were significantly different, we’d use a two-tailed test.
Example of the \(t \)-test: freedom

- Imagine that the average IQ of a UofT student is \(\mu = 158 \).
- We sample \(N = 200 \) UofT students from DCS and find that \(\bar{x} = 169 \) and \(\sigma^2 = 2600 \).
- Are DCS students significantly **smarter** than their peers?

- **Degrees of freedom (d.f.)**: \(n.pl \). In this \(t \)-test, this is the sum of the number of observations in each group, minus 2 (because there are two groups).

- In our example, we have \(N_{DCS} = 200 \) for DCS students, but \(N_{UofT} \approx \infty \) for the other group, so \(d.f. = \infty \).
 - (see Manning & Schütze for details)
Example of the t-test

- Imagine that the average IQ of a UofT student is $\mu = 158$.
- We sample $N = 200$ UofT students from DCS and find that $\bar{x} = 169$ and $\sigma^2 = 2600$.
- Are DCS students significantly smarter than their peers?

So $t = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/N}} = \frac{169 - 158}{\sqrt{2600/200}} \approx 3.05$

- In a t-test table, we look up the minimum value of t necessary to reject H_0 at $\alpha = 0.005$ (we want to be quite confident) for a 1-tailed test...
Example of the t-test

- So $t = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/N}} = \frac{169 - 158}{\sqrt{2600}/200} \approx 3.05$

- In a t-test table, we look up the minimum value of t necessary to reject H_0 at $\alpha = 0.005$, and find 2.576.
 - Since $3.05 > 2.576$, we can reject H_0 at the 99.5% level of confidence ($\gamma = 1 - \alpha = 0.995$); **DCS students are significantly smarter**.
Example of the t-test

• Some things to observe about the t-test table:
 • We need **more evidence, t,** if we want to be **more confident** (left-right dimension).
 • We need **more evidence, t,** if we have **fewer measurements** (top-down dimension).
 • A common criticism of the t-test is that picking α is ad-hoc. There are ways to correct for the selection of α.

<table>
<thead>
<tr>
<th>d.f.</th>
<th>α (one-tail)</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.005</th>
<th>0.001</th>
<th>0.0005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.314</td>
<td>12.71</td>
<td>31.82</td>
<td>63.66</td>
<td>318.3</td>
<td>636.6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.812</td>
<td>2.228</td>
<td>2.764</td>
<td>3.169</td>
<td>4.144</td>
<td>4.587</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1.725</td>
<td>2.086</td>
<td>2.528</td>
<td>2.845</td>
<td>3.552</td>
<td>3.850</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>1.645</td>
<td>1.960</td>
<td>2.326</td>
<td>2.576</td>
<td>3.091</td>
<td>3.291</td>
<td></td>
</tr>
</tbody>
</table>
Another example: collocations

- **Collocation**: *n.* a 'turn-of-phrase' or usage where a sequence of words is 'perceived' to have a meaning 'beyond' the sum of its parts.

- E.g., 'disk drive', 'video recorder', and 'soft drink' are collocations. 'cylinder drive', 'video storer', 'weak drink' are not despite some near-synonymy between alternatives.

- Collocations are not just highly frequent bigrams, otherwise 'of the', and 'and the' would be collocations.

- How can we test if a bigram is a collocation or not?
Hypothesis testing collocations

• For collocations, the null hypothesis H_0 is that there is no association between two given words beyond pure chance.
 • I.e., the bigram’s actual distribution and pure chance are the same.
 • We compute the probability of those words occurring together if H_0 were true. If that probability is too low, we reject H_0.

• E.g., we expect ‘of the’ to occur together, because they’re both likely words to draw randomly
 • We could probably not reject H_0 in that case.
Example of the t-test on collocations

• Is ‘new companies’ a collocation?
• In our corpus of 14,307,668 word tokens, new appears 15,828 times and companies appears 4,675 times.
• Our null hypothesis, H_0 is that they are independent, i.e.,

\[
H_0: P(\text{new companies}) = P(\text{new})P(\text{companies})
\]
\[
= \frac{15828}{14307668} \times \frac{4675}{14307668}
\]
\[
\approx 3.615 \times 10^{-7}
\]
Example of the t-test on collocations

• The Manning & Schütze text claims that if the process of randomly generating bigrams follows a Bernoulli distribution.

• i.e., assigning 1 whenever new companies appears and 0 otherwise gives $\bar{x} = p = P(\text{new companies})$

• For Bernoulli distributions, $\sigma^2 = p(1 - p)$. Manning & Schütze claim that we can assume $\sigma^2 = p(1 - p) \approx p$, since for most bigrams, p is very small.
Example of the \(t \)-test

- So, \(\mu = 3.615 \times 10^{-7} \) is the expected mean in \(H_0 \).
- We **actually count** 8 occurrences of *new companies* in our corpus.

 \[\bar{x} = \frac{8}{14307667} \approx 5.591 \times 10^{-7} \]

- So \(t = \frac{\bar{x} - \mu}{\sqrt{\frac{\sigma^2}{N}}} \approx \frac{5.591 \times 10^{-7} - 3.615 \times 10^{-7}}{\sqrt{5.591 \times 10^{-7} / 14307667}} \approx 0.9999 \)

- In a **\(t \)-test table**, we look up the minimum value of \(t \) necessary to reject \(H_0 \) at \(\alpha = 0.005 \), and find **2.576**.
 - Since **0.9999** \(<** 2.576**, we cannot reject \(H_0 \) at the 99.5% level of confidence.
 - We **don’t have enough evidence** to think that *new companies* is a collocation (we can’t say that it definitely **isn’t**, though!).

There is 1 fewer bigram instance than word tokens in the corpus
Aside – analysis of variance

• **Analyses of variance (ANOVAs)** (there are several types) can be:
 • A way to **generalize t-tests** to more than two groups.
 • A way to **determine which** (if any) of several **variables** are **responsible** for the variation in an observation (and the interaction between them).

• E.g., we measure the **accuracy** of an ASR system for different settings of **empirical parameters** M and Q (more on these later in the course...).

<table>
<thead>
<tr>
<th>Accuracy (%)</th>
<th>$M = 2$</th>
<th>$M = 4$</th>
<th>$M = 16$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q = 2$</td>
<td>53.33</td>
<td>66.67</td>
<td>53.33</td>
</tr>
<tr>
<td></td>
<td>26.67</td>
<td>53.33</td>
<td>40.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>40.00</td>
<td>26.67</td>
</tr>
<tr>
<td>$Q = 5$</td>
<td>93.33</td>
<td>26.67</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>66.67</td>
<td>13.33</td>
<td>80.00</td>
</tr>
<tr>
<td></td>
<td>40.00</td>
<td>0.00</td>
<td>60.00</td>
</tr>
</tbody>
</table>

H$_0$: no effect of source variables.

| Source | $d.f.$ | p value | | | |
|--------|--------|-----------|-----------|-----------|
| Q | 1 | 0.179 | Accept H_0 |
| M | 2 | 0.106 | Accept H_0 |
| interaction | 2 | 0.006 | Reject H_0 at $\alpha = 0.01$ |

A completely fictional example
Trees!

(The larch.)
Decision trees

- Consists of **rules** for classifying data that consists of many **attributes**.
 - **Decision nodes**: **Non-terminal**. Consists of a *question* asked of one of the attributes, and a *branch* for each possible answer.
 - **Leaf nodes**: **Terminal**. Consists of a single class/category, so no further testing is required.
Decision tree example

- Shall I go for a walk?
Decision tree algorithm: ID3

- **ID3** (iterative dichotomiser 3) is an algorithm invented by Ross Quinlan to produce decision trees from data.

- Basically,
 1. Compute the *entropy* of asking about each attribute.
 2. Choose the attribute which *reduces* the most entropy.
 3. **Make a node** asking a question of that attribute.
 4. Go to step 1, **minus** the chosen attribute.

- Example attribute vectors (observations):

<table>
<thead>
<tr>
<th>Forecast</th>
<th>Humidity</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. token length</td>
<td>Avg. sentence length</td>
<td>Frequency of nouns</td>
</tr>
</tbody>
</table>
Information gain

- The **information gain** is based on the expected decrease in entropy after a set of **training** data is split on an attribute.
- We prefer the attribute that removes the most entropy.

\[
Gain(Q) = H(S) - \sum_{\text{child set}} p(\text{child set})H(\text{child set})
\]

Each of \(S, A, \) and \(B \) consist of examples from the data.

So \(p(\text{child set}) \) is computed by the proportion of examples in that set.
Information gain and ID3

• When a node in the decision tree is generated in which all members have the same class,
 • that node has 0 entropy,
 • that node is a leaf node.

• Otherwise, we need to (try to) split that node with another question.
Example – Gender classification

<table>
<thead>
<tr>
<th>Person</th>
<th>Hair Length</th>
<th>Mass</th>
<th>Age</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homer</td>
<td>0”</td>
<td>250</td>
<td>36</td>
<td>M</td>
</tr>
<tr>
<td>Marge</td>
<td>10”</td>
<td>150</td>
<td>34</td>
<td>F</td>
</tr>
<tr>
<td>Bart</td>
<td>2”</td>
<td>90</td>
<td>10</td>
<td>M</td>
</tr>
<tr>
<td>Lisa</td>
<td>6”</td>
<td>78</td>
<td>8</td>
<td>F</td>
</tr>
<tr>
<td>Maggie</td>
<td>4”</td>
<td>20</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>Abe</td>
<td>1”</td>
<td>170</td>
<td>70</td>
<td>M</td>
</tr>
<tr>
<td>Selma</td>
<td>8”</td>
<td>160</td>
<td>41</td>
<td>F</td>
</tr>
<tr>
<td>Otto</td>
<td>10”</td>
<td>180</td>
<td>38</td>
<td>M</td>
</tr>
<tr>
<td>Krusty</td>
<td>6”</td>
<td>200</td>
<td>45</td>
<td>M</td>
</tr>
<tr>
<td>Comic</td>
<td>8”</td>
<td>290</td>
<td>38</td>
<td>?</td>
</tr>
</tbody>
</table>
Split on hair length?

$$H(S) = \frac{m}{m+f} \log_2 \left(\frac{m+f}{m} \right) + \frac{f}{m+f} \log_2 \left(\frac{m+f}{f} \right)$$

$$H(4F, 5M) = \frac{4}{9} \log_2 \left(\frac{9}{4} \right) + \frac{5}{9} \log_2 \left(\frac{9}{5} \right) = 0.9911 \text{ bits}$$

$$H(3F, 2M) = \frac{3}{5} \log_2 \left(\frac{5}{3} \right) + \frac{2}{5} \log_2 \left(\frac{5}{2} \right) = 0.971$$

$$H(1F, 3M) = \frac{1}{4} \log_2 \left(\frac{4}{1} \right) + \frac{3}{4} \log_2 \left(\frac{4}{3} \right) = 0.8113$$

- Gain(Question) = $H(S) - \sum_{\text{child set}} p(\text{child set}) H(\text{child set})$
- Gain(HairLen ≤ 5) = 0.9911 - $\frac{4}{9} \cdot 0.8113 - \frac{5}{9} \cdot 0.971 = 0.0911$
Split on mass?

\[H(S) = \frac{m}{m + f} \log_2 \left(\frac{m + f}{m} \right) + \frac{f}{m + f} \log_2 \left(\frac{m + f}{f} \right) \]

\[H(4F, 5M) = \frac{4}{9} \log_2 \left(\frac{9}{4} \right) + \frac{5}{9} \log_2 \left(\frac{9}{5} \right) = 0.9911 \text{ bits} \]

\[H(0F, 4M) = \frac{0}{4} \log_2 (\infty) + \frac{4}{4} \log_2 \left(\frac{4}{4} \right) = 0 \]

\[H(4F, 1M) = \frac{4}{5} \log_2 \left(\frac{5}{4} \right) + \frac{1}{5} \log_2 \left(\frac{5}{1} \right) = 0.7219 \]

- \(\text{Gain(Question)} = H(S) - \sum_{\text{child set}} p(\text{child set})H(\text{child set}) \)
- \(\text{Gain(Mass ≤ 160)} = 0.9911 - \frac{5}{9} 0.7219 - \frac{4}{9} 0 = 0.59 \)
Split on age?

\[
H(S) = \frac{m}{m+f} \log_2 \left(\frac{m+f}{m} \right) + \frac{f}{m+f} \log_2 \left(\frac{m+f}{f} \right)
\]

\[
H(4F, 5M) = \frac{4}{9} \log_2 \left(\frac{9}{4} \right) + \frac{5}{9} \log_2 \left(\frac{9}{5} \right) = 0.9911 \text{ bits}
\]

\[
H(1F, 2M) = \frac{1}{3} \log_2 \left(\frac{3}{1} \right) + \frac{2}{3} \log_2 \left(\frac{3}{2} \right) = 0.9183
\]

\[
H(3F, 3M) = \frac{3}{6} \log_2 \left(\frac{6}{3} \right) + \frac{3}{6} \log_2 \left(\frac{6}{3} \right) = 1
\]

• \(\text{Gain(Question)} = H(S) - \sum_{\text{child set}} p(\text{child set}) H(\text{child set}) \)
• \(\text{Gain(Age } \leq 40) = 0.9911 - \frac{6}{9} \cdot 1 - \frac{3}{9} \cdot 0.9183 = 0.0183 \)
The resulting tree

- Splitting on mass resulted in the greatest information gain.
- We’re left with one heterogeneous set, so we recurse and find that hair length results in a complete classification of the training data.
Testing

• We just need to keep track of the attribute questions – not the training data.

• How are the following characters classified?

<table>
<thead>
<tr>
<th>Person</th>
<th>Hair length</th>
<th>Mass</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comic</td>
<td>8”</td>
<td>290</td>
<td>38</td>
</tr>
<tr>
<td>Hans</td>
<td>0”</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>Janey</td>
<td>7”</td>
<td>74</td>
<td>8</td>
</tr>
<tr>
<td>Jimbo</td>
<td>6”</td>
<td>140</td>
<td>16</td>
</tr>
</tbody>
</table>

• Thanks to Allan Neymark (San Jose State University) for Simpsons example.
Aspects of ID3

• ID3 tends to build short trees since at each step we are removing the maximum amount of entropy possible.
• ID3 trains on the whole training set and does not succumb to issues related to random initialization.

• ID3 can over-fit to training data.
• Only one attribute is used at a time to make decisions
• It can be difficult to use continuous data, since many trees need to be generated to see where to break the continuum.
Aspects of C4.5

• An extension to ID3 by the same creator, Ross Quinlan.
• Can support continuous attributes.
• Can support non-binary decision.
• Can **prune** the tree after creation to simplify it.
• Supports cross-validation.
• Is merely a ‘black-box’ for this course (called J48).

<table>
<thead>
<tr>
<th>Avg. token length</th>
<th>Avg. sentence length</th>
<th>Frequency of nouns</th>
<th>...</th>
</tr>
</thead>
</table>

C4.5

Sentiment
Next week

• Hidden Markov models!

Image sort of from 2001:A Space Odyssey by MGM pictures