Review

• Insofar as language can be modelled statistically, it might help to think of it in terms of dice.

Fair die

• Vocabulary: numbers
• Vocabulary size: 6

Language

• Vocabulary: words
• Vocabulary size: 2–200,000
Learning probabilities

• What if the symbols are *not* equally likely?
 • We have to estimate the *bias* using training data.

Loaded die
• Observe many rolls of the die.
 • e.g.,

 1,6,5,4,1,3,2,2,....

Language
• Observe many words.
 • e.g.,

 ...and then I will...
Training vs. testing

So you’ve learned your probabilities.
 • Do they model unseen data from the same source well?

 • Keep rolling the same dice.
 • Do sides keep appearing in the same proportion as we expect?

 • Keep reading words.
 • Do words keep appearing in the same proportion as we expect?
Sequences with dependencies

- If you consider all of the past, you will never gather enough data in order to be useful in practice.
 - Imagine you’ve only seen the Brown corpus.
 - The sequence ‘the old car’ never appears therein.
 - \(P(car|the\ old) = 0 \implies P(\text{the old car}) = 0 \)
Sequences with fewer dependencies

- If you *ignore* the past *entirely*, the probability of a sequence is the product of prior (i.e., unigram) probabilities.

\[
P(2, 1, 4) = P(2)P(1)P(4)
\]

Language involves context. Ignoring that gives weird results, e.g.,

\[
P(2, 1, 4) = P(2)P(1)P(4)
= P(2)P(4)P(1) = P(2, 4, 1)
\]

\[
P(\text{the old car}) = P(\text{the})P(\text{old})P(\text{car})
\]

\[
P(\text{the old car}) = P(\text{the})P(\text{old})P(\text{car})
= P(\text{the})P(\text{car})P(\text{old})
= P(\text{the car old})
\]
Do we consider the recent past?

This applies the **Markov** assumption to **bigrams**.

- Imagine you’ve only seen the Brown corpus.
- The sequences ‘the old’ & ‘old car’ **do appear** therein!
- \(P(\text{old}|\text{the}) > 0, P(\text{car}|\text{old}) > 0 \) \(\therefore \) \(P(\text{the old car}) > 0 \)
- **Also,** \(P(\text{the old car}) > P(\text{the car old}) \)

\[
P(2,1,4) = P(2)P(1|2)P(4|1)
\]

\[
P(\text{the old car}) = P(\text{the})P(\text{old}|\text{the}) \cdot P(\text{car}|\text{old})
\]
We still have a 0-probability problem

- We got **lucky** with ‘the old car’.
- Many bigrams are **never** seen.
- If we’re going to use these models in **practice** (*and that’s the whole point!*), we’ll be dealing with **new** text.
- That new text might easily invoke an unseen bigram!

Bigrams we’ve seen after 100K words

Bigrams we’ve never seen after 100K words
Fixing sparseness with discounting

- **Adjust** probabilities such that
 - we **pretend** we’ve seen words that we haven’t, and
 - the probability of observed data is **diminished**.

![Counts](image)

- Actual counts
- Imaginary counts
Fixing sparseness with interpolation

• As before, our training data does not contain ‘the old car’.

\[
\hat{P}(w_t|w_{t-2}w_{t-1}) = \lambda_1 P(w_t|w_{t-2}w_{t-1}) \\
+ \lambda_2 P(w_t|w_{t-1}) \\
+ \lambda_3 P(w_t) + 0
\]

• \(\hat{P}(\text{car}|\text{the old}) = \lambda_1 P(\text{car}|\text{the old}) \)

• \(\hat{P}(\text{car}|\text{the old}) = \lambda_2 P(\text{car}|\text{old}) + \lambda_3 P(\text{car}) \)
Long versus short sequences

• **Long** sequences will tend to have **lower** probability.

\[
P(2,1,4) = P(2)P(1)P(4) \\
P(2,1,4,5) = P(2)P(1)P(4)P(5) \\
\therefore P(2,1,4) > P(2,1,4,5)
\]

\[
P(\text{the old car}) = P(\text{the})P(\text{old})P(\text{car}) \\
P(\text{the old car is}) = P(\text{the})P(\text{old})P(\text{car})P(\text{is}) \\
\therefore P(\text{the old car}) > P(\text{the old car is})
\]

• This is an **effect** of the fact that we’re modelling **only observable** phenomena (e.g., we’re **ignoring** grammar).
Modelling language

- So far, we’ve modelled language as a surface phenomenon using only our observations (i.e., words).
- Language is hugely complex and involves hidden structure (recall: syntax, semantics, pragmatics).
- A ‘true’ model of language would take into account all those things and the proper relations between them.
- Our first hint of modelling hidden structure will come with uncovering grammatical roles (i.e., parts-of-speech).
Parts-of-speech as hidden variables

- Will/MD the/DT chair/NN chair/?? the/DT meeting/NN from/IN that/DT chair/NN?

a)

Will\nthe\nchair\nchair\n...

b)

Will\nthe\nchair\nchair\n...

More later...
Today

- Information theory.
Reminder: rules of logarithms

- You may need these in later assignments (and today):
 - **Definition:** \(\log_a x = N \leftrightarrow a^N = x \)
 - **Product:** \(\log_a(xy) = \log_a x + \log_a y \)
 - **Quotient:** \(\log_a \left(\frac{x}{y} \right) = \log_a x - \log_a y \)
 - **Power:** \(\log_a(x^p) = p \log_a x \)
 - **Base change:** \(\log_a x = \frac{\log_b x}{\log_b a} \)

- **Reminder:** avoid common logarithmotechnic errors:
 - \(\log_a(x + y) \neq \log_a x + \log_a y \)
 - \(\log_a(x - y) \neq \log_a x - \log_a y \)
Information

• Imagine Darth Vader is about to say either “yes” or “no” with equal probability.
 • You don’t know what he’ll say.

• You have a certain amount of uncertainty – a lack of information.

Darth Vader is © Disney
And the prequels suck.
Information

- Imagine you then observe Darth Vader saying “no”
- Your uncertainty is gone; you’ve received information.
- How much information do you receive about event E when you observe it?

\[
I(E) = \log_2 \frac{1}{P(E)}
\]

\[
I(no) = \log_2 \frac{1}{P(no)} = \log_2 \frac{1}{1/2} = 1 \text{ bit}
\]
Information

- Imagine Darth Vader is about to roll a fair die.
- You have more uncertainty about an event because there are more possibilities.
- You receive more information when you observe it.

\[I(5) = \log_2 \frac{1}{P(5)} = \log_2 \frac{1}{1/6} \approx 2.59 \text{ bits} \]
Information is additive

• From \(k \) independent, equally likely events \(E \),

\[
I(E^k) = \log_2 \frac{1}{P(E^k)} = \log_2 \frac{1}{P(E)^k} \quad I(k \text{ binary decisions}) = \log_2 \frac{1}{\left(\frac{1}{2}\right)^k} = k \text{ bits}
\]

• For a unigram model, with each of 50K words \(w \) equally likely,

\[
I(w) = \log_2 \frac{1}{\frac{1}{50000}} \approx 15.61 \text{ bits}
\]

and for a sequence of 1K words in that model,

\[
I(w^k) = \log_2 \frac{1}{\left(\frac{1}{50000}\right)^{1000}} = \text{??}
\]
Information with unequal events

• An information source S emits symbols without memory from a vocabulary $\{w_1, w_2, \ldots, w_n\}$. Each symbol has its own probability $\{p_1, p_2, \ldots, p_n\}$.

- Yes (0.1)
- No (0.7)
- Maybe (0.04)
- Sure (0.03)
- Darkside (0.06)
- Destiny (0.07)

• What is the average amount of information we get in observing the output of source S?

• You still have 6 events that are possible – but you’re fairly sure it will be ‘No’.
Entropy

- **Entropy**: *n.* the **average** amount of information we get in observing the output of source S.

\[
H(S) = \sum_i p_i I(w_i) = \sum_i p_i \log_2 \frac{1}{p_i}
\]

Note that this is **very** similar to how we define the expected value (i.e., ‘average’) of something:

\[
E[X] = \sum_{x \in X} p(x) \cdot x
\]
Entropy – examples

There is **less** average uncertainty when the probabilities are ‘skewed’.

\[
H(S) = \sum_i p_i \log_2 \frac{1}{p_i}
\]

\[
= 0.7 \log_2 (1/0.7) + 0.1 \log_2 (1/0.1) + \cdots
\]

\[
= 1.542 \text{ bits}
\]

\[
H(S) = \sum_i p_i \log_2 \frac{1}{p_i} = 6 \left(\frac{1}{6} \log_2 \frac{1}{1/6} \right)
\]

\[
= 2.585 \text{ bits}
\]
Entropy characterizes the distribution

- ‘Flatter’ distributions have a higher entropy because the choices are more equivalent, on average.
- So which of these distributions have a lower entropy?
Low entropy makes decisions easier

- When predicting the next word, e.g., we’d like a distribution with lower entropy.
- Low entropy \(\equiv\) less uncertainty
Bounds on entropy

• **Maximum**: uniform distribution S_1. Given M choices,

$$H(S_1) = \sum_i p_i \log_2 \frac{1}{p_i} = \sum_i \frac{1}{M} \log_2 \frac{1}{1/M} = \log_2 M$$

• **Minimum**: only one choice, $H(S_2) = p_i \log_2 \frac{1}{p_i} = 1 \log_2 1 = 0$
Alternative notions of entropy

• Entropy is equivalently:
 • The average amount of information provided by symbols in a vocabulary,
 • The average amount of uncertainty you have before observing a symbol from a vocabulary,
 • The average amount of ‘surprise’ you receive when observing a symbol,
 • The number of bits needed to communicate that alphabet
 • Aside: Shannon (the same as yesterday) showed that you cannot have a coding scheme that can communicate the vocabulary more efficiently than $H(S)$
Coding symbols efficiently

- If we want to transmit Vader’s words efficiently, we can encode them so that more probable words require fewer bits.
- On average, fewer bits will need to be transmitted.

<table>
<thead>
<tr>
<th>Word</th>
<th>Linear Code</th>
<th>Huffman Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>001</td>
<td>11</td>
</tr>
<tr>
<td>Destiny</td>
<td>010</td>
<td>101</td>
</tr>
<tr>
<td>Darkside</td>
<td>011</td>
<td>1001</td>
</tr>
<tr>
<td>Maybe</td>
<td>100</td>
<td>10000</td>
</tr>
<tr>
<td>Sure</td>
<td>101</td>
<td>10001</td>
</tr>
</tbody>
</table>

Yes (0.1)
No (0.7)
Maybe (0.04)
Sure (0.03)
Darkside (0.06)
Destiny (0.07)
Aside: Coding symbols efficiently

- Another way of looking at this is through the (binary) Huffman tree (r-ary trees are often flatter, all else being equal):

<table>
<thead>
<tr>
<th>Word</th>
<th>Linear Code</th>
<th>Huffman Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>Yes</td>
<td>001</td>
<td>11</td>
</tr>
<tr>
<td>Destiny</td>
<td>010</td>
<td>101</td>
</tr>
<tr>
<td>Darkside</td>
<td>011</td>
<td>1001</td>
</tr>
<tr>
<td>Maybe</td>
<td>100</td>
<td>10000</td>
</tr>
<tr>
<td>Sure</td>
<td>101</td>
<td>10001</td>
</tr>
</tbody>
</table>
Entropy of several variables

- Consider the vocabulary of a meteorologist describing temperature and wetness.

\[P(W = \text{dry}) = 0.6, \]
\[P(W = \text{wet}) = 0.4 \]

\[H(W) = 0.6 \log_2 \frac{1}{0.6} + 0.4 \log_2 \frac{1}{0.4} = 0.970951 \text{ bits} \]

\[P(T = \text{hot}) = 0.3, \]
\[P(T = \text{mild}) = 0.5, \]
\[P(T = \text{cold}) = 0.2 \]

\[H(T) = 1.48548 \text{ bits} \]

But \(W \) and \(T \) are not independent, \(P(W, T) \neq P(W)P(T) \).
Joint entropy

• **Joint Entropy**: \(n. \) the _average_ amount of information needed to specify _multiple_ variables _simultaneously_.

\[
H(X, Y) = \sum_x \sum_y p(x, y) \log_2 \frac{1}{p(x, y)}
\]

• **Hint**: this is _very_ similar to univariate entropy – we just replace univariate probabilities with joint probabilities and sum over everything.
Entropy of several variables

- Consider joint probability, $P(W, T)$

<table>
<thead>
<tr>
<th></th>
<th>cold</th>
<th>mild</th>
<th>hot</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dry</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>wet</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- **Joint entropy**, $H(W, T)$, computed as a sum over the space of joint events ($W = w, T = t$)

\[
H(W, T) = 0.1 \log_2 \frac{1}{0.1} + 0.4 \log_2 \frac{1}{0.4} + 0.1 \log_2 \frac{1}{0.1} \\
+ 0.2 \log_2 \frac{1}{0.2} + 0.1 \log_2 \frac{1}{0.1} + 0.1 \log_2 \frac{1}{0.1} = 2.32193 \text{ bits}
\]

Notice $H(W, T) \approx 2.32 < 2.46 \approx H(W) + H(T)$
Entropy given knowledge

• In our example, joint entropy of two variables together is lower than the sum of their individual entropies
 • \(H(W,T) \approx 2.32 < 2.46 \approx H(W) + H(T) \)

• Why?

• Information is shared among variables
 • There are dependencies, e.g., between temperature and wetness.
 • E.g., if we knew exactly how wet it is, is there less confusion about what the temperature is ... ?
Conditional entropy

• **Conditional entropy:**
 \(n. \) the average amount of information needed to specify one variable given that you know another.

• A.k.a ‘equivocation’

\[
H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)
\]

• **Hint:** this is *very* similar to how we compute expected values in general distributions.
Entropy given knowledge

- Consider **conditional** probability, $P(T|W)$

$$P(T|W) = \frac{P(W,T)}{P(W)}$$

<table>
<thead>
<tr>
<th>$P(W,T)$</th>
<th>$T = \text{cold}$</th>
<th>mild</th>
<th>hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W = \text{dry}$</td>
<td>0.1</td>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>wet</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

| $P(T|W)$ | $T = \text{cold}$ | mild | hot |
|----------|-------------------|------|------|
| $W = \text{dry}$ | 0.1/0.6 | 0.4/0.6 | 0.1/0.6 | **1.0** |
| wet | 0.2/0.4 | 0.1/0.4 | 0.1/0.4 | **1.0** |
Entropy given knowledge

- Consider **conditional** probability, $P(T|W)$

| $P(T |W)$ | $T = \text{cold}$ | mild | hot | $P(T|W)$ |
|----------|-----------------|------|-----|----------|
| $W = \text{dry}$ | 1/6 | 2/3 | 1/6 | 1.0 |
| wet | 1/2 | 1/4 | 1/4 | 1.0 |

- $H(T|W = \text{dry}) = H\left(\left\{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\right\}\right) = 1.25163 \text{ bits}$
- $H(T|W = \text{wet}) = H\left(\left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right\}\right) = 1.5 \text{ bits}$

- **Conditional entropy** combines these:

 $$H(T|W) = 0.6 \ [p(W = \text{dry})H(T|W = \text{dry})] + 0.4 \ [p(W = \text{wet})H(T|W = \text{wet})]$$

 $$= 1.350978 \text{ bits}$$
Equivocation removes uncertainty

- Remember $H(T) = 1.48548$ bits
- $H(W, T) = 2.32193$ bits
- $H(T|W) = 1.350978$ bits

• How much does W tell us about T?
 - $H(T) - H(T|W) = 1.48548 - 1.350978 \approx 0.1345$ bits
 - Well, a little bit!

Entropy (i.e., confusion) about temperature is **reduced** if we know how wet it is outside.
Perhaps T is more informative?

- Consider another conditional probability, $P(W|T)$

| $P(W|T)$ | $T =$ cold | mild | hot |
|----------|------------|------|-----|
| $W =$ dry | 0.1/0.3 | 0.4/0.5 | 0.1/0.2 |
| wet | 0.2/0.3 | 0.1/0.5 | 0.1/0.2 |
| | 1.0 | 1.0 | 1.0 |

- $H(W | T = cold) = H \left(\left\{ \frac{1}{3}, \frac{2}{3} \right\} \right) = 0.918295$ bits
- $H(W | T = mild) = H \left(\left\{ \frac{4}{5}, \frac{1}{5} \right\} \right) = 0.721928$ bits
- $H(W | T = hot) = H \left(\left\{ \frac{1}{2}, \frac{1}{2} \right\} \right) = 1$ bit
- $H(W | T) = 0.8364528$ bits
Equivocation removes uncertainty

- $H(T) = 1.48548$ bits
- $H(W) = 0.970951$ bits
- $H(W, T) = 2.32193$ bits
- $H(T|W) = 1.350978$ bits
- $H(T) - H(T|W) \ approx 0.1345$ bits

- How much does T tell us about W on average?
 - $H(W) - H(W|T) = 0.970951 - 0.8364528 \ approx 0.1345$ bits

- Interesting ... is that a coincidence?
Mutual information

- Mutual information: \(n. \) the average amount of information shared between variables.

\[
I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = \sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}
\]

- **Hint:** The amount of uncertainty removed in variable \(X \) if you know \(Y \).
- **Hint2:** If \(X \) and \(Y \) are independent, \(p(x,y) = p(x)p(y) \), then
 \[
 \log_2 \frac{p(x,y)}{p(x)p(y)} = \log_2 1 = 0 \ \forall x, y \text{ – there is no mutual information!}
 \]
Relations between entropies

\[
H(X, Y) = H(X) + H(Y) - I(X; Y)
\]
Messages can get **distorted** when passed through a **noisy** conduit – *how much information is lost/retained?*

- **Signals**
- **Symbols**
- **Languages**

Obama likes kittens
Obama hates dogs
Hello, computer
Bonjour, ordinateur
Relating corpora
Relatedness of two distributions

- How similar are the two probability distributions?
- e.g., Distribution P learned from *Shakespeare*
 Distribution Q learned from *Wall Street Journal*
Kullback-Leibler divergence

• **KL divergence:** \(n. \) the **average log difference** between the distributions \(P \) and \(Q \), relative to \(Q \).

a.k.a. **relative entropy**.

caveat: we assume \(0 \log 0 = 0 \)
Kullback-Leibler divergence

\[D_{KL}(P \parallel Q) = \sum_i P(i) \log \frac{P(i)}{Q(i)} \]
Example Kullback-Leibler divergence

- KL divergence generalizes to **continuous** distributions.
- Below, $D_{KL}(\text{green}\|\text{blue}) > D_{KL}(\text{purple}\|\text{blue})$
Kullback-Leibler divergence

• KL divergence:
 • is **not symmetric**, $D_{KL}(P \| Q) \neq D_{KL}(Q \| P)$
 • is the **average** number of **extra bits** required to **code** samples from P when using a **code** based on Q.
 • is (almost) like a ‘**distance**’:
 • $D_{KL}(P \| Q) \geq 0 \ \forall P, Q$
 • $D_{KL}(P \| Q) = 0$ iff P and Q are identical.

• Aside:

\[
I(P; Q) = D_{KL}(P(X, Y) \| P(X)P(Y))
\]
Applications of KL divergence

• Often used towards some other purpose, e.g.,
 • In evaluation to say that purple is a better model than green of the true distribution blue.
 • In machine learning to adjust the parameters of purple to be, e.g., less like green and more like blue.
Entropy as intrinsic LM evaluation

- **Cross-entropy**, measures how difficult it is to encode an event drawn from a *true probability* \(p \) given a model based on a distribution \(q \).

- What if we don’t know the *true probability* \(p \)?
 - We’d have to estimate \(p \).
 - We estimate \(p \) by estimating the **probability of a test corpus** \(C \) using the distribution \(q \):
 \[
P_q(C)
 \]
Probability of a corpus?

• The probability $P(C)$ of a corpus C requires the same assumptions that allow us to compute the probability $P(s_i)$ of a sentence s_i.

<table>
<thead>
<tr>
<th>Chain rule</th>
<th>Sentence</th>
<th>Corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(s_i) = P(w_1) \prod_{t=2}^{n} P(w_t</td>
<td>w_1:(t-1))$</td>
<td>$P(C) = P(w_1) \prod_{t=2}^{</td>
</tr>
<tr>
<td>Approx.</td>
<td>$P(s_i) \approx \prod_{t} P(w_t)$</td>
<td>$P(C) \approx \prod_{i} P(s_i)$</td>
</tr>
</tbody>
</table>

• Regardless of the LM used for $P(s_i)$, we assume complete independence between sentences.
Intrinsic evaluation – Cross-entropy

- **Cross-entropy** of a LM M and a *new* test corpus C with size $\|C\|$ (total number of words), where sentence $s_i \in C$, is *approximated* by:

$$H(C; M) = -\frac{\log_2 P_M(C)}{\|C\|} = -\frac{\sum_i \log_2 P_M(s_i)}{\sum_i \|s_i\|}$$

- **Perplexity** is similar:

$$PP_M(C) = 2^{H(C; M)}$$
Reading

• Manning & Schütze: Section 2.2, 5.3-5.3.2

• Thanks to Roni Rosenfeld (CMU) for the meteorological examples.