COMPUTING NATURAL LANGUAGE
What is natural language computing?

Getting computers to understand everything we say and write.

In this class (and in the field generally), we are interested in the **statistics of language**.

(Occasionally, computer models give insight into how humans process language.)
Today

• Common challenges with **natural language processing (NLP)**.

• Applications
 • Translating between languages
 • Speech recognition
 • Answering questions
 • Engaging in dialogue

• Course logistics.
What can natural language do?

The ultimate in human-computer interaction.

“translate Also Sprach Zarathustra”

“take a memo...”

“open the pod bay doors”

“how far until Jupiter?”

“Can you summarize 2001: A Space Odyssey?”

We’re making progress, but why are these things still hard to do?
A little deeper

• Language has *hidden structures*, e.g.,
 • How are *sounds* and *text* related?
 • e.g., why is this: not a ‘ghoti’ (*enough*, *women*, *nation*)?
 • How are words **combined** to make sentences?
 • e.g., what makes ‘*colourless green ideas sleep furiously*’ **correct** in a way **unlike** ‘*furiously sleep ideas green colourless*’?
 • How are words and phrases used to produce **meaning**?
 • e.g., if someone asks ‘*do you know what time it is?*’, why is it **inappropriate** to answer ‘*yes*’?

• We need to organize the way we think about language...
Categories of linguistic knowledge

- **Phonology**: the study of patterns of speech sounds.

e.g., “read” → /r iy d/

- **Morphology**: how words can be changed by inflection or derivation.

e.g., “read”, “reads”, “reader”, “reading”, ...

- **Syntax**: the ordering and structure between words and phrases (i.e., grammar).

e.g., NounPhrase → article adjective noun

- **Semantics**: the study of how meaning is created by words and phrases.

e.g., “book” →

- **Pragmatics**: the study of meaning in contexts.
Ambiguity – Phonological

• **Phonology**: the study of patterns of speech sounds.

 - “read” \(\rightarrow /r\ iy\ d/ \)
 as in ‘I like to **read**’
 - “read” \(\rightarrow /r\ eh\ d/ \)
 as in ‘She **read** a book’

 - “object” \(\rightarrow /aa^1\ b\ jh\ eh^0\ k\ t/ \)
 as in ‘That is an **object**’
 - “object” \(\rightarrow /ah^0\ b\ jh\ eh^1\ k\ t/ \)
 as in ‘I **object**!’

 - “too” \(\leftarrow /t\ uw/ \)
 as in ‘**too** much’
 - “two” \(\leftarrow /t\ uw/ \)
 as in ‘**two** beers’

• Ambiguities can often be **resolved** in context, but not always.
 - e.g., /h aw t uw r eh^1 k ah ?? n ay^2 z s (b/p) iy ch/
 \(\rightarrow \) ‘how to recognize speech’
 \(\rightarrow \) ‘how to wreck a nice beach’
Resolution with syntax

- If you hear the sequence of speech sounds
 \[/b ah f ae l ow b ah f ae l ow b ah f ae l ow b ah f ae l ow ...\]
 \[b ah f ae l ow b ah f ae l ow b ah f ae l ow b ah f ae l ow/\]

 which word sequence is being spoken?
 → “Buff a low buff a lobe a fellow Buff a low buff a lobe a fellow...”
 → “Buffalo buff aloe buff aloe buff aloe buff aloe buff aloe buff aloe ...”
 → “Buff aloe buff all owe Buffalo buffalo buff a lobe ...”
 → “Buff aloe buff all owe Buffalo buff aloe buff a lobe ...”
 → “Buffalo buffalo Buffalo buffalo buffalo buffalo buffalo Buffalo buffalo”

- It’s obvious (to us) that the last option is most likely because we have knowledge of syntax, i.e., grammar.
Ambiguity – Syntactic

- **Syntax**: the *ordering and structure* between words. Words can be grouped into ‘parse tree’ structures given grammatical ‘rules’.

 e.g., “I shot an elephant in my pyjamas”
Resolution with semantics

- It’s obvious (to us) that the elephants don’t wear pyjamas, and we can discount one option because of our knowledge of **semantics**, i.e., meaning.
Ambiguity – Semantic

• **Semantics**: the study of how meaning is created by the use of words and phrases.

• “Every man loves a woman”
 \[\forall x \, \text{man}(x) \exists y : (\text{woman}(y) \land \text{loves}(x, y)) \]
 \[\exists y : \text{woman}(y) \land \forall x (\text{man}(x) \rightarrow \text{loves}(x, y)) \]

• “I made her duck”
 \[\rightarrow \text{I cooked waterfowl meat for her to eat.} \]
 \[\rightarrow \text{I cooked waterfowl that belonged to her.} \]
 \[\rightarrow \text{I carved the wooden duck that she owns.} \]
 \[\rightarrow \text{I caused her to quickly lower her head.} \]

• “Give me the pot”
 \[\rightarrow \text{It’s time to bake.} \]
 \[\rightarrow \text{It’s time to get baked.} \]
Resolution with pragmatics

• It’s obvious (to us) which meaning is intended given knowledge of the context of the conversation or the world in which it takes place.

 • “Every man loves a woman”
 \[\forall x \text{ man}(x) \exists y: (\text{woman}(y) \land \text{loves}(x, y))\]
 \[\exists y: \text{woman}(y) \land \forall x (\text{man}(x) \rightarrow \text{loves}(x, y))\]

 • “I made her duck”
 \[\rightarrow \text{I cooked waterfowl meat for her to eat.}\]
 \[\rightarrow \text{I cooked waterfowl that belonged to her.}\]
 \[\rightarrow \text{I carved the wooden duck that she owns.}\]
 \[\rightarrow \text{I caused her to quickly lower her head.}\]

 • “Give me the pot”
 \[\rightarrow \text{It’s time to bake.}\]
 \[\rightarrow \text{It’s time to get baked.}\]
Ambiguity – miscellaneous

• Newspaper headlines (spurious or otherwise)

 - Kicking Baby Considered to be Healthy
 - Squad Helps Dog Bite Victim
 - Canadian Pushes Bottle Up Germans
 - Milk Drinkers are Turning to Powder
 - Grandmother of Eight Makes Hole in One
 - Kids Make Nutritious Snacks
 - Juvenile Court Tries Shooting Defendant
 - Local High School Dropouts Cut in Half
NLC as Artificial Intelligence

• NLC involves **resolving ambiguity** at all levels.
 • **Reasoning with world knowledge.**
 • In the early days knowledge was *explicitly encoded* in artificial *symbolic* systems (e.g., context-free grammars) by *experts*.

• Now, algorithms learn using **probabilities** to distinguish subtly different competing hypotheses.
 • E.g., is Google a **noun** or a **verb**?
 • An example where Google ∈ Nouns (**Google makes Android**), does **not** mean that Google is never a verb (**Go Google yourself**).

• \(P(\text{Google ∈ Nouns}) > P(\text{Google ∈ Verbs}) > 0 \)
The Turing Test

• **First** and most *fundamental* test of machine intelligence.

• A machine (A) imitates a human using nothing but a text-based instant messenger.
 • If a human interrogator (C) cannot reliably differentiate a real human (B) from the machine, that machine is said to be ‘intelligent’.

Aside – Chatterbots

• ELIZA (Weizenbaum, 1966): simple pattern matching to imitate a psychiatrist.
• Surprisingly effective despite no linguistic knowledge.
• e.g.,

User: Men are all alike.
ELIZA: In what way?
User: They’re always bugging us about something or other.
ELIZA: Can you think of a specific example?
User: My boyfriend made me come here.
ELIZA: Your boyfriend made you come here.

(Jurafsky and Martin, 2009)
Course outline (approximate)

• Introduction, linguistic data, language models (3 lectures)
• Entropy and information theory (2 lectures) *
• Features and classification (2 lectures) *
• Hidden Markov models (3 lectures) *
• Statistical machine translation (4 lectures) **
• Neural language models (2 lectures) *
• Articulatory and acoustic phonetics (2 lectures) *
• Automatic speech recognition (2 lectures) **
• Speech synthesis (1 lecture) **
• Information retrieval (1 or 2 lectures) **
• Dialogue and chatbots (1 lecture) **
• Review (1 lecture)

* techniques ** applications
Preview: Machine translation

• One of the most prized applications in NLC.
• Requires both **interpretation** and **generation**.
• Over $100B spent annually on human translation.
According to the data provided today by the Ministry of Foreign Trade and Economic Cooperation, as of November this year, China has actually utilized 46.959B US dollars of foreign capital, including 40.007B US dollars of direct investment from foreign businessmen.

The Ministry of Foreign Trade and Economic Cooperation, including foreign direct investment 40.007B US dollars today provide data include that year to November China actually using foreign 46.959B US dollars and

Today’s available data of the Ministry of Foreign Trade and Economic Cooperation shows that China’s actual utilization of November this year will include 40.007B US dollars for the foreign direct investment among 46.959B US dollars in foreign capital.
Preview: Machine translation

- In the 1950s and 1960s direct word-for-word replacement was popular.
- Due to semantic and **syntactic ambiguities** and **differences** in source languages, results were mixed.

"The spirit is willing, but the flesh is weak"

US English

"The vodka is good, but the meat is rotten"

Russian
Preview: Machine translation

• One problem is disparity of meanings in languages.

nation n. a large body of people, associated with a particular **territory**, that is sufficiently conscious of its **unity** to seek or to possess a **government** of its own

nation n. an aggregation of persons of the same **ethnic family**, often speaking the same **language** or cognate **languages**
Preview: Machine translation

• **Solution**: automatically learn statistics on parallel texts

... citizen of Canada has the right to vote in an election of members of the House of Commons or of a legislative assembly and to be qualified for membership ...

... citoyen canadien a le droit de vote et est éligible aux élections législatives fédérales ou provinciales ...

e.g., the *Canadian Hansards*: bilingual Parliamentary proceedings
Statistical machine translation

- Modern statistical machine translation is based on the following perspective...

When I look at an article in Russian, I say: ‘This is really written in English, but it has been **coded** in some strange symbols. I will now proceed to **decode**.’

Warren Weaver March, 1947

Claude Shannon July, 1948
Aside – Machine translation

- http://www.translationparty.com uses Google Translate to go back and forth between English and Japanese until we get two consecutive identical English phrases.
Preview: Machine translation

Start with an English phrase:

that's one small step for a man, one giant leap for mankind

find equilibrium

that's one small step for a man, one giant leap for mankind

それは人間にとっては小さな一歩だが、一歩

It is but one small step for man, one giant leap for mankind

それは人間にとっては小さな一歩あるいは、さ

It is step by small step for man, but humanity, the

人類にとっては小さな一歩ステップは、男性にとって理想的な

Hotel is

Step One small step for mankind, this hotel is ideal for men

人類にとっては小さな一歩ステップ、このホテルは、男性にとって理想的なホテルです

Equilibrium found!
Okay, I get it, you like Translation Party.
Preview: Speech recognition

- Buy ticket... AC490... yes
- My hands are in the air.
- Put this there.

Dictation
Telephony
Multimodal interaction
Speech waveforms

"Two plus seven is less than ten"

Periodic

Noisy
Spectrograms

• Speech sounds can be thought of as overlapping **sine waves**.
• Speech is **split apart** into a 3D graph called a ‘**spectrogram**’.
• Spectrograms allow machines to extract **statistical features** that differentiate between different kinds of sounds.
Speech recognition

beet /biːt/
bat /bæt/
bott /bat/
boot /but/
In order to classify an unknown observation (e.g., X), we need a statistical model of the distribution of sounds.
Preview: Questions and answers

Which woman has won more than 1 Nobel prize?

(Marie Curie)

- Question Answering (QA) and Information Retrieval (IR) involve many of the same principles.
Preview: Information retrieval

Google

Who has won more than one Nobel prize? - Times of India
timesofindia.indiatimes.com/home/...won-more-than-one-Nobel-prize/...1839923.cms

People also ask
Who has won Nobel Prize twice?
What women won the Nobel Prize?
How many women have won the Nobel Prize?
How many women have been awarded the Nobel Peace Prize?
Aside – Question answering

WolframAlpha

Input interpretation:
- **banana**
- amount
- **450,000 km³** (cubic kilometers)
- **potassium**

Result:
1.5 x 10^{12} t (metric tons)

New York Weekly Forecast
- **Monday**: 50°F - 36°F
- **Tuesday**: 48°F - 36°F
- **Wednesday**: 50°F - 32°F
- **Thursday**: 43°F - 32°F
- **Friday**: 39°F - 30°F
- **Saturday**: 37°F - 34°F
- **Sunday**: 37°F - 30°F
- **Monday**: 36°F - 27°F
- **Tuesday**: 37°F - 30°F
- **Wednesday**: 45°F - 36°F
Answer questioning?

• Retrieving information can be a clever combination of many very simple concepts and algorithms.

\[
\cos(\hat{q}, \hat{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}
\]
Overview: NLC

• Is natural language computing (the discipline) hard?
 • Yes, because natural language
 • is highly ambiguous at all levels,
 • is complex and subtle,
 • is fuzzy and probabilistic,
 • involves real-world reasoning.
 • No, because computer science
 • gives us many powerful statistical techniques,
 • allows us to break the challenges down into more manageable features.

• Is Natural Language Computing (the course) hard?
 • More on this soon...
NLC in industry
Natural language computing

- **Instructor:** Frank Rudzicz and Chloé Pou-Prom (csc401.2019@gmail)
- **TAs:** Zhewei Sun, Maryam Fallah, Mohamed Abdalla, TBD, Amanjit Kainth, Jianan Chen
- **Meetings:** MF (lecture, PB250), W (tutorial, MB128) at 10h-11h
- **Languages:** English, Python.
- **Website:** http://www.cs.toronto.edu/~frank/csc401/
- **You:** Understand basic **probability**, can **program**, or can pick these up as we go.
- **Syllabus:** Key **theory** and **methods** in statistical natural language computing. Focus will be on **Markov and neural models**, **machine translation**, and **speech recognition**.
Office hours

• **Time:**
 • Mondays, 11h30-12h30

• **Location:**
 • The Vector Institute (MaRS West, Suite 710)
 • The streets
Theme – NLC in a post-truth society

• The truth is the most important thing in the Universe.
 • At the very least, the truth allows us to rationally optimize legal, political, and personal decisions.

• The truth can sometimes be obscured deliberately via deception, or inadvertently through bias, fallacy, or intellectual laziness.
 • Nowhere is this perhaps more obvious than on social media or in pseudo-journalism.

• Natural language processing gives us tools to combat this scourge.
Evaluation policies

- **General:** Three assignments: **15%, 20%, 25%** (ranked by your mark)
 Final exam: **40%**

- **Lateness:** 10% deduction applied to electronic submissions that are 1 minute late.
 Additional **10%** applied every 24 hours up to 72 hours total, at which point grade is zero.

- **Final:** If you fail the final exam, then you fail the course.

- **Ethics:** Plagiarism and unauthorized collaboration can result in a grade of zero on the homework, failure of the course, or suspension from the University.
 See the course website.
Assignments

- Assignment 1: Corpus statistics, sentiment analysis
 task: bias analysis on Reddit
 learn: statistical techniques, features, and classification.

- Assignment 2: Statistical machine translation
 task *: translate between political extremes
 learn: statistical n-grams, smoothing, and multilingual word alignment.

- Assignment 3: Automatic speech recognition
 task: detect lies in speech
 learn: signal processing, phonetics, and hidden Markov models.
Assignment 1 – Bias in social media

• Involves:
 • Working with social media data (i.e., gathering statistics on some data from Reddit),
 • Part-of-speech tagging (more on this later),
 • Classification.

• Announcements: Piazza forum, email.
• You should get an early start.
Projects – graduate students only

• Graduate students can optionally undertake a full-term project worth 60% of their grade instead of the assignments.
 • Good for those, e.g., who prefer to work in teams. You might even get a publication!

• Teams must consist of 1 or 2 humans (no more, no fewer).
• Projects must contain a significant programming and scientific component.
• Projects must be relevant to the course.
Projects – graduate students only

• Some possible ideas for projects include:
 • A deception filter for news media online.
 • A novel method of using data in language A to train a classification system in language B for $A \neq B$.

• If you decide to take this option, you have to notify us by email about your team by **18 January**!

• You will need to periodically submit **checkpoints** that build on their antecedents.
 • See course webpage for detailed requirements!
Reading

Mandatory (and FREE online!)

https://search.library.utoronto.ca/details?10552907

Optional

SPEECH AND LANGUAGE PROCESSING
An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition
Second Edition

DANIEL JURAFSKY & JAMES H. MARTIN
The average overall grade among undergraduates was 63.0% ($\sigma=26.7$). The average overall grade among graduates was 74.4% ($\sigma=31.7$).

The grade range breakdown among undergraduates was:

- **A**: 37.2%
 - A+ 15.2%
 - A 9.7%
 - A- 12.4%
- **B**: 24.1%
 - B+ 11.7%
 - B 5.5%
 - B- 6.9%
- **C**: 17.9%
 - C+ 7.6%
 - C 5.5%
 - C- 4.8%
- **D**: 9%
 - D+ 2.8%
 - D 2.1%
 - D- 4.1%
- **F**: 11.7%
 - F 11.7%
 - OTH 0%

Class average excluding exam no shows: 75.20%
Fails excluding exam no shows: 3.79%
Assignment 1 and reading

• **Assignment 1** available (on course webpage)!
 • Due 11 February
 • **TAs:** Zhewei Sun (zheweisun@cs);
 Maryam Fallah (mary.fallah@mail.utoronto).

• **Reading:**
 • Manning & Schütze: Sections 1.3—1.4.2,
 Sections 6.0—6.2.1.