This lecture

- An extractive summary of the course.
Exam

- 24 April from 9h00—12h00.

<table>
<thead>
<tr>
<th>A-Mah</th>
<th>Mai-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR 25</td>
<td>ST VLAD</td>
</tr>
<tr>
<td>New College III, 45 Willcocks St.</td>
<td>Central Steam Plant, 17 Russell St.</td>
</tr>
</tbody>
</table>

- **No aids allowed** – your desk should have nothing but:
 - Your UofT ID,
 - The exam, and
 - A writing implement.

May be subject to change
Structure

• Following the format of previous years:
 • 20 **multiple-choice** questions [40 marks]
 • 4 options each.
 • 10 **short-answer** questions [30 marks]
 • Some of these involve simply giving a definition. Others involve some calculation.
 • 3 **subject-specific** questions [30 marks]
 • These questions involve a small component of original thinking.
Hints for studying

• **Definitions:** *n.pl.* Terms that are useful to know.
 • Highlights are also useful to know.

• Not all definitions/highlights are in the exam.
• Not all things on the exam have been highlighted.
 • This review lecture is likewise not a substitute for the rest of the material in this course.
Hints for studying

• Go through the exams on the website from previous years (and focus on those items related to topics we covered this year).

• Go through the quiz from this year.

• Work out worked-out examples for yourself, ideally more than once.

• I find it helpful to just relax before an exam.
Exam material

• The exam covers all material in the lectures and assignments except:
 • Material in the bonuses of assignments, and
 • Slides with ‘Aside’ in the title.

• The reading material (e.g., Manning & Schütze) provides background to concepts discussed in class.
 • If a concept appears in the textbook but not in the lectures/assignments, you don’t need to know it, even if it’s very interesting.
Course outline (approximate)

• Introduction and linguistic data (2 lectures)
• N-gram models and features of data (2 lectures) *
• Entropy and information theory (2 lectures) *
• Hidden Markov models (3 lectures) *
• Statistical machine translation (3 lectures) **
• Articulatory and acoustic phonetics (2 lectures) *
• Automatic speech recognition (2 lectures) **
• Speech synthesis (1 lecture) **
• Information retrieval (2 lectures) **
• Text summarization (1 lecture) **
• Other classifiers and review (2 lectures)

* techniques
** applications
Categories of linguistic knowledge

- **Phonology**: the study of patterns of speech sounds.

 e.g., “read” → /r iy d/

- **Morphology**: how words can be changed by inflection or derivation.

 e.g., “read”, “reads”, “reader”, “reading”, ...

- **Syntax**: the ordering and structure between words and phrases.

 e.g., NounPhrase → det. adj. n.

- **Semantics**: the study of how meaning is created by words and phrases.

 e.g., “book” →

- **Pragmatics**: the study of meaning in broad contexts.
NLC as Artificial Intelligence

- NLC involves resolving ambiguity at all levels.
- Reasoning with world knowledge.
 - In the early days knowledge was explicitly encoded in artificial symbolic systems (e.g., context-free grammars) by experts.

- Now, algorithms learn using probabilities to distinguish subtly different competing hypotheses.
 - E.g., is Google a noun or a verb?
 - An example where Google ∈ Nouns (“Google makes Android”), does not mean that Google is never a verb (“Go Google yourself”).

- \[P(\text{Google} \in \text{Nouns}) > P(\text{Google} \in \text{Verbs}) > 0 \]
Corpora

• **Corpus**: *n.* A body of language data of a particular sort (*pl.* corpora).

• Most **valuable** corpora occur **naturally**
 • e.g., newspaper articles, telephone conversations, multilingual transcripts of the United Nations

• We use corpora to gather statistics; more is better (typically between 10^7 and 10^{12} tokens).
Notable corpora

- **Penn treebank**: Syntactically annotated Brown, plus others incl. 1989 *Wall Street Journal*.
- **Switchboard corpus**: 120 hours ≈ 2.4M tokens. 2.4K telephone conversations between US English speakers.
- **Hansard corpus**: Canadian parliamentary proceedings, French/English bilingual.
Very simple predictions

• A model at the heart of SMT, ASR, and IR...
• We want to know the probability of the next word given the previous words in a sequence.

• We can approximate conditional probabilities by counting occurrences in large corpora of data.
 • E.g., \(P(\text{food} \mid I \text{ want Chinese}) = \frac{P(I \text{ want Chinese food})}{P(I \text{ want Chinese})} \approx \frac{\text{Count}(I \text{ want Chinese food})}{\text{Count}(I \text{ want Chinese})} \)

Why?
Hint: Corpus size
Bayes' theorem

\[P(A, B) = P(A)P(B|A) \]
\[P(A, B) = P(B)P(A|B) \]

Bayes theorem: \[P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]
Maximum likelihood estimate

- Maximum likelihood estimate (MLE) of parameters θ in a model M, given training data T is the estimate that maximizes the likelihood of the training data using the model.

- e.g., T is the Brown corpus, M is the bigram and unigram tables $\theta_{(to|want)}$ is $P(to|want)$.
Sparsity of unigrams vs. bigrams

- E.g., we’ve seen lots of every unigram, but are missing many bigrams:

<table>
<thead>
<tr>
<th>Unigram counts:</th>
<th>l</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>Chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2533</td>
<td>927</td>
<td>2417</td>
<td>746</td>
<td>158</td>
<td>1093</td>
<td>341</td>
<td>278</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Count(w_{t-1},w_t)</th>
<th>l</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>Chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{t-1}</td>
<td>l</td>
<td>want</td>
<td>to</td>
<td>eat</td>
<td>Chinese</td>
<td>food</td>
<td>lunch</td>
<td>spend</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
<td>827</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
<td>0</td>
<td>608</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>686</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>211</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>Chinese</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Zipf’s law on the Brown corpus

\[f \propto \frac{1}{r} \quad \text{i.e., for some } k \quad f \cdot r = k \]
Smoothing as redistribution

- Steal from the rich and give to the poor.
- E.g., \(\text{Count}(I \text{ caught } \cdot) \)
Add-1 smoothing (Laplace)

- Given a vocab size $|\mathcal{V}|$ and corpus size N, just add 1 to all the counts! No more zeros!

- MLE
 \[P(w_i) = \frac{C(w_i)}{N} \]

- Laplace estimate
 \[P_{Lap}(w_i) = \frac{C(w_i) + 1}{N + |\mathcal{V}|} \]

- Does this give a proper probability distribution? Yes:
 \[
 \sum_w P_{Lap}(w) = \sum_w \frac{C(w) + 1}{N + |\mathcal{V}|} = \frac{\sum_w C(w) + \sum_w 1}{N + |\mathcal{V}|} = \frac{N + |\mathcal{V}|}{N + |\mathcal{V}|} = 1
 \]
Add-δ smoothing

• Laplace’s method generalizes to the add-δ estimate:

\[P_\delta(w_i) = \frac{C(w_i) + \delta}{N + \delta \|\mathcal{V}\|} \]

• Consider also:
 • Simple interpolation
 • Katz smoothing
 • Good-Turing smoothing
Feature vectors

• Values for several features of an observation can be put into a single vector.

<table>
<thead>
<tr>
<th></th>
<th># proper nouns</th>
<th># 1st person pronouns</th>
<th># commas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damien Fahey</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Faux John Madden</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Jim Gaffigan</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Parts of speech (PoS)

• Linguists like to group words according to their structural function in building sentences.
 • This is similar to grouping Lego by their shapes.

• Part-of-speech: \(n. \) lexical category or morphological class.

Nouns collectively constitute a part of speech (called Noun)
Parts of speech (PoS)

• Things that are useful to know about PoS:
 • **Content words vs. function words**
 • **Properties** of content words (e.g., number).
 • **Agreement**. Verbs and nouns should match in number in English (e.g., “the dogs runs” is ‘wrong’.)
 • What **PoS Tagging is**, and perhaps some vague idea of how to do it.
mRMR feature selection

• **Minimum-redundancy-maximum-relevance (mRMR)** can use *correlation, distance* scores (e.g., D_{KL}) or *mutual information* to select features as in

• For feature set S of features f_i, class c,
 - $D(S, c)$: a measure of *relevance* of S for c, and
 - $R(S)$: a measure of the *redundancy* of S,

$$S_{mRMR} = \arg\max_S [D(S, c) - R(S)]$$
Information and entropy
Entropy

• **Entropy**: *n.* the **average** amount of information we get in observing the output of source S.

$$H(S) = \sum_i p_i I(w_i) = \sum_i p_i \log_2 \frac{1}{p_i}$$

Note that this is **very** similar to how we define the expected value (i.e., ‘average’) of something:

$$E[X] = \sum_{x \in X} p(x) x$$
Joint entropy

• **Joint Entropy:** \(n.\) the *average* amount of information needed to specify multiple variables simultaneously.

\[
H(X, Y) = \sum_x \sum_y p(x, y) \log_2 \frac{1}{p(x, y)}
\]

Same general form as entropy, except you sum over each variable, and probabilities are joint
Conditional entropy

- **Conditional entropy**: \(n. \) the *average* amount of information needed to specify one variable *given* that you know another.

\[
H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)
\]

It’s *an average of entropies* over all possible conditioning values.
Mutual information

- **Mutual information:** \(n. \) the average amount of information shared between variables.

\[
I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)
= \sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}
\]

Again, a sum over each variable, but the log fraction is normalized by an assumption that they’re independent \((p(x)p(y))\).
Relations between entropies

\[H(X, Y) = H(X) + H(Y) - I(X; Y) \]
Information theory

- In general, lecture 2-1 includes some walked-through examples of applying the preceding formula.
- It’s probably a good idea to walk through these examples yourself on paper.
Collocations

• Collocation: *n.* a ‘turn-of-phrase’ or usage where a sequence of words is *perceived* to have a meaning ‘*beyond*’ the sum of its parts.

• E.g., ‘*disk drive*, ‘*video recorder*, and ‘*soft drink*’ are collocations. ‘*cylinder drive*, ‘*video measurer*, ‘*weak drink*’ are *not* despite some near-synonymy between alternatives.

• Collocations are *not* just highly frequent bigrams, otherwise ‘*of the*’, and ‘*and the*’ would be collocations.

• *How can we test if a bigram is a collocation or not?*
Decision trees

• Consists of rules for classifying data that consists of many attributes/features.

• Walk through the Simpsons example from 3-2.
Markov models
Observable Markov model

- Probabilities on all outgoing arcs must sum to 1.
 - \(P(\text{ship}|\text{ship}) + P(\text{tops}|\text{ship}) + P(\text{pass}|\text{ship}) = 1 \)
 - \(P(\text{ship}|\text{tops}) + P(\text{tops}|\text{tops}) + P(\text{mother}|\text{tops}) = 1 \)
 - ...
Multivariate systems

- What if a conditioning variable changes over time?
 - e.g., I’m happy one second and disgusted the next.
- Here, the state is the mood and the observation is the word.
Observable multivariate systems

Q: How do you learn these probabilities?

\[P(w_{0:t}, q_{0:t}) \approx \prod_{i=0}^{t} P(q_i|q_{i-1})P(w_i|q_i) \]

A: Basically, the same as before.

\[P(q_i|q_{i-1}) = \frac{P(q_{i-1}q_i)}{P(q_{i-1})} \] is learned with MLE from training data.

\[P(w_i|q_i) = \frac{P(w_i,q_i)}{P(q_i)} \] is also learned with MLE from training data.
Hidden variables

• Q: What if you don’t have access to the state during testing?
 • e.g., you’re asked to compute $P(\langle ship, ship \rangle)$

• Q: What if you don’t have access to the state during training?
Questions for HMMs

1. Given a model with particular parameters $\theta = \langle \Pi, A, B \rangle$, how do we efficiently compute the likelihood of a particular observation sequence, $P(O; \theta)$?

2. Given an observation sequence O and a model θ, how do we choose a state sequence $Q = \{q_0, ..., q_T\}$ that best explains the observations?

3. Given a large observation sequence O, how do we choose the best parameters $\theta = \langle \Pi, A, B \rangle$ that explain the data O?
1. Trellis

Probability of being in state s_3 at time $t = 2$
2. Choosing the best state sequence

I want to guess which sequence of states generated an observation.

E.g., if states are PoS and observations are words
2. The Viterbi algorithm

• Also an inductive dynamic-programming algorithm that uses the trellis.

• Define the probability of the most probable path leading to the trellis node at \((\text{state } i, \text{time } t)\) as

\[
\delta_i(t) = \max_{q_0 \ldots q_{t-1}} P(q_0 \ldots q_{t-1}, \sigma_0 \ldots \sigma_{t-1}, q_t = s_i; \theta)
\]

• And the incoming arc that led to this most probable path is defined as \(\psi_i(t)\)
3. Training HMMs

• We want to modify the parameters of our model $\theta = \langle \Pi, A, B \rangle$ so that $P(\mathcal{O}; \theta)$ is maximized for some training data \mathcal{O}:

$$\hat{\theta} = \arg\max_{\theta} P(\mathcal{O}; \theta)$$

• If we want to choose a best state sequence Q^* on previously unseen test data, the parameters of the HMM should first be tuned to similar training data.
3. Expectation-maximization

- If we knew θ, we could estimate **expectations** such as:
 - Expected number of times in state s_i,
 - Expected number of transitions $s_i \rightarrow s_j$

- If we knew:
 - Expected number of times in state s_i,
 - Expected number of transitions $s_i \rightarrow s_j$

then we could compute the **maximum likelihood estimate** of

$$\theta = \langle \pi_i, \{a_{ij}\}, \{b_i(w)\} \rangle$$
Statistical machine translation

STICK ONE IN YOUR EAR, YOU CAN INSTANTLY UNDERSTAND ANYTHING SAID TO YOU IN ANY FORM OF LANGUAGE: THE SPEECH YOU HEAR DECODES THE BRAIN WAVE MATRIX.
Challenges of SMT

- Lexical ambiguity (e.g., words are polysemous).
- Differing word orders.
- Syntactic ambiguity.
- Miscellaneous idiosyncrasies.

- Sentence alignment.
 - **Gale&Church**: alignment by length (minimize costs).
 - **Church**: *cognates* approximated by 4-graphs.
 - **Melamed**: *cognates* approximated by longest common subsequences.
The noisy channel

Language model

Source

\(P(E) \)

Translation model

Channel

\(P(F|E) \)

Decoder

\(E^* \)

Observed

\(F \)

\[E^* = \arg \max_E P(F|E)P(E) \]
Word alignment

- **Word alignments** can be 1:1, N:1, 1:N, 0:1, 1:0, ... E.g.,

 - "zero fertility" word: not translated (1:0)
 - "spurious" words: generated from 'nothing' (0:1)
 - One word translated as several words (1:N)

Note that this is only one possible alignment.
IBM Model 1 assumption

\[
P(e_0, e_1, e_2, e_3, e_4, e_5, e_6) = P(e_0) \times P(e_1 | e_0) \times P(e_2 | e_1, e_0) \times P(e_3 | e_2, e_1, e_0) \times P(e_4 | e_3, e_2, e_1, e_0) \times P(e_5 | e_4, e_3, e_2, e_1, e_0) \times P(e_6 | e_5, e_4, e_3, e_2, e_1, e_0)
\]

\[
P(f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9) = P(f_1) \times P(f_2 | f_1) \times P(f_3 | f_2, f_1) \times P(f_4 | f_3, f_2, f_1) \times P(f_5 | f_4, f_3, f_2, f_1) \times P(f_6 | f_5, f_4, f_3, f_2, f_1) \times P(f_7 | f_6, f_5, f_4, f_3, f_2, f_1) \times P(f_8 | f_7, f_6, f_5, f_4, f_3, f_2, f_1) \times P(f_9 | f_8, f_7, f_6, f_5, f_4, f_3, f_2, f_1)
\]

\[
P(\emptyset | \emptyset) = 1
\]
IBM Model 1: EM

1. Initialize translation parameters randomly (or uniformly).

2. Expectation: Compute expected value of $\text{Count}(e, f)$ for all words in training data \mathcal{O}, given your current translation parameters, θ_k.

3. Maximization: Compute the maximum likelihood estimate of the parameters based on the expected counts, giving improved parameters, θ_{k+1}.
IBM Model 1: EM

1. Take the **product** of each $p(e)$ with each alignments and sentence pair.
2. **Normalize** by summing over all alignments for each sentence.
3. **Add** the appropriate normalized counts for each French/English word pair to find t_{count} (and total).
4. Use t_{count} and total to **re-estimate** $p(f|e)$.

(See lecture 6-1)

$$P(F|a,E) = P(maison|blue) \times P(blue|house) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$$

$$P(F|a,E) = P(la|the) \times P(maison|house) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$$
Decoding IBM Model 1; phrases

• How does **greedy decoding** work at an abstract level?
 • Consider some of the **transformation functions**.

• How does **phrase-based translation** differ from word-based translation?
 • E.g., we learn alignments given **fully observable** models in which word alignments are given.
Bilingual evaluation: BLEU

• In lecture 6-2, \(||\text{Ref1}|| = 16, ||\text{Ref2}|| = 17, ||\text{Ref3}|| = 16, \) and \(||\text{Cn1}|| = 18 \) and \(||\text{Cn2}|| = 14, \)

 \[
 \text{brevity}_1 = \frac{17}{18}, \quad \text{BP}_1 = 1
 \]
 \[
 \text{brevity}_2 = \frac{16}{14}, \quad \text{BP}_2 = e^{1-(\frac{8}{7})} = 0.8669
 \]

• **Final score** of candidate \(C \):

 \[
 \text{BLEU} = \text{BP} \times (p_1p_2 \ldots p_n)^{1/n}
 \]

 where

 \[
 p_n = \frac{\sum_{ngram \in C} \text{Count}_R(ngram)}{\sum_{ngram \in C} \text{Count}_C(ngram)}
 \]
BLEU example

• Reference 1: I am afraid Dave
 Reference 2: I am scared Dave
 Reference 3: I have fear David
 Candidate: I fear David

• brevity = \frac{4}{3} \geq 1 \text{ so } BP = e^{1 - \left(\frac{4}{3}\right)}

• \[p_1 = \frac{\sum_{1\text{gram} \in C} \text{Count}_{R}(1\text{gram})}{\sum_{1\text{gram} \in C} \text{Count}_{C}(1\text{gram})} = \frac{1+1+1}{1+1+1} = 1 \]

• \[p_2 = \frac{\sum_{2\text{gram} \in C} \text{Count}_{R}(2\text{gram})}{\sum_{2\text{gram} \in C} \text{Count}_{C}(2\text{gram})} = \frac{1}{2} \]

• \[\text{BLEU} = BP(p_1 p_2)^{\frac{1}{2}} = e^{1 - \left(\frac{4}{3}\right)} \left(\frac{1}{2}\right)^{\frac{1}{2}} \approx 0.5067 \]

Assume cap(n) = 2 for all n-grams
Automatic speech recognition
Manners of articulation

• **Phoneme:**
 \(n\). a distinctive unit of speech sound.

• English phonemes can be partitioned into groups, e.g.,:
 - **Stops/plosives:** complete vocal tract constriction and burst of energy (e.g., ‘\textit{papa}’).
 - **Fricatives:** noisy, with air passing through a tight constriction (e.g., ‘\textit{shift}’).
 - **Nasals:** involve air passing through the nasal cavity (e.g., ‘\textit{mama}’).
 - **Vowels:** open vocal tract, no nasal air.
 - **Glides/liquids:** similar to vowels, but typically with more constriction (e.g., ‘\textit{wall}’).
What is sound?

- A single **tone** is a sinusoidal function of pressure and time.
 - **Amplitude**: n. The degree of the displacement in the air. This is similar to ‘loudness’.
 Often measured in **Decibels (dB)**.
 - **Frequency**: n. The number of cycles within a unit of time.
 e.g., 1 Hertz (Hz) = 1 vibration/second

![Diagram showing amplitude and frequency relationships](chart.png)
Windowing and spectra

Frame → Spectrogram → Spectrum

Frequency (Hz) → Amplitude

Amplitude
Spectrograms

- **Spectrogram**: *n.* a 3D plot of amplitude and frequency over time.
Formants and phonemes

• **Formant**: n. A large concentration of energy within a band of frequency (e.g., F_1, F_2, F_3).
If I asked you about phonemes, I’d probably give you example words.

e.g., iy as in *sheet*
Prosody

• **Sonorant**: *n.* Any **sustained** phoneme in which the **glottis** is vibrating (i.e., the phoneme is ‘**voiced**’).
 - Includes some consonants (e.g., /w/, /m/, /g/).

• **Prosody**: *n.* the **modification** of speech acoustics in order to convey some **extra-lexical** meaning:
 - **Pitch**: Changing of F_0 over time.
 - **Duration**: The length in time of sonorants.
 - **Loudness**: The amount of **energy** produced by the **lungs**.
Mel-frequency cepstral coefficients

- **Mel-frequency cepstral coefficients (MFCCs)** are the most popular representation of speech used in ASR.
 - They are the spectra of the logarithms of the mel-scaled filtered spectra of the windows of the waveform.

- Based on what we know about human perception of sound and the source-filter model.
Classifying speakers

- The speech produced by one speaker will cluster differently in MFCC space than speech from another speaker.
- We can decide if a given observation comes from one speaker or another.

Time, t

<table>
<thead>
<tr>
<th>MFCC</th>
<th>0</th>
<th>1</th>
<th>...</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Continuous distributions

• In the past, we used discrete probability functions.
• Since we are now operating with continuous variables, we need to fit continuous probability functions to a discrete number of observations.

• If we assume the 1-dimensional data in this histogram is Normally distributed, we can fit a continuous Gaussian function simply in terms of the mean \(\mu \) and variance \(\sigma^2 \).
Mixtures of Gaussians

• Gaussian mixture models (GMMs) are a weighted linear combination of M component Gaussians, $\langle \Gamma_1, \Gamma_2, \ldots, \Gamma_M \rangle$ such that

$$P(\tilde{x}) = \sum_{j=1}^{M} P(\Gamma_j)P(\tilde{x} | \Gamma_j)$$
Continuous HMMs

• Previously we saw **discrete HMMs**: at each state we observed a discrete symbol from a finite set of discrete symbols.

• A **continuous HMM** has observations that are distributed over continuous variables.
 • Observation probabilities, b_i, are also continuous.

\[
\begin{array}{c}
\hat{x} = \begin{pmatrix}
4.32957 \\
2.48562 \\
1.08139 \\
... \\
0.45628
\end{pmatrix}
\end{array}
\]
Levenshtein distance

<table>
<thead>
<tr>
<th>Reference</th>
<th>-</th>
<th>how</th>
<th>to</th>
<th>wreck</th>
<th>a</th>
<th>nice</th>
<th>beach</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>how</td>
<td>∞</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>to</td>
<td>∞</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>recognize</td>
<td>∞</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>speech</td>
<td>∞</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- See the example in lecture 9-1. **Work it out yourself.**
Speech synthesis
Speech synthesis

- **Text-to-speech**: *n.* the conversion of electronic text into equivalent, audible speech waveforms.

- Three architectures for performing speech synthesis:
 - Formant synthesis,
 - Concatenative synthesis,
 - Articulatory synthesis.

- How do they differ? What are their (dis)advantages?

- Common **components** of speech synthesis:
 - **Letter-to-sound rules** and dictionaries,
 - Acoustic prosody modification.
Information retrieval
Information retrieval (IR)

- Given **queries** in natural language, search for documents or information that answers those queries.
 - Returning documents vs. answering the questions directly.

- **Evaluating** multiple IR systems using **precision** and **recall**.

- The vector space model.

- High-level aspects of singular-value decomposition
The cosine measure

- The **cosine measure** (a.k.a., ‘normalized correlation coefficient’) is

\[
\cos(q, d) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}
\]

where \(\mathbf{q} \) and \(\mathbf{d} \) are \(n \)-dimensional vectors for the query and document, respectively.

- **Larger** values of \(\cos(\mathbf{q}, \mathbf{d}) \) means **stronger** correlation, so \(\mathbf{q} \) is ‘closer’ to \(\mathbf{d}_1 \) than \(\mathbf{d}_2 \) iff \(\cos(\mathbf{q}, \mathbf{d}_1) > \cos(\mathbf{q}, \mathbf{d}_2) \).
Summarization
Summarization

- Reducing a single document or multiple documents down to their most important or salient elements.

 - **Extractive** summarization vs. **synthetic** summaries.

 - What features are useful in identifying important phrases or sections? What are their properties?
Determining relevance

• The relevance of sentences and phrases within the text can be approximated by:

 • **Position:** The location of the phrase in the document.
 • **Cues:** The presence of certain words that indicate relevance (e.g., “crucially”, “in conclusion”).
 • **Cohesion:** The distribution of words and their co-occurrences across the document.
ROUGE-2 example

- Candidate: *An egg falls off a wall.*

\[
ROUGE_2 = \frac{\sum_{S \in \{RefSumm\}} \sum_{\text{bigram} \in S} \text{Count}_{\text{match}}(\text{bigram})}{\sum_{S \in \{RefSumm\}} \sum_{\text{bigram} \in S} \text{Count}(\text{bigram})}
\]

\[
ROUGE_2 = \frac{2 + 1 + 0}{8 + 7 + 5} = \frac{3}{20}
\]

Don’t sit on a wall if you’re an egg.

Horses fail to perform surgery upon an egg.

Humpty Dumpty had a great fall.
Miscellaneous classification
Miscellaneous classification

• Walk through and understand the high-level aspects of these models:
 • Neural networks,
 • Support vector machines,
 • Transformation-based learning,
 • K nearest neighbours.

• **Hint**: How do these models differ and how they are similar? What are their strengths and weaknesses? Are there any that are associated with a particular task?
Final thoughts

(not thoughts on the final)
NLC in industry
Final thoughts

• This course **barely** scratches the surface of **natural language computing**. Talk to these people:

Graeme Hirst
Gerald Penn
Frank Rudzicz
Suzanne Stevenson

• Most of the techniques in this course are applicable **generally**.
 • Hidden Markov models, e.g., are used almost universally, including in finance, biology, medicine, and robotics.
My research
Aside – Knowledge

• **Anecdotes** are often useless except as proofs by contradiction.
 • E.g., “I saw Google used as a verb” does not mean that Google is always (or even likely to be) a verb, just that it is not always a noun.

• **Shallow statistics** are often not enough to be truly meaningful.
 • E.g., “My ASR system is 95% accurate on my test data. Yours is only 94.5% accurate, you horrible knuckle-dragging idiot.”
 • What if the test data was biased to favor my system?
 • What if we only used a very small amount of data?

• We need a test to see if our statistics actually mean something.

Find some way to be comfortable trying to prove yourself wrong
Thank you