This lecture

• An extractive summary of the course.
Exam

• 28 April from 9h00—12h00.

<table>
<thead>
<tr>
<th>A-L</th>
<th>M-Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN 2S</td>
<td>BN 3</td>
</tr>
<tr>
<td>Clara Benson</td>
<td>Clara Benson</td>
</tr>
<tr>
<td>320 Huron Street</td>
<td>320 Huron Street</td>
</tr>
</tbody>
</table>

• **No aids allowed** – your desk should have nothing but:
 • Your UofT ID,
 • The exam, and
 • A writing implement.

May be subject to change
Structure

• Following the format of previous years:
 • 20 multiple-choice questions [40 marks]
 • 4 options each.
 • 10 short-answer questions [30 marks]
 • Some of these involve simply giving a definition. Others involve some calculation.
 • 3 subject-specific questions [30 marks]
 • These questions involve a small component of original thinking.
Hints for studying

• **Definitions:** *n.pl.* Terms that are useful to know.

 • Highlights are also useful to know.

• Not all definitions/highlights are in the exam.
• Not all things on the exam have been highlighted.
 • This review lecture is likewise not a substitute for the rest of the material in this course.
Hints for studying

• Go through the exams on the website from previous years (and focus on those items related to topics we covered this year).

• Go through the quiz from this year.

• Work out worked-out examples for yourself, ideally more than once.

• I find it helpful to relax before an exam.
Exam material

• The exam covers all material in the lectures and assignments except:
 • Material in the bonuses of assignments, and
 • Slides with ‘Aside’ in the title.

• The reading material (e.g., Manning & Schütze) provides background to concepts discussed in class.
 • If a concept appears in the textbook but not in the lectures/assignments, you don’t need to know it, even if it’s very interesting.
2014 Final exam distribution

Frequency

Bin (%)
2015 Final exam distribution
Course outline (approximate)

• Introduction and linguistic data (2 lectures)
• N-gram models and features of data (2 lectures) *
• Entropy and information theory (2 lectures) *
• Hidden Markov models (3 lectures) *
• Statistical machine translation (3 lectures) **
• Articulatory and acoustic phonetics (2 lectures) *
• Automatic speech recognition (2 lectures) **
• Speech synthesis (1 lecture) **
• Information retrieval (2 lectures) **
• Text summarization (1 lecture) **
• Other classifiers and review (2 lectures)

* techniques

** applications
Categories of linguistic knowledge

• **Phonology**: the study of patterns of speech sounds.

e.g., “read” → /r iy d/

• **Morphology**: how words can be changed by inflection or derivation.

e.g., “read”, “reads”, “reader”, “reading”, ...

• **Syntax**: the ordering and structure between words and phrases.

e.g., NounPhrase → det. adj. n.

• **Semantics**: the study of how meaning is created by words and phrases.

e.g., “book” →

• **Pragmatics**: the study of meaning in broad contexts.
NLC as Artificial Intelligence

• NLC involves resolving ambiguity at all levels.
 • Reasoning with world knowledge.
 • In the early days knowledge was explicitly encoded in artificial symbolic systems (e.g., context-free grammars) by experts.

• Now, algorithms learn using probabilities to distinguish subtly different competing hypotheses.
 • E.g., is Google a noun or a verb?
 • An example where Google ∈ Nouns ("Google makes Android"), does not mean that Google is never a verb ("Go Google yourself").

• $P(\text{Google} \in \text{Nouns}) > P(\text{Google} \in \text{Verbs}) > 0$
Corpora

- **Corpus**: *n.* A body of language data of a particular sort (*pl.* corpora).

- Most *valuable* corpora occur *naturally*
 - e.g., newspaper articles, telephone conversations, multilingual transcripts of the United Nations

- We use corpora to gather statistics; more is better (typically between 10^7 and 10^{12} tokens).
Notable corpora

• **Penn treebank**: Syntactically annotated Brown, plus others incl. 1989 *Wall Street Journal*.

• **Switchboard corpus**: 120 hours ≈ 2.4M tokens. 2.4K telephone conversations between US English speakers.

• **Hansard corpus**: Canadian parliamentary proceedings, French/English bilingual.
Very simple predictions

• A model at the heart of SMT, ASR, and IR...
• We want to know the probability of the next word given the previous words in a sequence.

• We can approximate conditional probabilities by counting occurrences in large corpora of data.
 • E.g., $P(\text{food} \mid \text{I want Chinese}) = \frac{P(\text{I want Chinese food})}{P(\text{I want Chinese})} \approx \frac{\text{Count(\text{I want Chinese food})}}{\text{Count(\text{I want Chinese})}}$
Bayes’ theorem

Bayes theorem: \(P(A|B) = \frac{P(B|A)P(A)}{P(B)} \)

\[P(A, B) = P(A)P(B|A) \]
\[P(A, B) = P(B)P(A|B) \]
Maximum likelihood estimate

• Maximum likelihood estimate (MLE) of parameters θ in a model M, given training data T is the estimate that maximizes the likelihood of the training data using the model.

• e.g., T is the Brown corpus, M is the bigram and unigram tables $\theta_{\text{to|want}}$ is $P(\text{to|want})$.
Sparsity of unigrams vs. bigrams

E.g., we’ve seen lots of every unigram, but are missing many bigrams:

<table>
<thead>
<tr>
<th>Count(w_{t-1},w_t)</th>
<th>w_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>want</td>
</tr>
<tr>
<td>I</td>
<td>5</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
</tr>
<tr>
<td>Chinese</td>
<td>1</td>
</tr>
<tr>
<td>food</td>
<td>15</td>
</tr>
<tr>
<td>lunch</td>
<td>2</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
</tr>
</tbody>
</table>
Zipf’s law on the Brown corpus

\[f \propto \frac{1}{r} \]

i.e., for some \(k \)

\[f \cdot r = k \]

From Manning & Schütze
Smoothing as redistribution

- Steal from the rich and give to the poor.
- E.g., $\text{Count}(I\ caught\ \cdot)$
Add-1 smoothing (Laplace)

• Given a vocab size $\|\mathcal{V}\|$ and corpus size N, just add 1 to all the counts! No more zeros!

• MLE
 \[P(w_i) = \frac{C(w_i)}{N} \]

• Laplace estimate
 \[P_{\text{Lap}}(w_i) = \frac{C(w_i)+1}{N+\|\mathcal{V}\|} \]

• Does this give a proper probability distribution? Yes:
 \[\sum_w P_{\text{Lap}}(w) = \sum_w \frac{C(w) + 1}{N + \|\mathcal{V}\|} = \frac{\sum_w C(w) + \sum_w 1}{N + \|\mathcal{V}\|} = \frac{N + \|\mathcal{V}\|}{N + \|\mathcal{V}\|} = 1 \]
Add-δ smoothing

- Laplace’s method generalizes to the add-δ estimate:

 $$P_\delta(w_i) = \frac{C(w_i) + \delta}{N + \delta ||V||}$$

- Consider also:
 - Simple interpolation
 - Katz smoothing
 - Good-Turing smoothing
Feature vectors

- **Values** for several features of an *observation* can be put into a single *vector*.

<table>
<thead>
<tr>
<th># proper nouns</th>
<th># 1st person pronouns</th>
<th># commas</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Parts of speech (PoS)

• Linguists like to group words according to their **structural function** in building sentences.
 • This is similar to grouping Lego by their shapes.

• **Part-of-speech**: *n.* lexical category or morphological class.

Nouns collectively constitute a part of speech (called *Noun*)
Parts of speech (PoS)

• Things that are useful to know about PoS:
 • **Content words vs. function words**
 • **Properties** of content words (e.g., number).
 • **Agreement.** Verbs and nouns should match in *number* in English (e.g., “the dogs runs” is ‘wrong’.)
 • What **PoS Tagging is**, and perhaps some vague idea of how to do it.
mRMR feature selection

• Minimum-redundancy-maximum-relevance (mRMR) can use correlation, distance scores (e.g., D_{KL}) or mutual information to select features as in

• For feature set S of features f_i, class c,

 $D(S, c)$: a measure of relevance of S for c, and

 $R(S)$: a measure of the redundancy of S,

 $$S_{mRMR} = \arg\max_S \left[D(S, c) - R(S) \right]$$
Information and entropy
Entropy

• **Entropy**: *n.* the **average** amount of information we get in observing the output of source S.

$$H(S) = \sum_i p_i I(w_i) = \sum_i p_i \log_2 \frac{1}{p_i}$$

Note that this is **very** similar to how we define the expected value (i.e., ‘average’) of something:

$$E[X] = \sum_{x \in X} p(x) x$$
Joint entropy

• Joint Entropy: *n.* the **average** amount of information needed to specify multiple variables simultaneously.

\[
H(X, Y) = \sum_x \sum_y p(x, y) \log_2 \frac{1}{p(x, y)}
\]

Same general form as entropy, except you sum over each variable, and probabilities are joint
Conditional entropy

• **Conditional entropy**: \(n \) \text{ the average amount of information needed to specify one variable given that you know another.} \\

\[
H(Y|X) = \sum_{x \in X} p(x) H(Y|X = x)
\]

It’s **an average of entropies** over all possible conditioning values.
Relations between entropies

\[H(X, Y) = H(X) + H(Y) - I(X; Y) \]
Mutual information

- **Mutual information**: *n.* the **average** amount of information shared between variables.

\[
I(X; Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \\
= \sum_{x,y} p(x, y) \log_2 \frac{p(x,y)}{p(x)p(y)}
\]

Again, a sum over each variable, but the log fraction is normalized by an assumption that they’re independent \((p(x)p(y))\).
Information theory

• In general, lecture 2-2 includes some walked-through examples of applying the preceding formula.
 • It’s probably a good idea to walk through these examples yourself on paper.
Collocations

• **Collocation**: *n.* a ‘turn-of-phrase’ or usage where a sequence of words is *perceived* to have a meaning ‘*beyond*’ the sum of its parts.

• E.g., ‘*disk drive*’, ‘*video recorder*’, and ‘*soft drink*’ are collocations. ‘*cylinder drive*’, ‘*video measurer*’, ‘*weak drink*’ are *not* despite some near-synonymy between alternatives.

• Collocations are *not* just highly frequent bigrams, otherwise ‘*of the*’, and ‘*and the*’ would be collocations.

• *How can we test if a bigram is a collocation or not?*
Decision trees

- Consists of **rules** for classifying data that consists of many **attributes/features**.

- Walk through the Simpsons example from 3-2.
Markov models
Observable Markov model

- Probabilities on all outgoing arcs must sum to 1.

- \(P(ship|ship) + P(tops|ship) + P(pass|ship) = 1 \)

- \(P(ship|tops) + P(tops|tops) + P(mother|tops) = 1 \)

- ...
Multivariate systems

• What if a conditioning variable changes over time?
 • e.g., I’m happy one second and disgusted the next.
• Here, the state is the mood and the observation is the word.

<table>
<thead>
<tr>
<th>word</th>
<th>P(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.1</td>
</tr>
<tr>
<td>pass</td>
<td>0.05</td>
</tr>
<tr>
<td>camp</td>
<td>0.05</td>
</tr>
<tr>
<td>flock</td>
<td>0.6</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.1</td>
</tr>
<tr>
<td>tops</td>
<td>0.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>word</th>
<th>P(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ship</td>
<td>0.3</td>
</tr>
<tr>
<td>pass</td>
<td>0.0</td>
</tr>
<tr>
<td>camp</td>
<td>0.0</td>
</tr>
<tr>
<td>flock</td>
<td>0.2</td>
</tr>
<tr>
<td>soccer</td>
<td>0.05</td>
</tr>
<tr>
<td>mother</td>
<td>0.05</td>
</tr>
<tr>
<td>tops</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Observable multivariate systems

• Q: How do you **learn** these probabilities?
 • \(P(w_{0:t}, q_{0:t}) \approx \prod_{i=0}^{t} P(q_i | q_{i-1}) P(w_i | q_i) \)

• A: Basically, the same as before.
 • \(P(q_i | q_{i-1}) = \frac{P(q_{i-1}q_i)}{P(q_{i-1})} \) is learned with MLE from training data.
 • \(P(w_i | q_i) = \frac{P(w_iq_i)}{P(q_i)} \) is also learned with MLE from training data.
Hidden variables

• Q: What if you don’t have access to the state during testing?
 • e.g., you’re asked to compute $P(\langle ship, ship \rangle)$

• Q: What if you don’t have access to the state during training?
Tasks for HMMs

1. Given a model with particular parameters $\theta = \langle \Pi, A, B \rangle$, how do we efficiently compute the likelihood of a particular observation sequence, $P(O; \theta)$?

2. Given an observation sequence O and a model θ, how do we choose a state sequence $Q = \{q_0, \ldots, q_T\}$ that best explains the observations?

3. Given a large observation sequence O, how do we choose the best parameters $\theta = \langle \Pi, A, B \rangle$ that explain the data O?
1. Trellis

Probability of being in state s_3 at time $t = 2$
2. Choosing the best state sequence

I want to guess which sequence of states generated an observation.

E.g., if states are PoS and observations are words
2. The Viterbi algorithm

• Also an inductive dynamic-programming algorithm that uses the trellis.

• Define the probability of the most probable path leading to the trellis node at (state i, time t) as

\[
\delta_i(t) = \max_{q_0 \ldots q_{t-1}} P(q_0 \ldots q_{t-1}, \sigma_0 \ldots \sigma_{t-1}, q_t = s_i; \theta)
\]

• And the incoming arc that led to this most probable path is defined as $\psi_i(t)$
3. Training HMMs

• We want to **modify** the parameters of our model $\theta = \langle \Pi, A, B \rangle$ so that $P(\mathcal{O}; \theta)$ is maximized for some training data \mathcal{O}:

$$\hat{\theta} = \arg\max_{\theta} P(\mathcal{O}; \theta)$$

• If we want to choose a **best state sequence** Q^* on previously unseen **test data**, the parameters of the HMM should first be tuned to similar **training data**.
3. Expectation-maximization

- If we knew θ, we could estimate expectations such as
 - Expected number of times in state s_i,
 - Expected number of transitions $s_i \rightarrow s_j$

- If we knew:
 - Expected number of times in state s_i,
 - Expected number of transitions $s_i \rightarrow s_j$
 then we could compute the maximum likelihood estimate of

\[
\theta = \langle \pi_i, \{a_{ij}\}, \{b_i(w)\} \rangle
\]
Statistical machine translation

STICK ONE IN YOUR EAR, YOU CAN INSTANTLY UNDERSTAND ANYTHING SAID TO YOU IN ANY FORM OF LANGUAGE: THE SPEECH YOU HEAR DECODES THE BRAIN WAVE MATRIX.
Challenges of SMT

- Lexical ambiguity (e.g., words are polysemous).
- Differing word orders.
- Syntactic ambiguity.
- Miscellaneous idiosyncracies.

- Sentence alignment.
 - Gale & Church: alignment by length (minimize costs).
 - Church: cognates approximated by 4-graphs.
 - Melamed: cognates approximated by longest common subsequences.
The noisy channel

Language model

Source $P(E)$

Translation model

Channel $P(F|E)$

Decoder

Observed F

$E^* = \arg\max_E P(F|E)P(E)$
Word alignment

- **Word alignments** can be 1:1, N:1, 1:N, 0:1, 1:0,... E.g.,

 - "zero fertility" word: not translated (1:0)
 - "spurious" words: generated from 'nothing' (0:1)
 - One word translated as several words (1:N)

Note that this is only one possible alignment
IBM Model 1 assumption

\[P(\text{Canada's program has been implemented}) \]

\[e_0 \quad e_1 \quad e_2 \quad e_3 \quad e_4 \quad e_5 \quad e_6 \]

\[f_1 \quad f_2 \quad f_3 \quad f_4 \quad f_5 \quad f_6 \quad f_7 \quad f_8 \quad f_9 \]
IBM Model 1: EM

1. Initialize translation parameters randomly (or uniformly).

2. Expectation: Compute expected value of $\text{Count}(e, f)$ for all words in training data \mathcal{O}, given your current translation parameters, θ_k.

3. Maximization: Compute the maximum likelihood estimate of the parameters based on the expected counts, giving improved parameters, θ_{k+1}.
IBM Model 1: EM

1. Take the **product** of each $p(e)$ with each alignments and sentence pair.

2. **Normalize** by summing over all alignments for each sentence.

3. **Add** the appropriate normalized counts for each French/English word pair to find t_{count} (and total).

4. Use t_{count} and total to **re-estimate** $p(f|e)$.

(See lecture 6-1)

$$P(F|a, E) = P(maison|blue) \times P(bleue|house) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$$

$$P(F|a, E) = P(la|the) \times P(maison|house) = \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$$
Decoding IBM Model 1; phrases

• How does greedy decoding work at an abstract level?
 • Consider some of the transformation functions.

• How does phrase-based translation differ from word-based translation?
 • E.g., we learn alignments given fully observable models in which word alignments are given.
Bilingual evaluation: BLEU

• In lecture 6-2, $\|\text{Ref1}\| = 16$, $\|\text{Ref2}\| = 17$, $\|\text{Ref3}\| = 16$, and $\|\text{Cn1}\| = 18$ and $\|\text{Cn2}\| = 14$,

 $brevity_1 = \frac{17}{18}$ \hspace{1cm} $BP_1 = 1$

 $brevity_2 = \frac{16}{14}$ \hspace{1cm} $BP_2 = e^{1 - \left(\frac{8}{7}\right)} = 0.8669$

• Final score of candidate C:

 \[
 \text{BLEU} = BP \times (p_1 p_2 \ldots p_n)^{1/n}
 \]

 where

 \[
 p_n = \frac{\sum_{ngram \in C} \text{Count}_R(ngram)}{\sum_{ngram \in C} \text{Count}_C(ngram)}
 \]
BLEU example

- **Reference 1:** I am afraid Dave
- **Reference 2:** I am scared Dave
- **Reference 3:** I have fear David
- **Candidate:** I fear David

- \(\text{brevity} = \frac{4}{3} \geq 1 \) so \(BP = e^{1 - \left(\frac{4}{3}\right)} \)

- \(p_1 = \frac{\sum_{1\text{gram} \in C} \text{Count}_R(1\text{gram})}{\sum_{1\text{gram} \in C} \text{Count}_C(1\text{gram})} = \frac{1+1+1}{1+1+1} = 1 \)

- \(p_2 = \frac{\sum_{2\text{gram} \in C} \text{Count}_R(2\text{gram})}{\sum_{2\text{gram} \in C} \text{Count}_C(2\text{gram})} = \frac{1}{2} \)

- \(\text{BLEU} = BP(p_1 p_2)^\frac{1}{2} = e^{1 - \left(\frac{4}{3}\right)} \left(\frac{1}{2}\right)^\frac{1}{2} \approx 0.5067 \)

Assume \(cap(n) = 2 \) for all \(n \)-grams.
Automatic speech recognition
Manners of articulation

- **Phoneme**: *n.* a distinctive unit of speech sound.

- English phonemes can be partitioned into groups, e.g.,:
 - ** Stops/plosives**: complete vocal tract constriction and burst of energy (e.g., ‘papa’).
 - ** Fricatives**: noisy, with air passing through a tight constriction (e.g., ‘shift’).
 - ** Nasals**: involve air passing through the nasal cavity (e.g., ‘mama’).
 - ** Vowels**: open vocal tract, no nasal air.
 - ** Glides/liquids**: similar to vowels, but typically with more constriction (e.g., ‘wall’).
What is sound?

- A single **tone** is a sinusoidal function of pressure and time.
 - **Amplitude**: *n.* The degree of the displacement in the air. This is similar to ‘loudness’.
 Often measured in **Decibels (dB)**.
 - **Frequency**: *n.* The number of cycles within a unit of time.
 e.g., **1 Hertz (Hz) = 1 vibration/second**
Windowing and spectra
Spectrograms

- **Spectrogram**: *n.* a 3D plot of amplitude and frequency over time.
Formants and phonemes

- **Formant**: *n.* A large concentration of energy within a band of frequency (e.g., F_1, F_2, F_3).
The vowel trapezoid

If I asked you about phonemes, I’d probably give you example words.

E.g., iy as in sheet
Prosody

• **Sonorant**: *n.* Any *sustained* phoneme in which the *glottis* is vibrating (i.e., the phoneme is ‘*voiced*’).
 - Includes some consonants (e.g., `/w/`, `/m/`, `/g/`).

• **Prosody**: *n.* the *modification* of speech acoustics in order to convey some *extra-lexical* meaning:
 - **Pitch**: Changing of F_0 over time.
 - **Duration**: The length in time of sonorants.
 - **Loudness**: The amount of *energy* produced by the *lungs*.
Mel-frequency cepstral coefficients

- **Mel-frequency cepstral coefficients (MFCCs)** are the most popular representation of speech used in ASR.
 - They are the spectra of the logarithms of the mel-scaled filtered spectra of the windows of the waveform.

![Diagram of MFCC process]

- Based on what we know about human perception of sound and the source-filter model.
Classifying speakers

• The speech produced by **one speaker** will cluster **differently** in MFCC space than speech from **another speaker**.
• We can ∴ decide if a given observation comes from one speaker or another.

<table>
<thead>
<tr>
<th>MFCC</th>
<th>Time, t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 1 ... T</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>42</td>
<td>...</td>
</tr>
</tbody>
</table>

$P(\mid 0) > P(\mid 1)$

Observation matrix
Continuous distributions

• In the past, we used discrete probability functions.
• Since we are now operating with continuous variables, we need to fit continuous probability functions to a discrete number of observations.

• If we assume the 1-dimensional data in this histogram is Normally distributed, we can fit a continuous Gaussian function simply in terms of the mean \(\mu \) and variance \(\sigma^2 \).
Mixtures of Gaussians

- **Gaussian mixture models (GMMs)** are a weighted linear combination of \(M \) component Gaussians, \(\langle \Gamma_1, \Gamma_2, \ldots, \Gamma_M \rangle \) such that

\[
P(\mathbf{x}) = \sum_{j=1}^{M} P(\Gamma_j) P(\mathbf{x}|\Gamma_j)
\]
Continuous HMMs

• Previously we saw discrete HMMs: at each state we observed a discrete symbol from a finite set of discrete symbols.
• A continuous HMM has observations that are distributed over continuous variables.
 • Observation probabilities, b_i, are also continuous.

$$\tilde{x} = \begin{bmatrix} 4.32957 \\ 2.48562 \\ 1.08139 \\ ... \\ 0.45628 \end{bmatrix}$$
Levenshtein distance

<table>
<thead>
<tr>
<th>Reference</th>
<th>-</th>
<th>how</th>
<th>to</th>
<th>wreck</th>
<th>a</th>
<th>nice</th>
<th>beach</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>how</td>
<td>∞</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>to</td>
<td>∞</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>recognize</td>
<td>∞</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>speech</td>
<td>∞</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

- See the example in lecture 8-2. Work it out yourself.
Speech synthesis
Speech synthesis

• **Text-to-speech**: *n.* the conversion of electronic text into equivalent, audible speech waveforms.

• Three **architectures** for performing speech synthesis:
 • Formant synthesis,
 • Concatenative synthesis,
 • Articulatory synthesis.

• How do they differ? What are their (dis)advantages?

• Common **components** of speech synthesis:
 • **Letter-to-sound rules** and dictionaries,
 • Acoustic prosody modification.
Information retrieval
Information retrieval (IR)

• Given **queries** in natural language, search for documents or information that answers those queries.
 • Returning documents vs. answering the questions directly.

• Evaluating multiple IR systems using **precision** and **recall**.

• The vector space model.

• High-level aspects of singular-value decomposition
The cosine measure

- The cosine measure (a.k.a., ‘normalized correlation coefficient’) is

\[
\cos(\mathbf{q}, \mathbf{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}
\]

where \(\mathbf{q}\) and \(\mathbf{d}\) are \(n\)-dimensional vectors for the query and document, respectively.

- Larger values of \(\cos(\mathbf{q}, \mathbf{d})\) means stronger correlation, so \(\mathbf{q}\) is ‘closer’ to \(\mathbf{d}_1\) than \(\mathbf{d}_2\) iff \(\cos(\mathbf{q}, \mathbf{d}_1) > \cos(\mathbf{q}, \mathbf{d}_2)\).
Summarization
Summarization

• Reducing a single document or multiple documents down to their most important or salient elements.

 • **Extractive** summarization vs. **synthetic** summaries.

 • What features are useful in identifying important phrases or sections? What are their properties?
Determining relevance

• The relevance of sentences and phrases within the text can be approximated by:

 • **Position:** The location of the phrase in the document.
 • **Cues:** The presence of certain words that indicate relevance (e.g., “crucially”, “in conclusion”).
 • **Cohesion:** The distribution of words and their co-occurrences across the document.
ROUGE-2 example

Don’t sit on a wall if you’re an egg.

Horses fail to perform surgery upon an egg.

Humpty Dumpty had a great fall.

Candidate: An egg falls off a wall.

\[
ROUGE2 = \frac{\sum_{S \in \{RefSumm\}} \sum_{\text{bigram} \in S} \text{Count}_{\text{match}}(\text{bigram})}{\sum_{S \in \{RefSumm\}} \sum_{\text{bigram} \in S} \text{Count} (\text{bigram})}
\]

\[
ROUGE2 = \frac{2 + 1 + 0}{8 + 7 + 5} = \frac{3}{20}
\]
Miscellaneous classification
Miscellaneous classification

• Walk through and understand the high-level aspects of these models:
 • Support vector machines,
 • Neural networks,
 • Word-vector representations, and
 • Transformation-based learning.

• **Hint**: How do these models differ and how they are similar? What are their strengths and weaknesses? Are there any that are associated with a particular task?
Final thoughts

(not thoughts on the final)
NLC in industry

Google
Yahoo!
Nielsen BuzzMetrics
Open Text
Microsoft
IBM
Hakia
Nuance
PEARSON
Wolfram Alpha
J.D. Power & Associates
ATT
Final thoughts

• This course **barely** scratches the surface of **natural language computing**. Talk to these people:

 - Graeme Hirst
 - Gerald Penn
 - Frank Rudzicz
 - Suzanne Stevenson

• Most of the techniques in this course are applicable **generally**.
 • Hidden Markov models, e.g., are used almost universally, including in finance, biology, medicine, and robotics.
My research
Aside – Knowledge

• **Anecdotes** are often useless except as proofs by contradiction.
 • E.g., “I saw Google used as a verb” does not mean that Google is always (or even likely to be) a verb, just that it is not always a noun.

• **Shallow statistics** are often not enough to be truly meaningful.
 • E.g., “My ASR system is 95% accurate on my test data. Yours is only 94.5% accurate, you horrible knuckle-dragging idiot.”
 • What if the test data was biased to favor my system?
 • What if we only used a very small amount of data?

• We need a test to see if our statistics actually mean something.

Find some way to be comfortable making mistakes
Thank you