Relating queries and documents

• In the last lecture, we saw how webpages may be ranked according to how important they appear.
 • This was done by taking advantage of the structure of the web (i.e., links in and links out).

• What if we don’t have very much structure?

• How do we relate queries and documents in the first place?
The vector space model

• In the vector space model, queries and documents are both represented by unit-length vectors in word space.
 • Each dimension is a word in the document collection.
 • The domain of each dimension can be, e.g.,
 • 0/1: absent/present
 • \mathbb{N}: term frequency of word i in document j (tf_{ij}).
 • \mathbb{R}_0^+: damped weight, e.g.,
 \[
 = \begin{cases}
 1 + \log tf_{ij} & \text{if } tf_{ij} > 0 \\
 0 & \text{if } tf_{ij} = 0
 \end{cases}
 \]
The vector space model

• Once vectors are determined for the query and the available documents, we can determine similarity according to the cosine method.
• Vectors that are near each other (within a certain angular radius from the query) are considered relevant.

Document d_2 is closest to query q.
The cosine measure

- The **cosine measure** (a.k.a., ‘normalized correlation coefficient’) is

\[
\cos(\vec{q}, \vec{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2} \sqrt{\sum_{i=1}^{n} d_i^2}}
\]

where \(\vec{q}\) and \(\vec{d}\) are \(n\)-dimensional vectors for the **query** and **document**, respectively.
The cosine measure

• The cosine measure (a.k.a., ‘normalized correlation coefficient’) is

\[\cos(\tilde{q}, \tilde{d}) = \frac{\sum_{i=1}^{n} q_i d_i}{\sqrt{\sum_{i=1}^{n} q_i^2 \sqrt{\sum_{i=1}^{n} d_i^2}}} \]

where \(\tilde{q} \) and \(\tilde{d} \) are \(n \)-dimensional vectors for the query and document, respectively.

• Larger values of \(\cos(\tilde{q}, \tilde{d}) \) means stronger correlation, so \(\tilde{q} \) is ‘closer’ to \(\tilde{d}_1 \) than \(\tilde{d}_2 \) iff \(\cos(\tilde{q}, \tilde{d}_1) > \cos(\tilde{q}, \tilde{d}_2) \).
Term weighting

• What if we want to **weight** words in the vector space model?

 • **Term frequency**, \(tf_{ij} \): number of occurrences of word \(w_i \) in document \(d_j \).

 • **Document frequency**, \(df_i \): number of documents in which \(w_i \) appears.

 • **Collection frequency**, \(cf_i \): total occurrences of \(w_i \) in the collection.
Term frequency

• **Higher** values of tf_{ij} (for contentful words) suggest that word w_i is a **good** indicator of the content of document d_j.
 • When comparing the relevance of a document d_j to a keyword w_i, tf_{ij} should be **maximized**.

• We often **dampen** tf_{ij} with f to temper these comparisons.
 • E.g., even if $tf_{ij} = 3tf_{ik}$, *empirically* we don’t want to say that document d_j is *thrice* as relevant as document d_k.
 • $tf_{dampen} = 1 + \log(tf)$, if $tf > 0$.
Document frequency

- The document frequency, d_{f_i}, is the number of documents in which w_i appears.
 - Meaningful words may occur repeatedly in a related document, but functional (or less meaningful) words may be distributed evenly over all documents.

<table>
<thead>
<tr>
<th>Word</th>
<th>Collection frequency</th>
<th>Document frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernel</td>
<td>10,440</td>
<td>3997</td>
</tr>
<tr>
<td>try</td>
<td>10,422</td>
<td>8760</td>
</tr>
</tbody>
</table>

- E.g., kernel occurs about as often as try in total, but it occurs in fewer documents – it represents a more specific concept.
Inverse document frequency

• Relevant/specific words, w_i, should give smaller values of df_i.

• Therefore, the inverse document frequency is

$$idf_i = \log \left(\frac{D}{df_i} \right)$$

where D is the total number of documents and we scale with log, as before.

• This measure gives full weight to words that occur in 1 document, and zero weight to words that occur in all documents.
tf.idf

- We combine the **term frequency** and the **inverse document frequency** to give us a joint measure of **relatedness** between words and documents:

\[
tf.idf(w_i, d_j) = \begin{cases}
(1 + \log(tf_{ij}))\frac{D}{df_i} & \text{if } tf_{ij} \geq 1 \\
0 & \text{if } tf_{ij} = 0
\end{cases}
\]
Aspects of tf.idf

• The *tf.idf* score has been criticised for being *ad hoc*, but it has been shown to be robust and effective in a wide range of applications where a **rough** estimate of **relatedness** is needed.

• However,
 • The effectiveness of *tf.idf* can vary depending on the **number of words** in a query.
 • **Ambiguous** words can cause spurious matches.
 • Vectors of terms collected independently in this way can’t capture **connections** between words.
 • We somehow need vectors of ideas/concepts....
Latent semantic indexing

• **Co-occurrence**: *n.* when two or more terms occur in the same documents more often than by chance.
 • Note: this is *not* quite the same thing as collocations

• Consider the following:

<table>
<thead>
<tr>
<th></th>
<th>Term 1</th>
<th>Term 2</th>
<th>Term 3</th>
<th>Term 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Query</td>
<td>user</td>
<td>interface</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Document 1</td>
<td>user</td>
<td>interface</td>
<td>HCI</td>
<td>interaction</td>
</tr>
<tr>
<td>Document 2</td>
<td></td>
<td></td>
<td>HCI</td>
<td>interaction</td>
</tr>
</tbody>
</table>

• Document 2 appears to be **related** to the query although it contains **none** of the query terms.
 • The query and document 2 are **semantically related**.
Latent semantic indexing

- **Latent semantic indexing** projects queries and documents into a space with latent (i.e., hidden) semantic dimensions.
 - Co-occurring terms are projected onto the same dimensions. Non-co-occurring terms are not.
 - In semantic space, a query and a document can have high cosine similarity even if they do not share any terms.

- The latent semantic space has fewer dimensions than the original space (which had 1 dimension per term).
Latent semantic indexing

• There are *many* different mappings from high-dimensional spaces to low-dimensional spaces.

 • The ‘low dimensions’ are *not* usually selected from among the existing dimensions (in this case).

 • We must learn some function that projects our N dimensions onto some *new* dimensions ...
Latent semantic indexing example

- This **original** space has 5 dimensions (one per term). The **reduced** space has two dimensions, perhaps vaguely referring to outer space and to vehicles, respectively.

<table>
<thead>
<tr>
<th></th>
<th>$$d_1$$</th>
<th>$$d_2$$</th>
<th>$$d_3$$</th>
<th>$$d_4$$</th>
<th>$$d_5$$</th>
<th>$$d_6$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>cosmonaut</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>astronaut</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>moon</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>truck</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Least-squares method

• Consider n points of functional data, $(x_1, y_1) \ldots (x_n, y_n)$. We want to fit the line $f(x) = mx + b$ to these points.

• In a least-squares approach, the best fit is the one that minimizes the sum of the squares of the differences:

$$\min_{m,b} SS(x, y; m, b) = \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

• We find m and b that minimize this function by solving

$$\frac{\delta SS(x,y; m,b)}{\delta m} = 0$$ and $$\frac{\delta SS(x,y; m,b)}{\delta b} = 0$$
Least-squares method

- **Linear regression** reduces \((x_i, y_i)\) to just \(m\) and \(b\).
Principal components analysis (PCA)

- **PCA** is an eigendecomposition of the variance in the data.
 - It gives us a sequence of orthogonal vectors that represent the maximum amount of variance in the remaining data.

- Below, most of the variance is along X – it captures the most amount of change in the data.
 - We can rotate the data so that it’s expressed in the new dimensions.
Principal components analysis (PCA)

• If we express the data *only* in terms of X,
 • it will be easier to learn a model.
 (we have fewer parameters)
 • we will lose some information.
 (what if the classes we want to distinguish are all differentiated in Y? (note: this should be rare))
Singular value decomposition

• Singular value decomposition (SVD) can be used both as:
 • a method of co-occurrence analysis between words that aids in similarity judgements, and
 • a method for dimensionality reduction.

• Just as linear regression projects 2-dimensional data onto a 1-dimensional line, SVD projects a \(n \)-dimensional matrix, \(A \), onto a \(k \)-dimensional matrix, \(\hat{A} \), where \(n \gg k \).
 • The matrix \(\hat{A} \) is produced such that some maximal amount of information in \(A \) is retained.
Singular value decomposition

• The SVD projection is computed by decomposing the term-by-document matrix $A_{t \times d}$ into the product of three matrices:

$$T_{t \times n}, S_{n \times n}, \text{ and } D_{d \times n}$$

where t is the number of words (terms), d is the number of documents, and $n = \min(t, d)$.

• Specifically,

$$A_{t \times d} = T_{t \times n}S_{n \times n}(D_{d \times n})^\top$$
SVD example

\[
A_{t \times d} = T_{t \times n} S_{n \times n} (D_{d \times n})^\top
\]

\[
A = \begin{bmatrix}
\text{cosmonaut} & 1 & 0 & 1 & 0 & 0 & 0 \\
\text{astronaut} & 0 & 1 & 0 & 0 & 0 & 0 \\
\text{moon} & 1 & 1 & 0 & 0 & 0 & 0 \\
\text{car} & 1 & 0 & 0 & 1 & 1 & 0 \\
\text{truck} & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{bmatrix}
\]

\[
T = \begin{bmatrix}
\text{cosm.} & -0.44 & -0.30 & 0.57 & 0.58 & 0.25 \\
\text{astro.} & -0.13 & -0.33 & -0.59 & 0 & 0.73 \\
\text{moon} & -0.48 & -0.51 & -0.37 & 0 & -0.61 \\
\text{car} & -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\
\text{truck} & -0.26 & 0.65 & -0.41 & 0.58 & -0.09 \\
\end{bmatrix}
\]

\[
S = \begin{bmatrix}
2.16 & 0 & 0 & 0 & 0 & 0 \\
0 & 1.59 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.28 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0.39 & 0 \\
\end{bmatrix}
\]

\[
D^\top = \begin{bmatrix}
\text{d1} & -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\
\text{d2} & -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\
\text{d3} & 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\
\text{d4} & 0 & 0 & 0.58 & 0 & -0.58 & 0.58 \\
\text{d5} & -0.53 & 0.29 & 0.63 & 0.19 & 0.41 & -0.22 \\
\end{bmatrix}
\]

• What do these matrices mean?
SVD example

\[A = \begin{array}{cccccc}
\text{cosmonaut} & 1 & 0 & 1 & 0 & 0 & 0 \\
\text{astronaut} & 0 & 1 & 0 & 0 & 0 & 0 \\
\text{moon} & 1 & 1 & 0 & 0 & 0 & 0 \\
\text{car} & 1 & 0 & 0 & 1 & 1 & 0 \\
\text{truck} & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}\]

- \(A \) is the matrix of term frequencies, \(tf_{ij} \). E.g., \(moon \) occurs once in \(d_1 \) and once in \(d_2 \).
SVD example

- Matrices T and D represent terms and documents, respectively in this new space.
 - E.g., the first row of T corresponds to the first row of A, and so on.

- T and D are orthonormal, so all columns are orthogonal to each other and $T^\top T = D^\top D = I$.

	d_1	d_2	d_3	d_4	d_5	d_6
cos.	-0.75	-0.28	-0.20	-0.45	-0.33	-0.12
astro.	-0.29	-0.53	-0.19	0.63	0.22	0.41
moon	0.28	-0.75	0.45	-0.20	0.12	-0.33
car	0	0	0.58	0	-0.58	0.58
truck	-0.53	0.29	0.63	0.19	0.41	-0.22
SVD example

• The matrix S contains the **singular values** of A in descending order.

 • The i^{th} singular value hints at the amount of variation on the i^{th} axis.

\[
S = \begin{bmatrix}
2.16 & 0 & 0 & 0 & 0 & 0 \\
0 & 1.59 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.28 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0.39
\end{bmatrix}
\]
SVD example

- By restricting T, S, and D to their first $k < n$ columns, their product gives us \hat{A}, a ‘best least squares’ approximation of A.

\[
T = \begin{pmatrix}
\cosm & -0.44 & -0.30 & 0.57 & 0.58 & 0.25 \\
\astro & -0.13 & -0.33 & -0.59 & 0 & 0.73 \\
\moon & -0.48 & -0.51 & -0.37 & 0 & -0.61 \\
\car & -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\
\truck & -0.26 & 0.65 & -0.41 & 0.58 & -0.09 \\
\end{pmatrix}
\]

\[
S = \begin{pmatrix}
2.16 & 0 & 0 & 0 & 0 \\
0 & 1.59 & 0 & 0 & 0 \\
0 & 0 & 1.28 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0.39 \\
\end{pmatrix}
\]

\[
D^T = \begin{pmatrix}
d_1 & d_2 & d_3 & d_4 & d_5 & d_6 \\
-0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\
-0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\
0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\
0 & 0 & 0.58 & 0 & -0.58 & 0.58 \\
-0.53 & 0.29 & 0.63 & 0.19 & 0.41 & -0.22 \\
\end{pmatrix}
\]
SVD projection

• Recall that the purpose of doing SVD was to find co-occurrence patterns among terms and documents.

• When SVD finds the optimal projection to a lower-dimensional space, the result is that words that have similar co-occurrence patterns are projected onto the same dimensions.
 • e.g., car and truck could be projected on the same dimensions.

• Therefore, we can identify similarities between queries and documents even if they share no terms in common.
Similarities in lower dimensions

• Consider $B = S_{2 \times 2} D_{2 \times d}^T$ from the previous example:

$$B = \begin{bmatrix} d_1 & d_2 & d_3 & d_4 & d_5 & d_6 \\ -1.62 & -0.60 & -0.44 & -0.97 & -0.70 & -0.26 \\ -0.46 & -0.84 & -0.30 & 1.00 & 0.35 & 0.65 \end{bmatrix}$$

• If we normalize the columns of B and multiply its transpose with it, we get:

$$B^T B = \begin{bmatrix} d_1 & d_2 & d_3 & d_4 & d_5 & d_6 \\ d_1 & 1 & & & & \\ d_2 & 0.78 & 1 & & & \\ d_3 & 0.95 & 0.94 & 1 & & \\ d_4 & 0.47 & -0.18 & 0.17 & 1 & \\ d_5 & 0.74 & 0.16 & 0.49 & 0.94 & 1 \\ d_6 & 0.10 & -0.54 & -0.22 & 0.93 & 0.75 & 1 \end{bmatrix}$$
Similarities in lower dimensions

- This matrix gives us the correlation coefficients between documents in their **latent (hidden) semantic space**, regardless of their constituent terms.

<table>
<thead>
<tr>
<th></th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
<th>d_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_2</td>
<td>0.78</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_3</td>
<td></td>
<td>0.94</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_5</td>
<td></td>
<td>0.16</td>
<td>0.49</td>
<td>0.94</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d_6</td>
<td>0.10</td>
<td>-0.54</td>
<td>-0.22</td>
<td>0.93</td>
<td>0.75</td>
<td>1</td>
</tr>
</tbody>
</table>

- E.g., d_1 and d_3 are very similar, whereas d_1 and d_6 are not.
Latent semantic indexing in IR

• The process of projecting different (but related) terms to common underlying dimensions in the ‘semantic’ space can be thought of as ‘soft clustering’.
 • This is desirable – if a user poses a particular query, we want to identify all documents that might be of use, regardless of the specific terms used.
 • Occasionally this process results in some spurious matches, especially with polysemous (many meaning) words, but it remains a useful tool in practice.
Naïve Bayes

- Naïve Bayes can be used for *ad hoc* document retrieval.

- Imagine each of D documents is a class with one training example – the document itself.

- Rank documents d_j based on the **posterior probability** of a query q “being generated” by those documents.

 $$P(q; d_j)$$

- This is called a “language modelling” approach.
Naïve Bayes – generative model

$P(q; d_1) = 0.3$

Ranked Retrievals:

- d_1: 0.3
- d_6: 0.28
- d_5: 0.18
- d_2: 0.1
- d_3: 0.08
- d_4: 0.06
Smoothing

• Since each language model, d_j, will be very sparse, we need to smooth.

• Linear interpolation: $P(q; d_j) \approx \lambda \hat{P}(q; d_j) + (1 - \lambda) \hat{P}(q)$

where

$\hat{P}(q; d_j)$ is the probability of q in the language model earned on d_j

$\hat{P}(q)$ is the probability of q given the entire corpus.

• Add-δ: same as in Assignment 2.
Experimental results

Linear interpolation performs almost as well as vector-space ranking (VSR).

Add-δ (called ‘Laplace’ here) – not so much.
Evaluation

• How can we decide which of two search engines is better at responding to a query?
 • **Precision** is the proportion of returned documents that are relevant.

 • **Recall** is the proportion of relevant documents that are returned.

 • **Rank** is also important – we want the correct documents to be near the top of the ordered list.
Recall

- If there are 20 relevant documents in a collection, each of the following systems has a recall of $\frac{5}{20} = 25\%$.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Boogle</th>
<th>Ging</th>
<th>Whoopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>3</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>4</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>5</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>6</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>7</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>8</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>9</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>10</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>
Precision is not enough

- Each of the following systems has a **precision** of 50%.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Boogle</th>
<th>Ging</th>
<th>Whoopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Cutoff precision

- Measure precision down to some cutoff, e.g., first 5.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Boogle</th>
<th>Ging</th>
<th>Whoopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>☒</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>☒</td>
<td>✔</td>
<td>☒</td>
</tr>
<tr>
<td>3</td>
<td>☒</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>4</td>
<td>☒</td>
<td>✔</td>
<td>☒</td>
</tr>
<tr>
<td>5</td>
<td>☒</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>0%</td>
<td>100%</td>
<td>60%</td>
</tr>
</tbody>
</table>
Uninterpolated Average Precision

- Measure precision at each relevant document returned.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Boogle</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>x</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>1/6</td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
<td>2/7</td>
</tr>
<tr>
<td>8</td>
<td>✓</td>
<td>3/8</td>
</tr>
<tr>
<td>9</td>
<td>✓</td>
<td>4/9</td>
</tr>
<tr>
<td>10</td>
<td>✓</td>
<td>5/10</td>
</tr>
</tbody>
</table>

UAP

\[
\frac{\left(\frac{1}{6} + \frac{2}{7} + \frac{3}{8} + \frac{4}{9} + \frac{5}{10}\right)}{5} = 0.3544
\]

Normalize at end by number of relevant documents.
Uninterpolated Average Precision

<table>
<thead>
<tr>
<th>Rank</th>
<th>Boogle</th>
<th>Ging</th>
<th>Whoopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>2</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>3</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>4</td>
<td>✗</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>5</td>
<td>✗</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>6</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>7</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>8</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>9</td>
<td>✔</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>10</td>
<td>✔</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>UAP</td>
<td>0.3544</td>
<td>1.0</td>
<td>0.6787</td>
</tr>
</tbody>
</table>
Interpolated average precision

• In *interpolated average precision (IAP)*, we compute *precision* relative to *recall*.

• Measure precision at fixed levels of recall
 • e.g., recall=0%, 10%, 20%,..., 100% (the popular 11-point measure)

• **For each** recall level r, **find** the point in the ranked list where recall reaches r, **then** compute precision p.
• **If** precision goes up to p_i as we move down the ranked list to recall level r_i, **interpolate** by setting all recent smaller precisions to p_i.
Example IAP

![Graph of precision vs recall](Image)

![Graph of interpolated precision vs recall](Image)
Interpolated average precision

- Measure precision at various levels of recall, then **average**.
- E.g., 11-point IAP with recall levels 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Boogle</th>
<th>Recall</th>
<th>UAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>✗</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>✗</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>✗</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>✗</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>✗</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>✔</td>
<td>0%, 10%, 20%</td>
<td>1/6</td>
</tr>
<tr>
<td>7</td>
<td>✔</td>
<td>30%, 40%</td>
<td>2/7</td>
</tr>
<tr>
<td>8</td>
<td>✔</td>
<td>50%, 60%</td>
<td>3/8</td>
</tr>
<tr>
<td>9</td>
<td>✔</td>
<td>70%, 80%</td>
<td>4/9</td>
</tr>
<tr>
<td>10</td>
<td>✔</td>
<td>90%, 100%</td>
<td>5/10</td>
</tr>
</tbody>
</table>

11-pt IAP

SUM/11 = 0.3373
Interpolated average precision

<table>
<thead>
<tr>
<th>Rank</th>
<th>Boogle</th>
<th>Ging</th>
<th>Whoopie</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>✓</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>10</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>11-pt IAP</td>
<td>0.337</td>
<td>1.0</td>
<td>0.708</td>
</tr>
</tbody>
</table>
Precision versus recall

• IAP is more sensitive to recall whereas UAP is more useful when your primary concern is relevance order.
 • Returning all documents available will give you 100% recall, but would be useless to the user.
 • Returning one document may give you high precision, but very low recall.

• The F-score combines precision and recall with parameter \(\alpha \) that weighs the two:
 \[
 F = \frac{1}{\frac{\alpha}{P} + \frac{1 - \alpha}{R}}
 \]
Conclusion

• Reading: Manning & Schütze, chapter 15, especially sections 15.2 and 15.4.
 • Note: consider the errata for this textbook posted on the course webpage!

• Next: 11-1 Summarization
 11-2 Miscellaneous machine learning
 12-1 Review
 24 April Exam