CSC 401/2511: Natural Language Computing

Instructors: Frank Rudzicz & Clloé Pou-Prom
Email: csc401-2019-01@cs.toronto.edu
Lectures: MF 10h–11h, PB 250
Office hours: M 11h00–12h00, Vector Institute
Tutorials: W 10h-11h, MB 128
TAs:
A1: Zhewei Sun and Maryam Fallah
A2: Mohamed Abdalla and Raeid Saqur
A3: Amanjit Kainth and Jianan Chen

This course presents an introduction to natural language computing in applications such as information retrieval and extraction, intelligent web searching, speech recognition, and machine translation. These applications will involve various statistical and machine learning techniques.

Prerequisites: CSC 207 or 209 or 228, and STA 247 or 255 or 257 and a CGPA of 3.0 or higher or a CSC subject POSt. MAT 223 or 240 is strongly recommended.

Evaluation policies
CSC401/2511 students will be marked on three homework assignments and a final exam. The relative proportions of these marks are as follows:

- Assignment with lowest mark 15% language: Python
- Assignment with median mark 20% language: Python
- Assignment with highest mark 25% language: Python
- Final exam 40%

Graduate students enrolled in CSC2511 will have the option of undertaking a course project instead of the assignments in teams of at most two students for 60% of the course mark; all graduate students need to pass the final exam, which is worth 40% of the final mark. All code must run on the CDF machines.

Note that a 24-hour ‘silence policy’ will be in effect – we do not guarantee that the instructors or TAs will respond to your request within 24 hours of an assignment’s due time.

Lateness
A 10% deduction is applied to late homework one minute after the due time. Thereafter, an additional 10% deduction is applied every 24 hours up to 72 hours late at which time the homework will receive a mark of zero. No exceptions will be made except in emergencies, including medical emergencies, at the instructor’s discretion.

Final exam
A grade of at least D– on the final exam is required to pass the course. In other words, if you receive an F on the final exam then you automatically fail the course, regardless of your performance in the rest of the course.
Academic offenses

No unauthorized collaboration on the assignments is permitted. The work you submit must be your own. ‘Collaboration’ in this context includes but is not limited to sharing of source code, correction of another’s source code, copying of written answers, and sharing of answers prior to submission of the work (including the final exam). Failure to observe this policy is an academic offense, carrying a penalty ranging from a zero on the homework to suspension from the University. See the academic integrity page of the University of Toronto at http://www.artsci.utoronto.ca/osai/students

Readings

Planned topics

- Introduction to corpus-based linguistics
- N-gram models and linguistic features
- Entropy and information theory
- Hidden Markov models
- Statistical machine translation
- Neural language models and word embedding
- Articulatory and acoustic phonetics
- Automatic speech recognition
- Speech synthesis
- Information retrieval
- Dialogue and chatbots

Planned course calendar

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 January</td>
<td>First lecture</td>
</tr>
<tr>
<td>20 January</td>
<td>Last day to add CSC 401</td>
</tr>
<tr>
<td>21 January</td>
<td>Last day to add CSC 2511</td>
</tr>
<tr>
<td>11 February</td>
<td>Assignment 1 due</td>
</tr>
<tr>
<td>18–22 February</td>
<td>Reading week – no lectures or tutorial</td>
</tr>
<tr>
<td>25 February</td>
<td>Last day to drop CSC 2511</td>
</tr>
<tr>
<td>8 March</td>
<td>Assignment 2 due</td>
</tr>
<tr>
<td>17 March</td>
<td>Last day to drop CSC 401</td>
</tr>
<tr>
<td>5 April</td>
<td>Last lecture</td>
</tr>
<tr>
<td>5 April</td>
<td>Assignment 3 due</td>
</tr>
<tr>
<td>5 April</td>
<td>Project final report due</td>
</tr>
<tr>
<td>TBD April</td>
<td>Final exam</td>
</tr>
</tbody>
</table>

See course website for details.