An algorithm to improve speech recognition in noise for hearing impaired listeners

E. W. Healy, S. E. Yoho, Y. Wang, D. Wang Presented by Sara Sabour

Challenges

- Noisy background
- Monaural input
- No prior knowledge
- Hearing impaired listener

Overview

- Related works
- Algorithm
 - Feature extraction
 - Training
- Testing
- Results

Hearing Impaired

- Reduced audibility
- Reduces frequency resolutior
- Across frequency deficiency

Related Works

- Microphone arrays, limits
 - Assumption of different spatial locations
 - Configuration stationarity
- Single Microphone, statistical analysis limits
 - Lack of increase in intelligibility for human due to
 - Musical noise
 - Removal of low intensity sounds

Related Work

- IBM: ideal binary time frequency mask
 - Matrix with 1 for each TF in which SNR>T
 - Ideal: Prior knowledge and optimal SNR gain
- Without prior knowledge
 - How to estimate? Kim et al. (2009)
 - Gaussian mixture model
 - For normal hearing
 - Adopted for cochlear implant users
 - GMM overfit

Overview of Algorithm

FIG. 1. Schematic diagram of the current speech-segregation system. DNN = deep neural network, IBM = ideal binary mask.

Filtering

- 64 channel, 50 to
 8000 Hz, 20ms
 with 10ms overlap
- Gammatone
- Cochleagram

Feature Extraction

- Amplitude modulation spectrogram(AMS)
- Relative spectral transform and preceptual linear prediction(RASTA-PLP)
- Mel-frequency cepstral coefficients(MFCC)
- Delta features on RASTA-PLP
- 85-D feature vector

Classifier

- Deep neural networks within each frequency
- Two hidden layers & RBM pretraining
- Gaussian-Bernoulli and Bernoulli-Bernoulli RBMs
- 200 units and sigmoid transfer function
- Cross entropy objective function error of IBM
- Mini-batch gradient descent, batch size 512

$$L(\mathbf{w}) = -\frac{1}{N} \sum_{n=1}^{N} H(p_n, q_n) = -\frac{1}{N} \sum_{n=1}^{N} \left[y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n) \right]$$

Deep Neural Networks

- 1. Initialize all the weights **INPUT**
- 2. Send the input through
- 3. Calculate the loss
- 4. Back propagate
- 5. Update the weights

A SIMPLE NEURAL NETWORK

6. Iterate

Contextual Information

- Capturing structured spectro-temporal patterns
- Idea: concatenating neighbouring TFs posterior probability
- Window of 5 time frame and 17 frequency channel

Overview of Algorithm

FIG. 1. Schematic diagram of the current speech-segregation system. DNN = deep neural network, IBM = ideal binary mask.

Testing: Subjects

- 12 NH listeners
 - aged 19-28 (mean = 21)
 - 20 dB at octave frequencies from 250 to 8000 Hz
 - Female
- 12 diagnosed with bilateral sensorineural hearing loss of cochlear origin

Frequency (Hz)

Data

- Male talker recordings of HINT sentences (Nilsson et al.)
- 16kHz and equal RMS energy
- Different training and test data
- Random start point looped **Noise**, 140 ms margin of original signal
 - SSN: commercial HINT, 10s
 - -2, -5, -8 dB SNR (over 1 HINT)
 - **babble**: 8 talkers of TIMIT (Garofolo et al, 1993)
 - 0, -2, -5 dB SNR (over 1 HINT)

Procedure

- Familiarization
 - 5 sentences in each: quiet UP, SSN UP, SSN P, babble UP, babble P
 - 0 dB SNR
- Testing
 - 20 HINT, 8 conditions
 - (2 P/UP X 2 SSN/Babble X 2 SNRs)
 - Each HI/NH: 2/3 SNRs
 - Pseudo-randomized condition order, list order
 - UP/P successively and random
 - RMS
 - NH: 65 dBA
 - HI: 85 dBA, 1: 90 dBA

Babble

Compare to Kim et al.

- Both: utility of binary classification
- Amount of improvement
 - Different speech material and noise
- Quality of IBM estimation
 - HIT-FA: percent of correctly classified and percent of false alarms
 - SSN -5 dB: 79.3% vs (64.2% & 76.1%)
 - Babble -5 dB: 80.9% vs (59.4% & 72.4%)

Future Work

- Fact: Intelligibility by HI exceeds NH
 - Simplified feature extraction
 - Optimized Matlab code
 - Technology oriented implementation
- Generalization
 - Talker: Not an issue
 - SNR level: Not a Major issue
 - Noise type
 - Han and Wang: training on absent frames
 - Wang and Wang: large number of noise training

