Speech in healthcare
Studying how systems break down

- Observing how closed systems fail can be a valuable method in discovering how those systems work.
 - Paul Broca (left) discovered, in 1861, that a lesion in the left ventro-posterior frontal lobe caused expressive aphasia.
 - This was the first direct evidence that language function was localized.
 - It hinted at a mechanistic view of speech production.

Broca’s area
Today

• Physical production disorders (e.g., cerebral palsy)
 • Capturing data
 • Using those data in speech recognition
 • Speech output devices

• Physical perception disorders (e.g., deafness)
 • Hearing aids

• Cognitive problems (e.g., Alzheimer’s disease)
 • Neural origins
 • Assistive technologies
Dysarthria

Neuro-motor articulatory disorders resulting in **unintelligible** speech.

7.5 million Americans have **dysarthria**
- Cerebral palsy,
- Parkinson’s,
- Amyotrophic lateral sclerosis)

(National Institute of Health)
Neural origins

• **Types** of dysarthria are related to **specific sites** in the subcortical nervous system.

<table>
<thead>
<tr>
<th>Type</th>
<th>Primary lesion site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ataxic</td>
<td>Cerebellum or its outflow pathways</td>
</tr>
<tr>
<td>Flaccid</td>
<td>Lower motor neuron (\geq 1 cranial nerves)</td>
</tr>
<tr>
<td>Hypo-kinetic</td>
<td>Basal ganglia (esp. substantia nigra)</td>
</tr>
<tr>
<td>Hyper-kinetic</td>
<td>Basal ganglia (esp. putamen or caudate)</td>
</tr>
<tr>
<td>Spastic</td>
<td>Upper motor neuron</td>
</tr>
<tr>
<td>Spastic-flaccid</td>
<td>Both upper and lower motor neurons</td>
</tr>
</tbody>
</table>

(After Darley et al., 1969)
Characteristics of dysarthria

<table>
<thead>
<tr>
<th></th>
<th>Ataxic</th>
<th>Flaccid</th>
<th>Hypokinetic</th>
<th>Hyperkinetic, chorea</th>
<th>Hyperkinetic, dystonia</th>
<th>Spastic</th>
<th>Spastic-flaccid (ALS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monopitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harshness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imprecise consonants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mono-loud</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distorted vowels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slow rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short phrases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypernasal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolonged intervals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low pitch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inappropriate silences</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breathy voice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain-strangled voice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(After Darley et al., 1969)
Dysarthria

The broader neuro-motor deficits associated with dysarthria can make traditional human-computer interaction difficult.

Can we use ASR for dysarthria?
Accounting for dysarthria

- **Ergodic** HMMs can be **robust** against recurring **pauses**, and **non-speech** events.

- Polur and Miller (2005) **replaced** GMM densities with neural networks (after Jayaram and Abdelhamied, 1995), further increasing accuracy.

(From Polur and Miller., 2005)
Adjusting to the individual

Traditional ASR Speaker-dependent Speaker-retrained

Word recognition accuracy (%)

84.9% 3.1%

Why does this massive gulf persist?

Number of Gaussians

Non-dysarthric

Dysarthric
Acoustic ambiguity

This *acoustic* behaviour is indicative of underlying *articulatory* behaviour.

(From Kain et al., 2007)
The vowel trapezoid

\[F_1 \text{ increases} \]

\[F_2 \text{ increases} \]
Formants and tongues

Front/low

Front/high

Back/high

[iy] (tea)

[ae] (cat)

[uw] (moo)
The TORGO database

- TORGO was built to train augmented ASR systems.
 - 9 subjects with cerebral palsy, 9 matched controls.
 - Each reads 500—1000 prompts over 3 hours that cover phonemes and articulatory contrasts (e.g., meat vs. beat).
 - Electromagnetic articulography (and video) track points to <1 mm error.
Vowel durations in TORGO
Information in TORGO

<table>
<thead>
<tr>
<th>Speaker</th>
<th>$H(\text{Acous})$</th>
<th>$H(\text{Artic})$</th>
<th>$H(\text{Ac} \mid \text{Ar})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysarthric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M01</td>
<td>66.37</td>
<td>17.16</td>
<td>50.30</td>
</tr>
<tr>
<td>M04</td>
<td>33.36</td>
<td>11.31</td>
<td>26.25</td>
</tr>
<tr>
<td>F03</td>
<td>42.38</td>
<td>19.33</td>
<td>39.47</td>
</tr>
<tr>
<td>Average</td>
<td>47.34</td>
<td>15.93</td>
<td>38.68</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC01</td>
<td>24.40</td>
<td>21.49</td>
<td>1.14</td>
</tr>
<tr>
<td>MC03</td>
<td>18.63</td>
<td>18.34</td>
<td>3.93</td>
</tr>
<tr>
<td>FC02</td>
<td>16.12</td>
<td>15.97</td>
<td>3.11</td>
</tr>
<tr>
<td>Average</td>
<td>19.72</td>
<td>18.60</td>
<td>2.73</td>
</tr>
</tbody>
</table>

Dysarthric **acoustics** are far more statistically disordered than the control data. **Dysarthric articulation** is just as statistically ordered as the control data. Dysarthric acoustics are far less **predictable** from articulation.
Dynamic Bayes nets and EMA
Dynamic Bayes nets and EMA
Beyond discrete articulation
Dynamic speech gestures

We wish to classify dysarthric speech in a low-dimensional and informative space that incorporates \textit{goal-based} and \textit{long-term dynamics}.

We require a \textit{theoretical framework} to represent relevant and continuous articulatory motion.
Characteristics of dysarthria

<table>
<thead>
<tr>
<th></th>
<th>Ataxic</th>
<th>Flaccid</th>
<th>Hypokinetic</th>
<th>Hyperkinetic, chorea</th>
<th>Hyperkinetic, dystonia</th>
<th>Spastic</th>
<th>Spastic-flaccid (ALS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monopitch</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Harshness</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Imprecise consonants</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Mono-loud</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Distorted vowels</td>
<td>☐</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
</tr>
<tr>
<td>Slow rate</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Short phrases</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Hypernasal</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Prolonged intervals</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Low pitch</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Inappropriate silences</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Variable rate</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Breathy voice</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>Strain-strangled voice</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
<tr>
<td>...</td>
<td>☒</td>
<td>☐</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
<td>☒</td>
<td>☐</td>
</tr>
</tbody>
</table>

Smaller vowel space might be replicable by modifying spring coefficients.

Task-dynamics:

\[Mz'' + Bz' + K(z - z^0) \]
Aspects to consider

• A model of physical speech production should include:

1. **Timing.**
 a) Inter-articulator co-ordination.
 b) Rhythm.

2. **Feedback.**
 a) Acoustic, proprioceptive, and tactile.
1. Timing

- In TD, **pairs of goals** are dynamically coupled in time.
- Articulators are **phase-locked** (0° or 180°; Goldstein *et al.*, 2005)

![Diagram showing phase-locked articulators with in-phase and anti-phase stabilization]

- (C)CV pairs stabilize **in-phase**.
- V(C)C pairs stabilize **anti-phase**.
- **Kinematic errors** occur when competing gestures are **repeated** and tend to stabilize **incorrectly**.
 - e.g., repeat *koptop* (Nam *et al.*, 2010).
1. Timing

- Cerebellar **ataxia** often **prohibits** control over more than one articulator at a time.
 - Apraxia generates incorrect motor **plans**, wholly **distorting** gestural **goals**, hence timing.

- **Dysarthric speech** nearly equally consists of **steady-states** (49.95%) and **transitions** (50.05%) (Vollmer, 1997).
 - Typical speech consists of ~**82.14%** steady-states.

Ataxia n. lack of voluntary coordination of muscle movements, often associated with cerebellar damage.
1. Timing/rhythm

- **Rhythm** (the distribution of *emphasis*) is *not* part of TD.

- **Tremor** behaves as oscillations about an equilibrium.
 - There is evidence that people with Parkinson’s coordinate voluntary movement with involuntary tremors (Kent *et al.*, 2000).

- **Rhythm** in ataxic dysarthria formalized by aberrations in a ‘scanning index’, SI, consisting of syllable lengths S_i,

$$SI = \frac{\prod_{i=1}^{n} S_i}{\left(\frac{\sum_{i=1}^{n} S_i}{n}\right)^n}$$

(Ackermann and Hertrich, 1994)
2. Feedback

- Dysarthria can affect **sensory** cranial nerves.

- **Parkinson’s disease** reduces **temporal** discrimination in **tactile**, **auditory**, and **visual** stimuli.
 - Likely explanation is that **damage** to the **basal ganglia** prohibits the formation of **sensory targets** (Kent *et al.*, 2000).
 - The result is **underestimated** movement.

- **Cerebellar disease** results in **dysmetria** since the **internal model** of the **skeletomuscular system** is **dysfunctional**.
 - The **cerebellum** is apparently used in the **preparation** and **revision** of **movements**.
2. Feedback and DIVA

- The DIVA model is **supposed** to model feedback, but is largely speculative on neurological aspects.
- Here, **sound targets** and **somatosensory targets** are learned during ‘babbling’ and **modify** articulatory goals.

- This is meant to imitate the cerebellum (or basal ganglia).
Speech output devices
Augmentative/Alternative Communication (AAC)

- There are several ‘physical’ means to enter text.

- Each can depend on the physical limits of the user.
Speech output devices

- There are several ‘soft’ means to enter text.
 - **Scanning** involves a cursor moving at a constant rate through an **array of symbols** until one is selected.

- **Word prediction** (with N-grams) can be invaluable.
Speech output devices need to devise speech output

The computer can't tell you the emotional story. It can give you the exact mathematical design, but what's missing is the eyebrows.
Emphasis can modify meaning

• *I* never said she stole my money. (Someone else said it)
• *never* said she stole my money. (It never happened)
• *said* she stole my money. (I just hinted at it)
• I never said *she* stole my money. (Someone else stole it)
• I never said she *stole* my money. (She just borrowed it)
• I never said she stole *my* money. (She stole someone else’s)
• I never said she stole my *money*. (She stole my heart).

What *is* emphasis?
Reminder: F_0

- F_0: *n.* (fundamental frequency), the rate of vibration of the glottis – often very indicative of the speaker.

<table>
<thead>
<tr>
<th></th>
<th>Avg F_0 (Hz)</th>
<th>Min F_0 (Hz)</th>
<th>Max F_0 (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>125</td>
<td>80</td>
<td>200</td>
</tr>
<tr>
<td>Women</td>
<td>225</td>
<td>150</td>
<td>350</td>
</tr>
<tr>
<td>Children</td>
<td>300</td>
<td>200</td>
<td>500</td>
</tr>
</tbody>
</table>
Prosody

- **Sonorant**: *n.* Any **sustained** phoneme in which the **glottis** is vibrating (i.e., the phoneme is ‘**voiced**’).
 - Includes some consonants (e.g., */w*, */m*, */r*/).

- **Prosody**: *n.* the **modification** of speech acoustics to convey some **extra-lexical** meaning:
 - **Pitch**: Changing of F_0 over time.
 - **Duration**: The length in time of sonorants.
 - **Loudness**: The amount of **energy** produced by the **lungs**.
Pitch prosody

I'm sorry

I'm sorry
Pitch can modify meaning

- e.g., Mr. X asks you the name of the baker, whose name is ‘Jones’.

- e.g., Mr. Jones asks you the profession of Mr. X.

Pitch tends to rise when uttering novel or important information.
Speech output devices

- **Rate enhancement** remains a challenge.
 - In addition to word prediction, semantic compaction and lemmatization can increase output to ~12 words/minute.

- AAC can **improve independent speech** in children with autism or developmental delays in 89% cases (Millar *et al.*, 2006).

- Use of AAC devices **significantly improves** quality of life, including social interaction and employment.
 - >90% unemployment rate for severely disabled individuals.
Physical perception
The inner ear

- Time-variant waves enter the ear, vibrating the **tympanic membrane**.
- This membrane causes tiny bones (incl. **malleus**) to vibrate.
- These bones in turn vibrate a structure within a shell-shaped bony structure called the **cochlea**.
The basilar membrane is covered with tiny hair-like nerves – some near the base, some near the apex.

High frequencies are picked up near the base, low frequencies near the apex.

These nerves fire when activated, and communicate to the brain.
The Mel scale

• Human hearing is not equally sensitive to all frequencies.
 • We are less sensitive to frequencies > 1 kHz.

• A mel is a unit of pitch. Pairs of sounds which are perceptually equidistant in pitch are separated by an equal number of mels.

\[\text{Mel}(f) = 2595 \log_{10} \left(1 + \frac{f}{700} \right) \]

Graph showing the relationship between mels and Hertz.
The Mel scale filter bank

- To mimic the response of the **human ear** (and because it often **improves** speech recognition), we often discretize the spectrum using \(M \) triangular **filters**.
 - **Uniform** spacing before 1 kHz, **logarithmic** after 1 kHz.
Problems of physical perception

• 0.1% of children are born with pathological hearing loss, including auditory nerve damage.
• ~33% of adults over 60 have acquired hearing loss.

• Conductive deafness interferes with sound to the inner ear.
• Sensorineural deafness involves the auditory nerve itself.

• Tinnitus involves noise (e.g., pulsing, hissing, ringing) that can be acute and debilitating.
Assessing physical perception

- **Otologists** and **audiologists** administer audiograms, which measures hearing loss across tones (and words) at various frequencies and amplitudes.
Overcoming physical perception

• **Hearing aids** usually **amplify** sound in certain frequencies.

• **Issues include**:
 • **Occlusion effect** where person perceives "hollow" or "booming" echo-like sounds of their own voice caused by reverberations that normally pass *out* of the open air canal.
 • **Lombard effect** where people modify their own voice to compensate.
 • **Compression effect** where louder sounds need to be ‘capped’ to avoid further hearing damage.
Overcoming physical perception

- **Cochlear implants** replace the basilar membrane and stimulate the auditory nerve directly.
Overcoming physical perception

• **Sign language** interpreted by **vision-processing software**.
 • Inexpensive devices like the **Kinect** can do advanced finger and face tracking.

• **Subtitles** automated with **ASR**.
 • An **automated transcriber** must reduce lexical content while preserving semantic content to fit the timeframe of movie dialogue.
Cognitive issues
Deeper into the brain – Aphasia

- **Reduced** hierarchical syntax.
- Anomia.
- **Reduced** “mirroring” between observation and execution of gestures (Rizzolatti & Arbib, 1998).

- Normal intonation/rhythm.
- Meaningless words.
- ‘Jumbled’ syntax.
- Reduced comprehension.
Alzheimer’s disease

- Alzheimer’s disease (AD) is a progressive neuro-degenerative dementia characterized by declines in:
 - Cognitive ability (e.g., memory, reasoning),
 - Functional capacity (e.g., executive power), and
 - Social ability (e.g., linguistic abilities).
Alzheimer’s disease progression

- **Mild Cognitive Impairment**
 - Duration: 7 years
 - Disease begins in Medial Temporal Lobe
 - Symptoms: Short-term memory loss

- **Mild Alzheimer’s**
 - Duration: 2 years
 - Disease spreads to Lateral Temporal & Parietal Lobes
 - Symptoms include: Reading problems, Poor object recognition, Poor direction sense

- **Moderate Alzheimer’s**
 - Duration: 2 years
 - Disease spreads to Frontal Lobe
 - Symptoms include: Poor judgment, Impulsivity, Short attention

- **Severe Alzheimer’s**
 - Duration: 3 years
 - Disease spreads to Occipital Lobe
 - Symptoms include: Visual problems
Demographic crisis

- **Caregivers** often assist individuals with AD, either at home or in long-term care facilities.
- >$100B are spent annually in the U.S. on caregiving AD.
- As the population ages, the incidence of AD may **double** or **triple** in the next decade (Bharucha *et al.*, 2009).

Number of people age 65 and over, by age group, selected years 1900–2006 and projected 2010–2050

- **65 and over**
- **85 and over**

Note: Data for 2010–2050 are projections of the population.
Reference population: These data refer to the resident population.
Source: U.S. Census Bureau, Decennial Census, Population Estimates and Projections.
‘COACH’ automates support of daily tasks often assisted by human caregivers.
- E.g., hand-washing, tooth-brushing.
- Based on partially-observable Markov decision processes (POMDPs) and vision-only input.

But what if the user does not want to spend their day in front of the sink?
Our goal is to implement two-way spoken dialogue in ED that can identify and recover from communication breakdowns.
Language in AD and dementia

- Common features in dialogue in AD: Repetition, incomplete words, and paraphrasing (Guinn and Habash, 2012).
 - Pauses, filler words, formulaic speech, and restarts were not.
 - Surprisingly, this seems to contradict Davis and Maclagan (2009), and Snover et al. (2004).

- Effects of AD on syntax remains controversial.
 - Agrammatism could be due to memory deficits (Reilly et al., 2011).

- Pakhomov et al. (2010) found pause-to-word and pronoun-to-noun ratios were discriminative of frontotemporal lobar degeneration.

- Roark et al. (2011) found pause frequency and duration were indicative of mild cognitive impairment.
Ten individuals (6 female) with AD recruited at Toronto Rehab.
- Age: 77.8 years ($\sigma = 9.8$)
- Education: 13.8 years ($\sigma = 2.7$)
- MMSE: 20.8/30 ($\sigma = 5.5$)

Three phases with different partners:
- A familiar human-human dyad (during informed consent),
- A human-robot dyad (during tea-making), and
- An unfamiliar human-human dyad (during post-study interview).
Accuracy and MMSE

Despite the clear increasing trend in accuracy with MMSE, n-way ANOVA:

$$F_1 = 47.07, \ p = 0.164$$
Communication strategies

• To be useful, ED needs to mimic some verbal techniques employed by caregivers.

• Caregivers are commonly trained to use communication strategies (Small et al., 2003), such as:
 • Using a relatively slow rate of speech,
 • Repeating misunderstood prompts verbatim,
 • Posing closed-ended questions (e.g., yes/no questions),
 • Simplifying the syntactic complexity of sentences,
 • Giving one question or one direction at a time, and
 • Using pronouns minimally.
How to identify breakdowns?

- **Trouble Indicating Behaviors (TIB)** (Watson, 1999).
 - Difficulties can be phonological, morpho/syntactic, semantic (e.g., lexical access), discourse (e.g., misunderstanding topic).
 - 7 seniors with AD use TIBs significantly more ($p < 0.005$) than matched controls (Watson, 1999).

- >33% of moderate AD dyads display ‘**trouble-source repair**’, which is related to TIB (Orange, Lubinsky, Higginbotham, 1996).
 - **Most common trouble**: discourse (e.g., inattention, working memory)
 - **Most common repair**: *wh*-questions and hypotheses (e.g., “Do you mean …?”).
How to identify breakdowns?

- People with AD were much \(t(18) = -5.8, p < 0.0001 \) more likely to exhibit **TIB 8 (lack of uptake)** with the robot.

...
How to identify breakdowns?

• ... people with AD were much more likely \(t(18) = -4.78, p < 0.0001 \) to have successful interactions with a robot (18.1%) than with a non-familiar human (6.7%).
Interfaces for automated dialog

• Are alternative modes appropriate?
 • e.g., could a digital assistant be useful on tablets or on the TV?
 • How do we measure success? Engagement? Emotion?

• Can these systems be doing something else in the ‘background’?
Recent work aims to diagnose language disorders. E.g.,
• primary progressive aphasia and its subtypes, and
• Parkinson’s disease.

Input: hundreds of features:
• acoustic (e.g., formants, pitch, jitter, shimmer) and
• lexical/syntactic (e.g., pronoun frequency, parse tree depth).
Diagnosing language disorders

Lexical/syntactic

acoustic

PPA vs. CTRL

SD vs. PNFA

Accuracy (%)

Number of features

Accuracy (%)
Honourable mentions

- Dyslexia.
- Autism.
- Traumatic brain injury and cardiovascular stroke.
- Brain-computer interfaces.
- Interfaces and coding schemes for the blind.