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Hey everybody! My name’s 
James and I’m here to do a 
YouTube speech video for 

every(body). I’m briefly gonna
talk about my speech 

impediment. What it is, is a part 
of my brain doesn’t work that 
controls my mouth and I um 

can’t talk as perfectly

Neuro-motor articulatory 

disorders resulting in 

unintelligible speech.

7.5 million Americans 

have dysarthria

• Cerebral palsy, 

• Parkinson’s,

• Amyotrophic 

lateral sclerosis)
(National Institute of Health)
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The broader neuro-motor deficits associated with dysarthria can 

make traditional human-computer interaction difficult.

Can we use 

ASR for 

dysarthria?
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• Types of dysarthria are related to specific sites in the subcortical

nervous system.

Type Primary lesion site

Ataxic Cerebellum or its outflow pathways

Flaccid Lower motor neuron (≥1 cranial nerves)

Hypo-
kinetic

Basal ganglia (esp. substantia nigra)

Hyper-
kinetic

Basal ganglia (esp. putamen or caudate)

Spastic Upper motor neuron

Spastic-
flaccid

Both upper and lower motor neurons

(After Darley et al., 1969)
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Broca’s aphasia Wernicke’s aphasia

• Reduced hierarchical syntax.

• Anomia.

• Reduced “mirroring” between 

observation and execution of 

gestures (Rizzolatti & Arbib, 1998).

• Normal intonation/rhythm.

• Meaningless words.

• ‘Jumbled’ syntax.

• Reduced comprehension.
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Please subscribe to csc2518_2014 Google Group!
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• Frequency

sine cosine

Given 𝝎 = 𝟐𝝅/𝑻, and phase𝜙 = 𝜋/2,

𝑓 𝑡 = 𝐴 sin 𝜔𝑡 + 𝜙 = 𝐴 cos(𝜔𝑡)
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“Two plus seven is less than ten”

Periodic

Noisy
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Et c. ad infinitum

T=1/f

Et c. …

T=1/f

Et c. …
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• As we will soon see, the relative amplitudes and frequencies 
of the sinusoids that combine in speech are often extremely 
indicative of the phoneme being uttered.
• ∴ If we could separate the waveform into its component 

sinusoids, it would help us classify phonemes being uttered.
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• Speech waveforms change drastically in time.
• We move a short analysis window (assumed to 

be time-invariant) across the waveform in time.
• E.g. frame shift: 5—10  ms
• E.g. frame length: 10—25 ms

Frame
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Rectangular Hamming

This eliminates 
‘clipping’ at the 
boundaries of 
windows.

𝑤 𝑛 = 𝛼 − 𝛽 cos
2𝜋𝑛

𝑁 − 1
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White light

Any colour
you like
(track 8)
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transfer function

𝐺0 𝜔𝑐
𝐺0

𝜔𝑐

𝐺0
2

𝜔𝑐

𝑛 Factors of Polynomial 𝑩𝒏(𝒔)

1 (𝑠 + 1)

2 𝑠2 + 1.4142𝑠 + 1

3 (𝑠 + 1)(𝑠2 + 𝑠 + 1)

4 (𝑠2 + 0.7654𝑠 + 1)(𝑠2 + 1.8478𝑠 + 1)



28

• So we can attenuate frequencies above or 
below certain cut-offs.

• But, can we measure the actual amount of 
frequency 𝐹 in a time signal 𝑥(𝑡)?
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• Extracting spectra is made easier using Euler’s formula:

𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥

𝑒𝑖𝜋 = −1
Euler’s 

identity

𝑖2 = −1
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7
7 6

[18 Hz]
[18𝐻𝑧]

𝜔
cos(𝜔𝑡) = 𝑥 𝑡 /𝑒𝑖𝜔𝑡 𝑒−𝑖𝜔𝑡

4. And over the entire signal?

𝑿 𝝎 𝑒−𝑖𝜔𝑡
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• Input: Continuous signal 𝑥(𝑡).

• Output: Spectrum 𝑋(𝐹) (𝜔 = 2𝜋𝐹)

𝑋 𝐹 =  
−∞

∞

𝑥 𝑡 𝑒−𝑖𝟐𝝅𝑭𝑡 𝑑𝑡

uh oh?
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• Sampling: vbg. measuring the amplitude of a signal at 
regular intervals.
• e.g., 44.1 kHz (CD), 8 kHz (telephone).
• These amplitudes are initially measured as 

continuous values at discrete time steps.

Continuous
time

Mic
Discretized

time
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• Nyquist rate: n. the minimum sampling rate necessary
to preserve the maximum frequency.
• i.e., twice the maximum frequency, since 

we need >2 samples/cycle.
• Human speech is quite informative 
≤ 4 kHz, ∴ 8 kHz sampling.

Good
sampling

Under-
sampling
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• Quantization: n. the conversion of floating point 
amplitude sample values to integers.

• PCM: n. (pulse code modulation) a method of quantization 
in which the analog amplitude is quantized at 
uniform intervals .

(e.g., 8 bit (−128..127), 16 bit (−32768..32767).
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• Input: Windowed signal 𝑥 0 …𝑥[𝑁 − 1].

• Output: 𝑁 complex numbers 𝑋[𝑘] (𝑘 ∈ ℤ)

𝑋 𝑘 =  

𝑛=0

𝑁−1

𝑥 𝑛 𝑒−𝑖2𝜋𝑘
𝑛
𝑁

• Algorithm(s): the Fast Fourier Transform (FFT) with complexity 
𝑂(𝑁 log𝑁).
• The Cooley-Tukey algorithm divides-and-conquers

by breaking the DFT into smaller ones 𝑁 = 𝑁1𝑁2.
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• Below is a 25 ms Hamming-windowed signal from /iy/, and 
its spectrum as computed by the DFT.

Recall: the Fourier transform is invertible

Spectrum
Windowed 

signal

This really only covers a particular set of sinusoidal functions…
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• What if we don’t need the unit circle, 𝑟 = 1?

• 𝑋 𝑧 =  𝑛=−∞
∞ 𝑥 𝑛 𝑧−𝑛,

• where 𝑧 ∈ ℂ so 𝑧 = 𝑟𝑒𝑖𝜔

• Requires a region of convergence in the 
complex plane where the summation 
converges. 
• 𝑅𝑜𝐶 = 𝑧:  𝑛=−∞

∞ 𝑥 𝑛 𝑧−𝑛 < ∞

• If yellow region on left is RoC, then discrete-
time Fourier transform exists, since 𝑟 = 1 is in 
the RoC.

Re

Im

r=2

r=1

r=0.5
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• Transfer functions of linear time-invariant (LTI) systems have this form:

𝐻 𝑠 =
𝑃 𝑠

𝑄 𝑠
=
𝐺 ⋅  𝑚=0

𝑀 𝑏𝑚𝑠
𝑚

𝑠𝑁 +  𝑛=0
𝑁−1 𝑎𝑛𝑠

𝑚

where 𝐺 is the gain, 𝑀 and 𝑁 are orders of polynomials, and 𝑏𝑚 & 𝑎𝑛
are coefficients of those polynomials.

Re

Im

r=2

r=1

r=0.5

• Zeros occur when 𝑃 𝑠  𝑠=𝛽𝑚 = 0.

• Poles occur when 𝑄 𝑠  𝑠=𝛼𝑛 = 0.

• The RoC cannot contain any poles.

Q: Why do Polish airlines only fill half of their seats?
A: Because Poles on the right half of the plane are unstable.
(http://en.wikipedia.org/wiki/Nyquist_stability_criterion)

http://en.wikipedia.org/wiki/Nyquist_stability_criterion


39

Frequency (Hz)

A
m

p
li

tu
d

e

SpectrumFrame

But in speech we need many successive windows… 
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• Spectrogram: n. a 3D plot of amplitude and frequency
over time (higher ‘redness’ → higher amplitude).

F
re

q
u

e
n

cy
 (

H
z)

Amplitude

Frames Spectrogram
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“Two plus seven is less than ten”

Periodic

Noisy
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“Two plus seven is less than ten”



43

• Formant: n. A concentration of energy within a frequency 
band. Ordered from low to high bands.

𝐹1

𝐹2

𝐹3
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• 𝑭𝟎: n. (fundamental frequency), the rate of vibration of 
the glottis – often very indicative of the speaker.

Avg 𝑭𝟎 (Hz) Min 𝑭𝟎 (Hz) Max 𝑭𝟎 (Hz)

Men 125 80 200

Women 225 150 350

Children 300 200 500
Glottis

Formants (should) occur at multiples of 𝐹0
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Wide-band
(better time 
resolution)

Narrow-band
(better frequency 

resolution)
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Morlet
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𝑔 ℎ

𝑔 𝑔

ℎ ℎ

Convolution Downsampled
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• The convolution of two functions, 𝑓 ∗ 𝑔, is the amount of overlap
between two functions as one is translated.

• Discrete version:

𝑓 ∗ 𝑔 𝑛 =  

𝑚=−∞

∞

𝑓 𝑚 𝑔[𝑛 −𝑚]

• It is related to cross-correlation, which is a measure of similarity.
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“open the pod bay doors”

open(podBay.doors);

We want to convert 
a series of acoustic observation vectors into 
a sequence of phonemes or words.

/ow p ah n dh ah p aa d b ey d ao r z/
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Source
𝑷(𝑾)

Language model

Channel
𝑷(𝑿 𝑾)

Acoustic model

W′

Decoder

𝑋′

𝑾∗ Observed 𝑿

𝑊∗ = argmax
𝑊
𝑃(𝑋 𝑊)𝑃(𝑊)

Word 
sequence 𝑊

Acoustic 
sequence 𝑋

How to encode 𝑃(𝑋 𝑊)?
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• In discrete Hidden Markov Models, at 
each state we observe a discrete symbol. 

• We transition from state 𝑠𝑖 to state
𝑠𝑗 with probability 𝑎𝑖𝑗. While in 

state 𝑠 we observe word 𝑤 with
probability
𝑏𝑠(𝑤).

word P(word)

ship 0.1

pass 0.05

camp 0.05

frock 0.6

soccer 0.05

mother 0.1

tops 0.05

word P(word)

ship 0.3

pass 0

camp 0

frock 0.2

soccer 0.05

mother 0.05

tops 0.4

word P(word)

ship 0.25

pass 0.25

camp 0.05

frock 0.3

soccer 0.05

mother 0.09

tops 0.01

But acoustics aren’t discrete…
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• A continuous HMM has continuous output observations.
• Observation probabilities, 𝑏𝑖, are also continuous.
• E.g., here 𝑏0(  𝑥) tells us the probability of seeing the 

(multivariate) continuous observation  𝑥 while in state 0.

b0 b1 b2
4.32957

2.48562

1.08139

…

0.45628

 𝑥 =

What do the states represent?
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• Imagine that we want to learn an HMM for each word in our 
lexicon (e.g., 160K words → 160K HMMs).

• No, thank you! According to Zipf’s law, we expect many
words to occur very infrequently.
• 1 (or a few) training examples of a word is not enough to 

train a model as highly parameterized as a CHMM.

b0 b1 b2

• In a word-level 
HMM, each state 
might be a 
phoneme.
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• Phonemes change over time – we model these dynamics by 
building one HMM for each phoneme.
• Tristate phoneme models are popular.
• The centre state is often the ‘steady’ part of the 

phoneme.

tristate phoneme model (e.g., /oi/)

b0 b1 b2

How do we learn these probabilities?
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• Training data for a phoneme 
HMM come from all sequences 
of that phoneme.
• Even from different words.

/iy/

Phoneme HMMs

…

...

64 85 ae

85 96 sh

96 102 epi

102 106 m

...

Time, 𝒕

… 85 … 96 …

F
e

a
tu

re

1 … … …

2 … … …

3 … … …

… … … … … …

42 … … …

/ih/

/eh/

/s/

/sh/

annotation observations
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• We can learn an N-gram language model from word-level 
and phoneme-level annotations of speech data.
• These models are discrete and are trained using MLE.

• Our phoneme HMMs together constitute an acoustic model.
• Each phoneme HMM tells us how a phoneme ‘sounds’.

• We can combine these models by concatenating together 
phoneme HMMs according to a known lexicon or phonemic 
dictionary.

…

EVOLUTION EH2 V AH0 L UW1 SH AH0 N

EVOLUTION(2) IY2 V AH0 L UW1 SH AH0 N 

…

EVOLUTIONARY  EH2 V AH0 L UW1 SH AH0 N EH2 R IY0
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• If we know how phonemes combine to make words, we can 
simply concatenate together our phoneme models by 
inserting and adjusting transition weights.
• e.g., Zipf is pronounced /z ih f/, so…
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• Co-articulation: n. the situation when a phoneme is 
influenced by an adjacent phoneme.

• A triphone HMM captures co-articulation but represents 
one phoneme.

Triphone HMMs

/iy-t+eh//s-t+iy/



60

• Triphone models can only connect to other triphone models 
that match the context.
• Triphone model /a-b+c/ is the phoneme b that is preceded 

by a and followed by c.

/z+ih/ /z-ih+f/ /ih-f/
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From Jurafsky &
Martin text

We can easily 
incorporate unigram 
probabilities through 

transitions, too.
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From Jurafsky &
Martin text
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• HMMs are generative models that encode statistical 
knowledge of how output is generated.

• We train CHMMs with Baum-Welch (a type of Expectation-
Maximization), as with discrete HMMs.
• Here, the observation parameters, 𝑏𝑖  𝑥 , are adjusted 

using another form of EM for GMMs.

• We find best state sequences using the Viterbi algorithm.
• Here, the best state sequence returned gives us a 

sequence of phonemes and words.
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Feature 
extraction

Features

Gaussian
Mixture models

Phoneme likelihoods HMM lexicon

N-gram 
language model

Viterbi decoder

𝑋

𝑃(𝑋 𝑊)

𝑃(𝑊)

Open the pod… 𝑊
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• Speaking mode: Isolated word (e.g., “yes”) vs. continuous
(e.g., “Siri, sell my Apple stocks.”)

• Speaking style: Read speech vs. spontaneous speech;
the latter contains many dysfluencies
(e.g., stuttering, uh, like, …)

• Enrolment: Speaker-dependent (all training data from 
one speaker) vs. speaker-independent 
(training data from many speakers).

• Vocabulary: Small (<20 words) or large (>50,000 words).
• Transducer: Cell phone? Noise-cancelling microphone? 

Teleconference microphone?
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• We are often concerned with the signal-to-noise ratio
(SNR), which measures the ratio between the power of a 
desired signal within a recording (𝑃𝑠𝑖𝑔𝑛𝑎𝑙, e.g., the human 

speech) and additive noise (𝑃𝑛𝑜𝑖𝑠𝑒).
• Noise typically includes:
• Background noise (e.g., people talking, wind),
• Signal degradation. This is normally ‘white’ noise 

produced by the medium of transmission.

𝑆𝑁𝑅𝑑𝑏 = 10 log10
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒

• High 𝑆𝑁𝑅𝑑𝑏 is >30 dB. Low 𝑆𝑁𝑅𝑑𝑏 is < 10 dB.
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• Observing the vocal tract directly, 
rather than through inference, can be 
very helpful in ASR.

• The shape and aperture of the mouth 
gives some clues as to the phoneme 
being uttered.
• Depending on the level of 

invasiveness, we can even measure 
the glottis and tongue directly.
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/m/ /n/ /ng/
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Can we build models of atypical articulation? What are relevant 

features? How will technology be used? What about cognitive 

disorders?

Next week: 

clinical/medical 

aspects.


