CSC2518 — Spoken Language Processing — Fall 2014

Lecture 1 Frank Rudzicz

University of Toronto

Speech in healthcare
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Dysarthria

Neuro-motor articulatory
disorders resulting in
unintelligible speech.

Hey everybody! My name’s
Jarr~s~~""m here to do a

_) ? ch video for
s briefly gonna

t my speech

“Lpedi.ent. What it is, is a part

of my brain doesn’t work that
controls my mouth and | um
can’t talk as perfectly

il 7.5 million Americans
d have dysarthria

» Cerebral palsy,
 Parkinson’s,

« Amyotrophic

lateral sclerosis)
(National Institute of Health)




Dysarthria

The broader neuro-motor deficits associated with dysarthria can
make traditional human-computer interaction difficult.

Can we use
ASR for
dysarthria?




Adjusting to the individual
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Neural origins

* Types of dysarthria are related to specific sites in the subcortical
nervous system.

Type Primary lesion site

(After Darley et al., 1969)




Deeper into the brain — Aphasia

Broca’s aphasia Wernicke's aphasia
Reduced hierarchical syntax. * Normal intonation/rhythm.
Anomia. * Meaningless words.

Reduced "mirroring” between ¢ “Jumbled’ syntax.
observation and execution of  * Reduced comprehension.

gestures Rizzolatti & Arbib, 1998). o
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Demographics

Number of people age 65 and over, by age group, selected years 1900-2006
and projected 2010-2050
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2006 000000
Projected
Mote: Data for 2010-2050 are projections of the population.
Reference population: These data refer to the resident population.
Source: U.S.Census Bureau, Decennial Census, Population Estimates and Projections.
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A future for speech diagnostics

« Speech-language pathologists: ~150,000 in USA.

* This labour market is growing faster than the average and has recurrent
software needs (Bureau of Labor Statistics, 2011).

* Between 8% and 10% of the US population has some form of
speech/language/hearing disorder (National Institute of Health).

« Thisisincreasing with the age of the population and the incidence of
stroke and dementia.

 Caregivers often assist individuals with Alzheimer’s disease (AD),
either at home or in long-term care facilities.

* >$100B are spent annually in the U.S. on caregiving for AD.

* Asthe population ages, the incidence of AD may double or
triple in the next decade (Bharucha et al., 2009).

> Demographic erisis)
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Broad syllabus

* Theme: speech-based technology in healthcare

* Automatic speech recognition in healthcare
* E.g., dictation of medical records.

* Speech-based communication aids
* E.g., synthetic speech, brain-computer interfaces.
* Speech-based diagnosis and monitoring

* E.g., Parkinson'’s, post-stroke aphasia, cerebral palsy
* Clinically-relevant features, brains, et c.
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Lecture 1

1. The nature of the course

* (20%) Participation: 60 minutes of conference-style presentations.
* (80%) A final course project.

2. Crash course in speech signal processing

3. Crash course in automatic speech recognition

Please subscribe to csc2518_2014 Google Group!
* Next week: Clinical/biomedical aspects of speech

i
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1.Conference-style presentations

* Every student will deliver conference-style presentations for
60 minutes, either:
* Two papers, 30 minutes each (25 min talk + 5 minute questions).
Typically papers in conference proceedings, or

* One paper, 60 minutes (50 min talk + 20 minute questions).
Typically journal articles.

* Presentations can follow the structure of the paper, but should
include a broad overview, scientific context (i.e., literature

review), methodology, empirical results, and a summary of
contributions.

* Though informal, students should be prepared to answer
questions (15% of participation grade).

11
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1.Conference-style presentations

* Students should select papers from the course website.

2518 1 Spoken Langua

S ———

First come, first served.
B Email me to volunteer for next
You are strongly encouraged to select readings from the list below to present. Papers are prec by the length of their talks in hou a V a i | a b | e S | Otl t h e n C h O O S e a n y

Speech reco healthcare
« {1 hour) 5. Petrik, C. Drexel, L. Fessler, J. Jancsary, A. Klein, G. I«ubm,] Matiasek, F. Pernkopf, H. Trost (2011) Semantic and phonetic

B of the remainin apers
) . .
f Clinical Pathology, -158.

(2009) Speech Recogni a Dialog Syslem for Patient Health

Monitoring. P'Dcee )< " C ce on Bioinformatics and Biomed
Unmet Information Needs

Back to top

Speech-based commui
+ (1 hour) E.W. Healy,
impaired listeners. Journal of the Acoustical Society of America, 134(4):30.
(1 hour) T. Nose and T. Kobayashi (2011) Speaker-independent HMM-based voice conversion using adaptive quantization of the
fundamental frequency. N
{1/2 hour) AR. Toth, A.W. of SSW, pages

7 Your lecture (+ any
s e e e supplemental) materials will be

Speech-based diagnosis

+ (1/2 hour) A. Tsanas, M.A. Little, P.E. McSharry, J. Spielman, L.O. Ramig (2012) Novel speech signal processing algorithms for 0 St e
high-accuracy dassification of Parkinson's disease. IEEE Transactions on Biomedical Engineering, 59(5):1264-1271

+ (1/2 hour) D. Hakkani-Tur, D. Vergyri, G. Tur (2010) Speech-based automated cognitive status assessment. Prc
Interspeech 2010, pages 1-4.

= {(1/2 hour) D. Bone, T. Chaspari, K. Audhkhasi, J. ,
language-related develnpmental disorders from speech cues: tlle pmmlse and the potential confounds. In Proceedings of
INTERSPEECH 2013, pa 86.

+ (1/2 hour) K.L. Lansford, J.M. Liss (2 dysarthria: Speech disorder diagnosis and dassification. Journal of
Speech, Langu earing arch, 57, pages 57:

[ ]
Clinically-relevant features of speech & other
+ (1/2 hour) b (2010) Imagined Speech Classification with EEG Signals for S i : ® YO U S h O U | d m e et W I t h m e Z 1

dings of IEEE International Conference on
Engineering (iCBBE), pages 1-4.

« (1/2 hour) C.S. DaSalla, H. Kambara, M. Sato, Y. Kaike (2009) Single-trial classification of vowel speech imagery using common W k f r r | k V r
spatial patterns. Neural ks, 2 341339,

« {1 hour) B.N. Pasley, S.V. David, N. Mesgarani, A. Flinker, S.A. Shamma, N.E. Crone, R.T. Knight, E.F. Chang (2012) Reconstructing
Speech from Human Auditory Cortex. PLoS ONE Bi 10(1):1-13.
<.

. your slides.

+ (1 hour) L. Feenaughty, K. Tiaden, J. Sussman IZIJH) Rela ionship Iletween acoustic measures and judgments of intelligibi
Parkinsona€™s disease: A within-speaker approach. Cinical Ling: 2

Optional readings - general introduction %-?&
| o |
-
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2. Project

* Get two birds stoned at once: get an A+ and a publication

* Final report takes the form of a paper conforming to:

* Transactions of the Association for Computational Linguistics
* Interspeech

* Neural Information Processing Systems

* Your report will be marked on 1) originality, 2) sufficient

survey of existing work, 3) technical correctness, 4)
empirical methods, 5) overall presentation.

13
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2. Project

* Four components:

* Project proposal (22 September). 5% of project grade. 1-2 pages.
Describe your goals.

Briefly describe 2-5 relevant papers.

Outline your plan to reach your goals (including schedule).

Outline a method to evaluate success.

* Midterm checkpoint (mid-to-late October). Not marked.

* You will meet with me to discuss progress.
* Project report (15 December). 80% of final grade. = 4 tight,
double-column pages or equivalent.
* You will be encouraged to submit this to a conference or journal.
* N-minute madness. (15 December). 5% of project grade.
* You will present your project for a brief 2 < N < 5 minutes.

14
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2. Project —data (e.q.)

* General speech:

* Switchboard: telephone conversations, 8 kHz, 14 GB

* TIMIT: phonemically-balanced, 16 kHz, 711 MB
* WSJ: news broadcasts, 15 GB

* Pathological speech:

* DementiaBank: dementia (and control), picture description, 13 GB
* TORGO: cerebral palsy, articulation, phonemically balanced, 18 GB
* TBD: Parkinson’s disease, articulation, emotional speech, TBD

* EEG/MEG, robot

15
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Flexibility

* You can choose to present a paper other than those on
the course page.

* You can choose to write in the style of another journal or
conference.

* You can choose to use another set of data, or collect your
own.

In all cases, consult with me ASAFP

16
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Sound signals

Guitar string
(exaggerated)

Air molecules

ANNVA YA YA

Q000 0O 0O 0O O O © O

N

* Frequency F = 1/T

/sine/cosine

SN -
\

Rarefaction

o o

Given w = 2m/T, and phase ¢ = /2,

Pressure

_ wy f(t) = Asin(wt + ¢) = A cos(wt)

normal

Diagram of sound wave at time 4
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Speech signals
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Signals as summed sinusoids

* Consider just the periodic
segments.
* Fourier: f(t) = Xi=qw;fi(t)
* Especially nice:

fi(t) = sin(w;t + ¢;)




Signals as summed sinusoids




Extracting sinusoids from waves

* As we will soon see, the relative amplitudes and frequencies
of the sinusoids that combine in speech are often extremely
indicative of the phoneme being uttered.

* . If we could separate the waveform into its component
sinusoids, it would help us classify phonemes being uttered.




Short-time windowing

v v
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* Speech waveforms change drastically in time.

* We move a short analysis window (assumed to
be time-invariant) across the waveform in time.

* E.g.frame shift:

5—10 MS
* E.g.frame length:

10—25 mMs

22
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Window types

This eliminates
‘clipping’ at the

] boundaries of
‘\[ir‘ne (s}

"~~~ _Hamming window windows.

-

-~
-~
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N

w(n) = a — f co

-5~ y
0.00455538 0.0256263 00256562
Time (s) Time ()







Extracting a spectrum

Frequency (Hz)

i
I

25 %



Filtering

* Sometimes you only want part of a signal.

* E.g., you have measurements of lip aperture over time — you know
that they can’t move > 5-10 Hz.

* E.g., you know there’s some low-frequency Gaussian noise in
either the environment or transmission medium.

[Gam |

IGAW[

(Lo s3]

"_513.0 rJneﬁ
r?aA.uo

* Low- and high-pass filters can be combined in series, yielding a
band-pass filter.

26
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Filtering

* The Butterworth filter is a transfer function designed to
be maximally flat in the pass band.

n Factors of Polynomial B,,(s)

1
p)
3
/A

(s+1)
s? +1.4142s + 1
(s+1(s?+s+1)

(s2 + 0.7654s + 1)(s2 + 1.8478s + 1)

27

* The transfer function is
H(s) = Go/Bn(s/w.)
where G, is the gain at zero

frequency, and w, is the cutoff
frequency.

* The gain of the nt*-order
Butterworth filter is




The continuous Fourier transform

* So we can attenuate frequencies above or
below certain cut-offs.

/ : - . But, can we measure the actual amount of

frequency F in a time signal x(t)?

pXe]
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Fuler's formula

* Extracting spectra is made easier using Euler’s formula:

e = cos(x) + i sin(x) 2= -1
; Euler’s
e = —1 identity

Im ‘

| e?=cos p+ising
i

/ sin @
@

29
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The Fourier transform: intuition

1. If we ignore phase, we only care about
: the real part, so
7 \ cos(wt) = e'®t is one component.
‘ ] 2.

How much ‘7' is in '42'?
There is 42/7= 6 75 in 42. Similarly,
How much [18 Hz] is there in x(t)?
Thereis x(t)/|18HZz].
3. How much freq. wisin x(t)?

x(t)/cos(wt) =  x(t)/e'?

= x(t)e it
4. And over the entire signal?

X(w) = foox(t)e‘i‘“t dt

30
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The continuous Fourier transform

° Input:  Continuous signal x(t).

/. \ * Output: Spectrum X(F) (w = 2rF)

X(F) = foox(t)e‘iz”” dt

 It's invertible, i.e., x(t) = [ . X(F)e®?™Ft dF.

* It's linear, i.e., fora,b € C, if h(t) = ax(t) + by(t),
then H(F) = aX(F) + bY (F)

* It needs a continuous input x(t)....uh oh?

el
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Discrete signals

* Sampling: vbg. measuring the amplitude of a signal at
regular intervals.
° e.g. 44.1 kHz (CD), 8 kHz (telephone).
* These amplitudes are initially measured as
continuous values at discrete time steps.

Cont.InUOUS Mic Discretized
time time
=2
32 &



Discrete signals

* Nyquist rate: n.the minimum sampling rate necessary
to preserve the maximum frequency.
° i.e., twice the maximum frequency, since
we need >2 samples/cycle.
°* Human speech is quite informative
< 4 kHz, - 8 kHz sampling.

......

Good Under-
sampling sampling

. <
. .
T e

33
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Discrete signals

° Quantization:  n. the conversion of floating point
amplitude sample values to integers.
°* PCM: n. (pulse code modulation) a method of quantization
in which the analog amplitude is quantized at
uniform intervals .

(e.g., 8 bit (—128..127), 16 bit (—32768..32767).

8
7
6
5
4
3
2
1
0

e
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Discrete Fourier transform (DFT)

° Input: Windowed signal x[0] ... x[N — 1].

° Output: N complex numbers X|k| (k € 7Z)

N-1 ]
X[k] = z x[n]e 2N
n=0

* Algorithm(s):

the Fast Fourier Transform (FFT) with complexity
O(N logN).

* The Cooley-Tukey algorithm divides-and-conquers
by breaking the DFT into smaller ones N = N N,.

35
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Discrete Fourier transform (DFT)

* Below is a 25 ms Hamming-windowed signal from /iy/, and
its spectrum as computed by the DFT.

Windowed
signal Spectrum

-0.04121
0.0141752 0.039295

Frequency (Hz)

Recall: the Fourier transform is invertible

This really only covers a particular set of sinusoidal functions...

CH
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The z-transform

Im_‘em_wwﬂm * What if we don’t need the unit circle, r = 1?
l
sin — (0.0) -Nn
f [P CX@) =T wxlnlz T,
!jl Re ° wherez € Csoz = re'®

° Requires a region of convergence in the

complex plane where the summation
converges.

* RoC =1{z:|Xn=-wx[n]z™"| < oo}

* If yellow region on left is RoC, then discrete-

time Fourier transform exists, sincer = 1isin
the RoC.

37
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Poles and zeros

* Transfer functions of linear time-invariant (LTI) systems have this form:
P(s) G-¥m=o bmsm

Q(s) L + Y3 a,s™
where G is the gain, M and N are orders of polynomials, and b,,, & a,,
are coefficients of those polynomials.

H(s) =

* Zeros occur when P(s)|s=p =
* Poles occur when Q(s)|s=¢, = 0

Im
t

e ° The RoC cannot contain any poles.

Q: Why do Polish airlines only fill half of their seats?

A: Because Poles on the right half of the plane are unstable.
(http://en.wikipedia.org/wiki/Nyquist stability criterion)

i

=
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http://en.wikipedia.org/wiki/Nyquist_stability_criterion

Extracting a spectrum

Frequency (Hz)

But in speech we need many successive windows... ﬁ

39 Ry



Spectrograms

* Spectrogram: n. a 3D plot of amplitude and frequency
over time (hlgher ‘redness’ % hlgher amplltude)

Frequency (Hz)

Amplitude

Frames

40




Speech signals
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Spectrograms

e "Two plus seven is less than ten” r—uugy "
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Formants and phonemes

°* Formant: n. A concentration of energy within a frequency
band. Ordered from low to high bands.

[ — -
LR L U » A
! ! ' ' “ ' ' w
' .
i- PO R ——




Fundamental frequency

* Fy: n. (fundamental frequency), the rate of vibration of
the glottis — often very indicative of the speaker.

Median glosso-epiglottic foldl
Vallecula ’F

Epiglottis

/ / Tuberele o)

Avg F (Hz) Min F (Hz) Max F (Hz)

Trachea

Glottis

Formants (should) occur at multiples of F,
44
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Effect of window length

SPECTROGRAM, R = 128 SPECTROGRAM, R = 512

h
g
o

o
g
e

g

@
=3
o

Wide-band Narrow-band
(better time (better frequency
resolution) resolution)

el
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Wavelet transforms

* Avoid problem of resolution, and can adapt to changes in
the signal over time (i.e., non-stationary signals).

* Wavelet transforms consist of scaled and translated
versions (‘*daughter wavelets’) of basis functions.

~— % Morlet !

46
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Wavelet transforms

o
' ~ - - P
|42 Apprommation coefficients

h[n]

L2 }—»  Detail coefficients

where, given low- and high-pass filters (g and h, respectively),

* Approx: yion = (X * g) 1 2, yiow(n] = Xp=_c x[k]g[2n — k]

* Detail: yp;gp = (x * h) L 2, ypignln] = Xp=—o x[k]h[2n — k]

Convolution Downsampled

47
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Convolution?

° The convolution of two functions, f * g, is the amount of overlap
between two functions as one is translated.

®* Discrete version:

° Itis related to cross-correlation, which is a measure of similarity.

CH
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Speech as a sequence of phonemes

Jowpahndhahpaadbeydaorz/

® open (podBay.doors) ;

We want to convert

/

a series of acoustic observation vectors into
a sequence of phonemes or words.

5O
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The noisy channel model in ASR

?,(."'*:. /‘7:
Language model Acoustic model

X'
Bl T T
mv AN

WI

Observed X

Acoustic
sequence X

Word
sequence W

W™ = argmax P(X|W)P(W)
7%

How to encode I;(X|W)?
[ & |



Reminder — discrete HMMs

* In discrete Hidden Markov Models, at i
each state we observe a discrete symbol. pass

camp

* We transition from state s; to state frock
soccer

sj with probability a;;. While in —other
state s we observe word w with
probability
bs (W) ship : ship

pass . pass
camp ; camp

frock . frock

soccer soccer

mother . mother

tops



Continuous HMMs

* A continuous HMM has continuous output observations.
* Observation probabilities, b;, are also continuous.
* E.g., here by(x) tells us the probability of seeing the
(multivariate) continuous observation x while in state o.

4.32957
2.48562
1.08139

=1
Il

0.45628

What do the states represent? =

R

53



One HMM per word?
b”%& N %& P2 D
* Inaword-level |
, each state
phoneme.
./ \ & 4 \ 4

* Imagine that we want to learn an HMM for each word in our
lexicon (e.g., 160K words — 160K HMMs).
° No, thank you! According to Zipf's law, we expect many
words to occur very infrequently.
° 1 (or a few) training examples of a word is not enough to
train a model as highly parameterized as a CHMM.
P

54 o




One HMM per phoneme?

* Phonemes change over time — we model these dynamics by
building one HMM for each phoneme.
* Tristate phoneme models are popular.
* The centre state is often the ‘steady’ part of the
phoneme.

'

tristate phoneme model (e.g., /oi/)

How do we learn these probabilities? &
55
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Training phoneme HMMs

* Training data for a phoneme gine MM
HMM come from all sequences iyl ._' A
of that phoneme.

* Even from different words. i = &

annotation

observations

56



Combining HMMs

* We can learn an N-gram language model from word-level
and phoneme-level annotations of speech data.
* These models are discrete and are trained using MLE.

* Our phoneme HMMs together constitute an acoustic model.
* Each phoneme HMM tells us how a phoneme ‘sounds’.

* We can combine these models by concatenating together
phoneme HMMs according to a known lexicon or phonemic

dICtlonarY' EVOLUTION EH2 V AHO L UWl SH AHO N
EVOLUTION (2) IY2 VvV AHO L UWl SH AHO N
EVOLUTIONARY EH2? V AHO L UWl SH AHO N EH2 R IYO

Y

g
57 Ry



Combining HMMs

* If we know how phonemes combine to make words, we can
simply concatenate together our phoneme models by
inserting and adjusting transition weights.

* e.qg., Zipfis pronounced /z ih f/, so...

W \J WV \J 7/

WV \J

el
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Coarticulation and triphones

* Co-articulation:

n. the situation when a phonemeiis
influenced by an adjacent phoneme.
A Frequency : ,

i A

() -| i [\
|I .|| A

—
—

.....
oW oa

* Atriphone HMM captures co-articulation but represents
one phoneme.

Triphone HMMs
: " N

13
59



Combining triphone HMMs

* Triphone models can only connect to other triphone models
that match the context.

* Triphone model /a-b+c/ is the phoneme b that is preceded
by a and followed by c.

[z+ih/ [z-1h+T/ fih-f/
\ \
{ | \
-0 00 0 00 09
U U |\ U (7 |

v v

60
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Concatenating phoneme models

Lexicon

one wahn
two T uw

o fzof We can easily
sk shks Phone HVM incorporate unigram

seven sehvaxn

it eyt 0-8-8-8-@ probabilities through
o ow " transitions, too.

From Jurafsky &
Martin text

R4



Bigram models

p( one | one)

o one|two)m ®®_ p( two | one )

p( one | zero )

I &@@@a
p( zero | one N
B RO OR R R URORGROR TR TR

om Jurafsk
p( zero | zero ) Martin text

-'.:':.;E':'_E:
LU L]

N



Using HMMs @.&_9‘&_%

A

°* HMMs are generative models that encode statistical
knowledge of how output is generated.

* We train CHMMs with Baum-Welch (a type of Expectation-
Maximization), as with discrete HMMs.

* Here, the observation parameters, b;(x), are adjusted
using another form of EM for GMMs.

* We find best state sequences using the Viterbi algorithm.

* Here, the best state sequence returned gives us a
sequence of phonemes and words.

el



ASR architecture
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Aspects of ASR in the world

* Speaking mode: lIsolated word (e.g., “yes"”) vs. continuous

(e.g., “Siri, sell my Apple stocks."”)

° Speaking style: Read speech vs. spontaneous speech;

* Enrolment:

* Vocabulary:
* Transducer:

the latter contains many dysfluencies

(e.g., stuttering, uh, like, ...)
Speaker-dependent (all training data from
one speaker) vs. speaker-independent
(training data from many speakers).
Small (<20 words) or large (>50,000 words).
Cell phone? Noise-cancelling microphone?
Teleconference microphone?

el



Signal-to-noise ratio

* We are often concerned with the signal-to-noise ratio
(SNR), which measures the ratio between the power of a
desired signal within a recording (Ps;gnqi, €.9., the human
speech) and additive noise (P,,yise)-

* Noise typically includes:
* Background noise (e.qg., people talking, wind),
* Signal degradation. This is normally ‘white’ noise
produced by the medium of transmission.

P .
SNR,, = 10 1og10( S‘g"‘”)

P noise

* HighSNR, is >30dB. Low SNR;;, is < 10 dB.

66
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Audio-visual speech methods

* Observing the vocal tract directly,
rather than through inference, can be
very helpful in ASR.

* The shape and aperture of the mouth
gives some clues as to the phoneme
being uttered.

* Depending on the level of
Invasiveness, we can even measure
the glottis and tongue directly.

CH



Lip aperture and nasals

1000 1000 gy ||“|

900
800

700

oo AR

Fra
Fra

Acoustic
spectrograms

0.02 0.03

Lip apertures
over time
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Dysarthria

Can we build models of atypical articulation? What are relevant
features? How will technology be used? What about cognitive
disorders?

Next week:
clinical/medical
aspects.




