CSC2518 — Spoken Language Processing — Fall 2014 Lecture 1 Frank Rudzicz University of Toronto

Speech in healthcare

Dysarthria

Neuro-motor articulatory disorders resulting in unintelligible speech.

Hey everybody! My name's James or ''m here to do a ch video for briefly gonna t my speech i pedment. What it is, is a part of my brain doesn't work that controls my mouth and I um can't talk as perfectly

7.5 million Americans have **dysarthria**

- Cerebral palsy,
- Parkinson's,
- Amyotrophic
 lateral sclerosis)
 (National Institute of Health)

Dysarthria

The **broader** neuro-motor deficits associated with dysarthria can make **traditional** human-computer interaction difficult.

Can we use ASR for dysarthria?

Adjusting to the individual

Neural origins

• **Types** of dysarthria are related to **specific sites** in the subcortical nervous system.

Туре	Primary lesion site
Ataxic	Cerebellum or its outflow pathways
Flaccid	Lower motor neuron (≥1 cranial nerves)
Hypo- kinetic	Basal ganglia (esp. substantia nigra)
Hyper- kinetic	Basal ganglia (esp. putamen or caudate)
Spastic	Upper motor neuron
Spastic- flaccid	Both upper and lower motor neurons

(After Darley et al., 1969)

Deeper into the brain – Aphasia

- Reduced hierarchical syntax.
- Anomia.
- Reduced "mirroring" between observation and execution of gestures (Rizzolatti & Arbib, 1998).
- Normal intonation/rhythm.
- Meaningless words.
- 'Jumbled' syntax.
- Reduced comprehension.

Demographics

A future for speech diagnostics

- **Speech-language pathologists**: ~150,000 in USA.
 - This labour market is **growing faster** than the average and has recurrent software needs (Bureau of Labor Statistics, 2011).
- Between **8% and 10%** of the US population has some form of speech/language/hearing disorder (National Institute of Health).
 - This is increasing with the age of the population and the incidence of stroke and dementia.
- Caregivers often assist individuals with Alzheimer's disease (AD), either at home or in long-term care facilities.
 - >\$100B are spent annually in the U.S. on caregiving for AD.
 - As the population **ages**, the incidence of **AD** may double or triple in the next decade (Bharucha *et al.*, 2009).
 - Demographic crisis!

Broad syllabus

• Theme: speech-based technology in healthcare.

- Automatic speech recognition in healthcare
 E.g., dictation of medical records.
- Speech-based communication aids
 - E.g., synthetic speech, brain-computer interfaces.
- Speech-based diagnosis and monitoring
 - E.g., Parkinson's, post-stroke aphasia, cerebral palsy
- Clinically-relevant features, brains, et c.

Lecture 1

1. The nature of the course

- (20%) **Participation**: 60 minutes of conference-style presentations.
- (80%) A final course project.
- 2. Crash course in speech signal processing
- 3. Crash course in automatic speech recognition

Please subscribe to csc2518_2014 Google Group!Next week: Clinical/biomedical aspects of speech

1.Conference-style presentations

- Every student will deliver **conference-style presentations** for 60 minutes, either:
 - **Two papers, 30 minutes each** (25 min talk + 5 minute questions). Typically papers in conference proceedings, or
 - One paper, 60 minutes (50 min talk + 10 minute questions). Typically journal articles.
- Presentations can follow the structure of the paper, but should include a broad overview, scientific context (i.e., literature review), methodology, empirical results, and a summary of contributions.
- Though informal, students should be prepared to answer questions (15% of participation grade).

1.Conference-style presentations

• Students should **select papers** from the course website.

Errata

Free online

 C
 O
 Important/scz518/ P + C
 Important/scz518/ P + C

Suggested readings

You are strongly encouraged to select readings from the list below to present. Papers are preceded by the length of their talks in hours.

Speech recognition in healthcare

- (1 hour) S. Petrik, C. Drexel, L. Fessler, J. Jancsary, A. Klein, G. Kubin, J. Matiasek, F. Pernkopf, H. Trost (2011) Semantic and phonetic automatic reconstruction of medical dictations. Computer Speech & Language, 25(2):363-385.
- (1/2 hour) H.P. Kang, S.J. Sirintrapun, R.J. Nestler, A.V. Parwani (2010) Experience With Voice Recognition in Surgical Pathology at a Large Academic Multi-Institutional Center. American Journal of Clinical Pathology, 133:156-159.
- (1/2 hour) L. Galescu, J. Allen, G. Ferguson, J. Quinn, M. Swift (2009) Speech Recognition in a Dialog System for Patient Health Monitoring. Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM09) Workshop on NLP Approaches for Jumet Information Needs in Health Care. Dases 1-4.

Speech-based communication aids

- (1 hour) E.W. Healy, S.E. Yoho, Y. Wang, D. Wang (2013) An algorithm to improve speech recognition in noise for hearingimpaired listeners. *Journal of the Acoustical Society of America*, 134(4):3029-38.
- (1 hour) T. Nose and T. Kobayashi (2011) Speaker-independent HMM-based voice conversion using adaptive quantization of the fundamental frequency. Speech Communication, 53(7):973-985.
- (1/2 hour) A.R. Toth, A.W. Black. (2007) Using articulatory position data in voice transformation. In Proceedings of SSW, pages 1-6.
- (1 hour) A.B. Kain, J.-P. Hosom, X. Niu, J.P.H. van Santen, M. Fried-Oken, J. Staehely (2007) Improving the intelligibility of dysarthric speech. Speech Communication, 49(9):743-759.

Speech-based diagnosis

- (1/2 hour) A. Tsanas, M.A. Little, P.E. McSharry, J. Spielman, L.O. Ramig (2012) Novel speech signal processing algorithms for high-accuracy classification of Parkinson's disease. *IEEE Transactions on Biomedical Engineering*, 59(5):1264-1271.
- (1/2 hour) D. Hakkani-Tur, D. Vergyri, G. Tur (2010) Speech-based automated cognitive status assessment. Proceedings of Interspeech 2010, pages 1-4.
- (1/2 hour) D. Bone, T. Chaspari, K. Audhkhasi, J. Gibson, A. Tsiartas, M. Van Segbroeck, M. Li, S. Lee, S. Narayanan. (2013) Classifying language-related developmental disorders from speech cues: the promise and the potential confounds. In Proceedings of INTERSPECT 2013, pages 182–186.
- (1/2 hour) K.L. Lansford, J.M. Liss (2014) Vowel acoustics in dysarthria: Speech disorder diagnosis and classification. Journal of Speech, Language, and Hearing Research, 57, pages S7â€"67

Clinically-relevant features of speech & other

- (1/2 hour) K. Brigham, B.V.K.V. Kumar (2010) Imagined Speech Classification with EEG Signals for Silent Communication: A Preliminary Investigation into Synthetic Telepathy. Proceedings of IEEE International Conference on Bioinformatics and Biomedica Engineering (CBBE), pages 1-4.
- (1/2 hour) C.S. DaSalla, H. Kambara, M. Sato, Y. Koike (2009) Single-trial classification of vowel speech imagery using common spatial patterns. Neural Networks, 22(9):1334-1339.
- (1 hour) B.N. Pasley, S.V. David, N. Mesgarani, A. Flinker, S.A. Shamma, N.E. Crone, R.T. Knight, E.F. Chang (2012) Reconstructing Speech from Human Auditory Cortex. PLoS ONE Biology, 10(1):1-13.
- (1/2 hour) K.-h. Chang, D. Fisher, J. Canny. (2011) Ammon: A speech analysis library for analyzing affect, stress, and mental health on mobile phones.. Proceedings of PhoneSense 2011
- (1 hour) L. Feenaughty, K. Tjaden, J. Sussman (2014) Relationship between acoustic measures and judgments of intelligibility in Parkinsonâ€^{ms} disease: A within-speaker approach. Clinical Linguistics & Phonetics, pages 1--22.

レ

Optional readings - general introduction

http://www.sciencedirect.com/science/article/pii/S0885230810000586

• First come, first served. Email me to volunteer for next available slot, then choose any of the remaining papers.

 Your lecture (+ any supplemental) materials will be posted.

 You should meet with me ≥1 week before your talk to go over your slides.

2. Project

• Get two birds stoned at once: get an A+ and a publication.

• Final report takes the form of a paper conforming to:

- Transactions of the Association for Computational Linguistics
- Interspeech
- Neural Information Processing Systems

• Your report will be marked on 1) originality, 2) sufficient survey of existing work, 3) technical correctness, 4) empirical methods, 5) overall presentation.

2. Project

• Four components:

- **Project proposal** (22 September). 5% of project grade. 1-2 pages.
 - Describe your goals.
 - Briefly describe 2-5 relevant papers.
 - Outline your plan to reach your goals (including schedule).
 - Outline a method to evaluate success.
- Midterm checkpoint (mid-to-late October). Not marked.
 - You will meet with me to discuss progress.
- Project report (15 December). 80% of final grade. ≥ 4 tight, double-column pages or equivalent.
 - You will be encouraged to submit this to a conference or journal.
- *N*-minute madness. (15 December). 5% of project grade.
 - You will present your project for a brief $2 \le N \le 5$ minutes.

2. Project – data (e.g.)

• General speech:

- Switchboard: telephone conversations, 8 kHz, 14 GB
- **TIMIT**: phonemically-balanced, 16 kHz, 711 MB
- WSJ: news broadcasts, 15 GB

15

• Pathological speech:

- **DementiaBank**: dementia (and control), picture description, 13 GB
- TORGO: cerebral palsy, articulation, phonemically balanced, 18 GB
- TBD: Parkinson's disease, articulation, emotional speech, TBD

• EEG/MEG, robot

Flexibility

• You can choose to **present a paper** other than those on the course page.

• You can choose to write in the **style** of another journal or conference.

 You can choose to use another set of data, or collect your own.

In all cases, **consult with me ASAFP**

Sound signals

• Frequency F = 1/T

Given $\omega = 2\pi/T$, and phase $\phi = \pi/2$,

 $f(t) = A\sin(\omega t + \phi) = A\cos(\omega t)$

Speech signals

"Two plus seven is less than ten"

Signals as summed sinusoids

- Consider just the periodic segments.
- Fourier: $f(t) = \sum_{i=0}^{\infty} w_i f_i(t)$
 - Especially nice: $f_i(t) = \sin(\omega_i t + \phi_i)$

Signals as summed sinusoids

Et c. ad infinitum

Et c. ...

Extracting sinusoids from waves

- As we will soon see, the relative amplitudes and frequencies of the sinusoids that combine in speech are often extremely indicative of the phoneme being uttered.
 - If we could separate the waveform into its component sinusoids, it would help us classify phonemes being uttered.

Short-time windowing

- Speech waveforms **change** drastically in time.
- We **move** a short analysis **window** (*assumed to be time-invariant*) across the waveform in time.
 - E.g. frame shift: 5—1
 - E.g. frame length:
- 5—10 ms

10—25 ms

UNIVERSITY OF TORONTO

Window types

Spectrum

UNIVERSITY OF

Any colour

you like (track 8)

Extracting a spectrum

Frequency (Hz)

Filtering

• Sometimes you only want part of a signal.

- E.g., you have measurements of lip aperture over time you know that they can't move > 5-10 Hz.
- E.g., you know there's some low-frequency Gaussian noise in either the environment or transmission medium.

Low- and high-pass filters can be combined in series, yielding a band-pass filter.

Filtering

• The Butterworth filter is a transfer function designed to be maximally flat in the pass band.

 The transfer function is $H(s) = G_0 / B_n(s/\omega_c)$

where G_0 is the gain at zero frequency, and ω_c is the cutoff frequency.

• The **gain** of the n^{th} -order Butterworth filter is $G^{2}(\omega) = \frac{G_{0}^{2}}{1 + \left(\frac{\omega}{\omega}\right)}$

 $\sqrt{2n}$

The continuous Fourier transform

- So we can attenuate frequencies above or below certain cut-offs.
- But, can we measure the actual amount of frequency F in a time signal x(t)?

Euler's formula

• Extracting spectra is made easier using **Euler's formula**:

$$e^{ix} = \cos(x) + i\sin(x) \qquad i^2 = -1$$

The Fourier transform: intuition

1. If we ignore phase, we only care about the real part, so $\cos(\omega t) = e^{i\omega t}$ is **one** component.

2. How much '7' is in '42'? There is 42/7 = 6 7s in 42. Similarly, How much [18 Hz] is there in x(t)? There is x(t)/[18Hz].

3. How much freq. ω is in x(t)? $x(t)/\cos(\omega t) = x(t)/e^{i\omega t} = x(t)e^{-i\omega t}$ 4. And over the entire signal? $X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-i\omega t} dt$

The continuous Fourier transform

Input: Continuous signal x(t).

Output: Spectrum X(F) ($\omega = 2\pi F$)

$$X(F) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi Ft} dt$$

- It's invertible, i.e., $x(t) = \int_{-\infty}^{\infty} X(F) e^{i2\pi Ft} dF$.
- It's linear, i.e., for $a, b \in \mathbb{C}$, if h(t) = ax(t) + by(t),

if h(t) = ax(t) + by(t), then H(F) = aX(F) + bY(F)

It needs a continuous input x(t)....uh oh?

Discrete signals

• **Sampling**: *vbg.* measuring the amplitude of a signal at regular intervals.

- e.g., 44.1 kHz (*CD*), 8 kHz (*telephone*).
- These amplitudes are initially measured as **continuous** values at **discrete** time steps.

Discrete signals

• **Nyquist rate**: *n.* the **minimum** sampling rate necessary to preserve the **maximum** frequency.

- i.e., twice the maximum frequency, since we need >2 samples/cycle.
- Human speech is quite informative $\leq 4 \text{ kHz}, \therefore 8 \text{ kHz}$ sampling.

Discrete signals

- **Quantization**: *n.* the conversion of **floating point** amplitude sample values to **integers**.
- PCM: *n.* (pulse code modulation) a method of quantization in which the analog amplitude is quantized at **uniform intervals** .

(e.g., 8 bit (-128..127), 16 bit (-32768..32767).

Discrete Fourier transform (DFT)

- Input: Windowed signal $x[0] \dots x[N-1]$.
- **Output**: *N* complex numbers X[k] ($k \in \mathbb{Z}$)

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-i2\pi k \frac{n}{N}}$$

- Algorithm(s):
- the **Fast Fourier Transform** (FFT) with complexity $O(N \log N)$.
 - The **Cooley-Tukey algorithm** *divides-and-conquers* by breaking the DFT into smaller ones $N = N_1 N_2$.

Discrete Fourier transform (DFT)

 Below is a 25 ms Hamming-windowed signal from /iy/, and its spectrum as computed by the DFT.

Recall: the Fourier transform is invertible

This really only covers a particular set of sinusoidal functions...

The z-transform

• What if we don't *need* the unit circle, r = 1?

•
$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$
,
• where $z \in \mathbb{C}$ so $z = re^{i\omega}$

- Requires a region of convergence in the complex plane where the summation converges.
 - $RoC = \{z: |\sum_{n=-\infty}^{\infty} x[n]z^{-n}| < \infty\}$
- If yellow region on left is RoC, then discretetime Fourier transform exists, since r = 1 is in the RoC.

Poles and zeros

• Transfer functions of linear time-invariant (LTI) systems have this form:

$$H(s) = \frac{P(s)}{Q(s)} = \frac{G \cdot \sum_{m=0}^{M} b_m s^m}{s^N + \sum_{n=0}^{N-1} a_n s^m}$$

where G is the gain, M and N are orders of polynomials, and $b_m \& a_n$ are coefficients of those polynomials.

- Zeros occur when $P(s)|_{s=\beta_m} = 0$.
- Poles occur when $Q(s)|_{s=\alpha_n} = 0$.
- The RoC cannot contain any poles.

Q: Why do Polish airlines only fill half of their seats? A: Because Poles on the right half of the plane are unstable. (http://en.wikipedia.org/wiki/Nyquist_stability_criterion)

Extracting a spectrum

Frequency (Hz)

But in speech we need many successive windows...

Spectrograms

Spectrogram: n. a 3D plot of amplitude and frequency over time (higher `redness' → higher amplitude).

Speech signals

"Two plus seven is less than ten"

Spectrograms

Formants and phonemes

• Formant: *n*. A concentration of energy within a frequency band. Ordered from low to high bands.

Fundamental frequency

*F*₀: *n.* (fundamental frequency), the rate of vibration of the glottis – often very indicative of the speaker.

Formants (should) occur at multiples of F_0

Effect of window length

Wide-band (better time resolution) Narrow-band (better frequency resolution)

Wavelet transforms

- Avoid problem of resolution, and can adapt to changes in the signal over time (i.e., non-stationary signals).
- Wavelet transforms consist of **scaled** and **translated** versions ('daughter wavelets') of basis functions.

Wavelet transforms

where, given low- and high-pass filters (g and h, respectively),

- Approx: $y_{low} = (x * g) \downarrow 2$, $y_{low}[n] = \sum_{k=-\infty}^{\infty} x[k]g[2n-k]$ Detail: $y_{high} = (x * h) \downarrow 2$, $y_{high}[n] = \sum_{k=-\infty}^{\infty} x[k]h[2n-k]$

Convolution Downsampled

Convolution?

- The convolution of two functions, f * g, is the amount of overlap between two functions as one is translated.
- Discrete version:

$$(f * g)[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m]$$

It is related to cross-correlation, which is a measure of similarity.

Speech recognition

Speech as a sequence of phonemes

We want to convert a series of acoustic observation vectors into a sequence of phonemes or words.

Reminder – discrete HMMs

- In **discrete Hidden Markov Models**, at each state we observe a discrete symbol.
- We transition from state s_i to state s_j with probability a_{ij} . While in state s we observe word w with probability $b_s(w)$.

52

word	P(word)	
ship	0.1	
pass	0.05	
camp	0.05	
frock	0.6	
soccer	0.05	
mother	0.1	
tops	0.05	

word	P(word)	word	P(word)
ship	0.25	ship	0.3
pass	0.25	pass	0
camp	0.05	camp	0
frock	0.3	frock	0.2
soccer	0.05	soccer	0.05
mother	0.09	mother	0.05
tops	0.01	tops	0.4
		689	

Continuous HMMs

• A continuous HMM has continuous output observations.

- Observation probabilities, b_i , are also continuous.
- E.g., here $b_0(\vec{x})$ tells us the probability of seeing the (multivariate) continuous observation \vec{x} while in state o.

One HMM per word?

- Imagine that we want to learn an HMM for each word in our lexicon (e.g., 16oK words → 16oK HMMs).
- No, thank you! According to Zipf's law, we expect many words to occur very infrequently.
 - 1 (or a few) training examples of a word is *not* enough to train a model as highly parameterized as a CHMM.

One HMM per phoneme?

- Phonemes change over time we model these dynamics by building one HMM for each phoneme.
 - Tristate phoneme models are popular.

 b_0

 The centre state is often the 'steady' part of the phoneme.

 $b_1 \qquad b_2 \qquad foi/_2 \quad foi/_2$

How do we learn these probabilities?

Training phoneme HMMs

- Training data for a phoneme HMM come from *all* sequences of that phoneme.
 - Even from different words.

Combining HMMs

- We can learn an N-gram <u>language model</u> from word-level and phoneme-level annotations of speech data.
 - These models are discrete and are trained using MLE.
- Our phoneme HMMs together constitute an <u>acoustic model</u>.
 Each phoneme HMM tells us how a phoneme 'sounds'.
- We can combine these models by concatenating together phoneme HMMs according to a known lexicon or phonemic dictionary.

 ^m EVOLUTION EVOLUTION (2)

 EH2 V AHO L UW1 SH AHO N IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V AHO L UW1 SH AHO N
 IY2 V IY2 V IY2 V IY2 V
 IY2 V IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V
 IY2 V

EVOLUTIONARY EH2 V AHO L UW1 SH AHO N EH2 R IY

Combining HMMs

- If we know how phonemes combine to make words, we can simply concatenate together our phoneme models by inserting and adjusting transition weights.
 - e.g., *Zipf* is pronounced /*z ih f*/, so...

Coarticulation and triphones

• **Co-articulation**: *n.* the situation when a phoneme is influenced by an adjacent phoneme.

• A **triphone HMM** captures co-articulation but represents one phoneme.

Combining triphone HMMs

- Triphone models can only connect to other triphone models that match the context.
 - Triphone model /a-b+c/ is the phoneme b that is preceded by a and followed by c.

Concatenating phoneme models

Bigram models

- HMMs are generative models that encode statistical knowledge of how output is generated.
- We train CHMMs with Baum-Welch (a type of Expectation-Maximization), as with discrete HMMs.
 - Here, the observation parameters, $b_i(\vec{x})$, are adjusted using another form of EM for GMMs.

We find best state sequences using the Viterbi algorithm.
Here, the best state sequence returned gives us a sequence of phonemes and words.

ASR architecture

Aspects of ASR in the world

- Speaking mode:
- Speaking style:

• Enrolment:

- Vocabulary:
- Transducer:

Isolated word (e.g., "yes") vs. continuous (e.q., "Siri, sell my Apple stocks.") **Read** speech vs. **spontaneous** speech; the latter contains many dysfluencies (e.g., stuttering, *uh*, *like*, ...) Speaker-dependent (all training data from one speaker) vs. speaker-independent (training data from many speakers). Small (<20 words) or large (>50,000 words). Cell phone? Noise-cancelling microphone? **Teleconference** microphone?

Signal-to-noise ratio

- We are often concerned with the signal-to-noise ratio (SNR), which measures the ratio between the power of a desired signal within a recording (*P_{signal}*, e.g., the human speech) and additive noise (*P_{noise}*).
 - Noise typically includes:
 - Background noise (e.g., people talking, wind),
 - **Signal degradation**. This is *normally* 'white' noise produced by the medium of transmission.

$$SNR_{db} = 10 \log_{10} \left(\frac{P_{signal}}{P_{noise}} \right)$$

• High SNR_{db} is >30 dB. Low SNR_{db} is < 10 dB.

Audio-visual speech methods

- Observing the vocal tract directly, rather than through inference, can be very helpful in ASR.
- The shape and aperture of the mouth gives some clues as to the phoneme being uttered.
 - Depending on the level of invasiveness, we can even measure the glottis and tongue directly.

Lip aperture and nasals

Dysarthria

Can we build models of atypical articulation? What are relevant features? How will technology be used? What about cognitive disorders?

Next week: clinical/medical aspects.

