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Alzheimer’s disease (AD) is a progressive neuro-degenerative
dementia characterized by declines in:
* Cognitive ability (e.g., memory, visual-spatial reasoning),
 Functional capacity (e.g., executive power), and
e Social ability (e.g., linguistic abilities).

Caregivers often assist individuals with AD, either at home or in
long-term care facilities.
e >$100B are spent annually in the U.S. on caregiving for AD.
e Asthe population ages, the incidence of AD may double or
triple in the next decade (Bharucha et al., 2009).
* Demographic crisis!




e ‘COACH’ automates support of daily tasks
§ often assisted by human caregivers. :
 E.g., hand-washing, tooth-brushing.
* Based on partially-observable Markov
decision processes (POMDPs) and

vision-only input.

\ * But what if the user does not want to
spend their day in front of the sink?
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Our goal is to implement two-way
spoken dialogue in ED that can
identify and recover from
communication breakdowns.
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Common features in dialogue in AD: Repetition, incomplete words,
and paraphrasing (Guinn and Habash, 2012).
e Pauses, filler words, formulaic speech, and restarts were not.
e Surprisingly, this seems to contradict Davis and Maclagan
(2009), and Snover et al. (2004).

Effects of AD on syntax remains controversial.
e Agrammatism could be due to memory deficits (Reilly et al., 2011). 1 73

e Pakhomov et al. (2010) found pause-to-word and pronoun-to-noun
ratios were discriminative of frontotemporal lobar degeneration.

Roark et al. (2011) found pause frequency and duration were
indicative of mild cognitive impairment.




NN

atg, C@% :

LINgR:

¢ Ten individuals (6 female) with AD
recruited at Toronto Rehab.

o Age: 77.8 years (o0 = 9.8)
e Education: 13.8 years (o = 2.7)
e MMSE: 20.8/30 (o0 =5.5)

_ * Three phases with different partners:
| E e A familiar human-human dyad
) (during informed consent),
e A human-robot dyad

(during tea-making), and
e An unfamiliar human-human dyad
(during post-study interview).
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. * QOur data are very noisy. Signal-to-noise: -=2.1 dB to 7.63 dB
e Clean speech typically 40 dB to 60 dB.
e Can we do speech recognition in this environment accurately?

e We assume that our recordings can be decomposed as:

y(t) =
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Noise reduction

* Subtraction with log-spectral amplitude estimator (LSAE)
® Requires an annotated sample of the noise.

Input signal Noise sample

Output signal
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Noise reduction
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Speech recognition

®* Semi-continuous hidden Markov model with 42-dimensional
MFCC input (incl. § and 00), z-scaled.

* Two trigram language models derived from English Gigaword
(small: top 5000 words, large: top 64,000 words).

* Five speaker-independent acoustic models derived from WSJ
over 100 speakers with 1, 2, 4, 8, and 16 Gaussians/state.

* Empirically adjust other parameters (e.g., beam width).
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Results

Noise ° : °

Interview

Small

Inte rview
Large

In task

Experiments

25.1 (o0 =9.9)
40.9 (o0 = 5.6)

t(39) = 8.7,
p < 0.0001

5.8 (0 =3.7)
14.3 (0 = 12.8)
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40.2 (6 = 5.3)
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Accuracy and MMSE
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Despite the clear increasing trend in
accuracy with MMSE, n-way ANOVA:
F, =47.07,

10
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Communication strategies

® To be useful, ED needs to mimic some verbal techniques
employed by caregivers.

® Caregivers are commonly trained to use communication
strategies (smalletal., 2003), such as:
* Using a relatively slow rate of speech,
®* Repeating misunderstood prompts verbatim,
* Posing closed-ended questions (e.g., yes/no questions),
* Simplifying the syntactic complexity of sentences,
® Giving one guestion or one direction at a time, and
® Using pronouns minimally.
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How to identify breakdowns?

* Trouble Indicating Behaviors (TIB) (watson, 1999).
* Difficulties can be phonological, morpho/syntactic, semantic (e.g.,
lexical access), discourse (e.g., misunderstanding topic).
® 7 seniors with AD use TIBs significantly more (p < 0.005) than
matched controls (Watson, 1999).

* >33% of moderate AD dyads display related ‘trouble-source

repair’ (Orange, Lubinsky, Higginbotham, 1996).
®* Most common trouble: discourse
(e.g., inattention, working memory)
* Most common repair: wh-questions and hypotheses
(e.g., “Do you mean ...?").
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How to identify breakdowns?
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* People with AD were much (¢(18) = —5.8,p < 0.0001)
more likely to exhibit TIB 8 (lack of uptake) with the robot ...
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How to identify breakdowns?

* .. people with AD were much more likely (t(18) = —4.78,
p < 0.0001) to have successful interactions with a robot
(18.1%) than with a non-familiar human (6.7%).
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Ongoing work

®* We can achieve up to 40% word accuracy in AD using
standard acoustic/language models and noise reduction.
® Accuracy depends on MMSE, but not significantly.
®* We are currently improving ASR by adapting
vocabularies, acoustic and language models.

® Older adults with AD are very likely to ignore the robot, but
when they don’t they have more fluid dialogues than with
unfamiliar humans.

* Automatically identify TIBs from > 200 acoustic and

lexical/syntactic features with an accuracy of [ %.
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