Speech interaction with personal assistive robots supporting aging-at-home for individuals with **Alzheimer's disease**

Frank Rudzicz^{1,2}, Rosalie Wang^{1,2}, Momotaz Begum³, Alex Mihailidis^{1,2}

Introduction

Millions ¹⁰⁰
 Alzheimer's disease (AD) is a neurodegenerative disorder usually affecting memory, then language, then executive function.
• At moderate stages, activities of daily living become difficult.
 Caregivers often assist individuals with, either at home or in long-term care facilities.
 >\$100B are spent annually in the U.S. on caregiving AD.
2006 LProjected

The HomeLab

• 'COACH' automates support of daily activities.

- E.g., hand-washing, tooth-brushing.
- Uses partially-observable Markov decision processes (POMDPs) and camera-only input.
- But what if the user does not want to spend their whole day in front of the sink?

Early qualitative analysis indicated that **speech** is the most **desired** form of interaction with such a system.

Our **goal** is to implement two-way **spoken dialogue** that *identifies* and *recovers* from communication breakdowns.

ASSETS 2015, Lisbon Portugal

Related work

 There has been a *lot* of great work on supporting older adults with robots.

- However, speech interaction has been superficial.
- We know a lot about how AD affects language.
 - Repetition, disfluency, paraphrasing (Guinn and Habash, 2012).
 - Can be used for **diagnosis** (Fraser, Meltzer, and Rudzicz., 2015).

Communication difficulties and Trouble-Indicating Behaviors

TYPICAL	 In dialogue, people with AD have more discourse-related difficulties, including:
	• inattention,
TIB 189	
AD TIB 33%	 Trouble Indicating Behaviors (TIBs) (Watson, 1999). Difficulties can be phonological, morpho/syntactic, semantic (e.g., lexical access), or discourse (e.g., misunderstanding topic). Seniors with AD use TIBs significantly more (p<0.005) than matched controls (Watson, 1999).

• What are these TIBs?

Some common TIBs

 Neutral or non-specific requests for repetition (local).
 E.g., What? Huh?

 2. <u>Request for confirmation –</u> <u>repetition with reduction</u>.
 E.g., Speaker 1: *I went to the museum last night*. Speaker 2: *Last night?*

•••

Some common TIBs (cont.)

•••

8. Lack of uptake / lack of continuation. Include i) *minimal feedback* indicating nonunderstanding, ii) lack of contribution to topic extension; iii) overriding/*interrupting*; and iv) abrupt *switch of topic*. E.g., Speaker 1: Do you know what 'rhetorical' means? Speaker 2: Yes. Speaker 1: What? Speaker 2: Oh, its a bit too hard, bit late too late to.

Some common TIBs (cont.)

•••

11.<u>Reprise / minimal dysfluency</u>.

<u>Reprises</u>: partial or whole repetition/revision. <u>Minimal dysfluencies</u>: sound, syllable, or word repetition, pauses, and fillers. E.g., **Eerrr, I want to we went to** the river.

How do people avoid TIBs?

- ED should mimic **verbal strategies** of caregivers.
 - E.g., (Wilson et al., 2012) :
 - 1. Speak slowly.
 - 2. Repeat misunderstood prompts verbatim.
 - 3. Ask **closed-ended questions** (i.e., eliciting yes/no responses).
 - 4. Simplify sentences using **reduced syntactic complexity**.
 - 5. Give one question or **one direction at a time**.
 - 6. Use pronouns minimally.

How can we mimic this in a robot? How will people with AD respond?

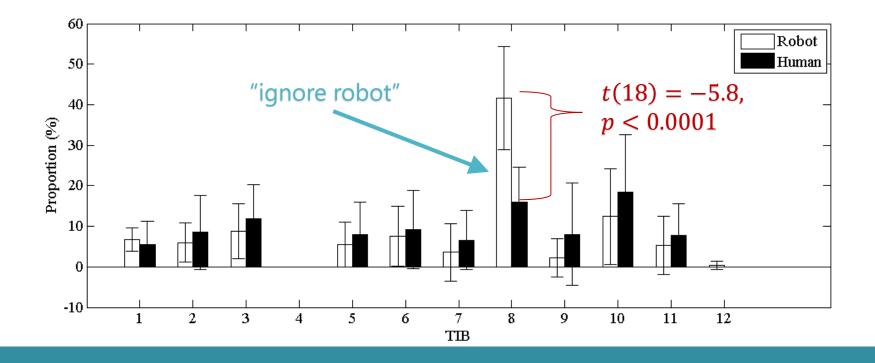
Data

10 individuals (6 female) with AD recruited at Toronto Rehab.

- Age: 77.8 years ($\sigma = 9.8$)
- Education: 13.8 years ($\sigma = 2.7$)
- MMSE: 20.8/30 (σ =5.5)
- Three phases:

•

- Familiar human-human dyad (during informed consent),
- Human-robot dyad (during *tea-making*), and
- Unfamiliar human-human dyad (during post-study interview).


ASSETS 2015, Lisbon Portugal

Speech interface

- Synthetic speech: 'David' voice from Cepstral.
 - Qualitative feedback was **positive**; 😃
 - Despite being '**robotic**', the voice was '*clear*' and '*confident*'.
- We **split** the tea-making task into **phases**.
 - **(1)** go to kitchen, ..., **(6)** put teabag in cup, ...
 - We recorded audio (+video) prompts for **each phase**, at several **levels of detail**.
- A human navigator followed a **flowchart** of **scripts**.
 - Respond to questions with pre-recorded prompts;
 - When possible, engage in **novel social conversation**.

Language use and interaction

- A speech-language pathologist (SLP) transcribed all of the data and annotated TIBs.
 - For sanity, a second SLP annotated 20%; Fleiss' $\kappa = 0.84$.

Understanding each other

- People with AD were much more likely^(*) to have no TIB when interacting with a robot (18.1%) than with a non-familiar human (6.7%).
- But it's not *really* interacting with a robot, is it?
 - A human is recognizing the speech.
 - A human is recovering from errors.
 - A human is choosing what to say next (albeit with a script).

ASSETS 2015, Lisbon Portugal

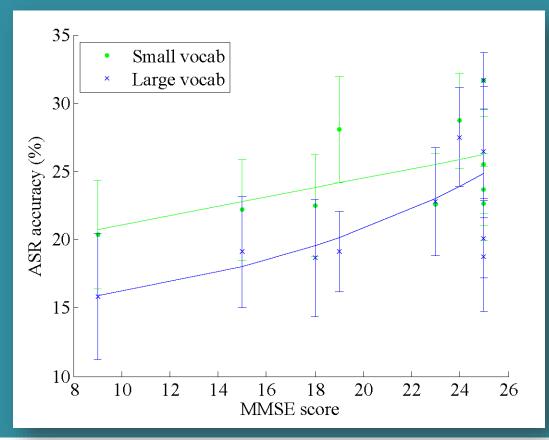
Rudzicz et al. Speech interaction with personal assistive robots...

(*) t(18) = -4.78,

p < 0.0001

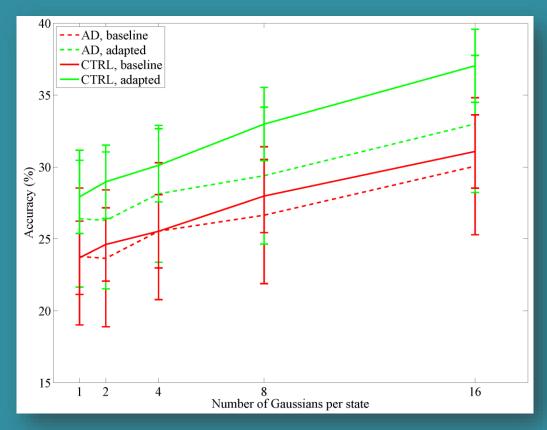
Speech recognition and automation

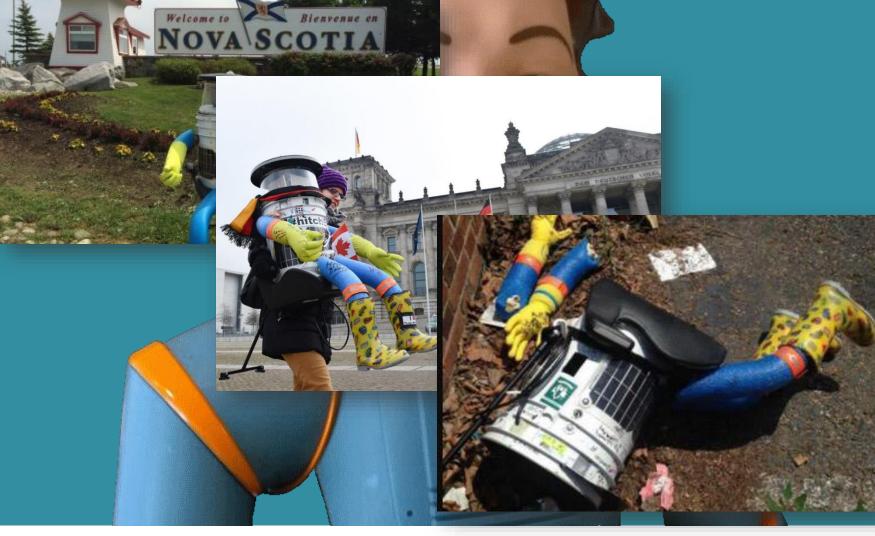
- We developed methods that **automatically identify** TIBs in speech with >80% accuracy (Rudzicz et al., 2014).
 - Indicative features are mostly things like skewness of the derivatives of particular Mel-frequency cepstral coefficients, but some have more clinical value e.g., phonation rate.
- **ASR** is a standard HMM with mixtures of Gaussians.
 - Data are very noisy (SNR [-3.42..8.14] dB).
 - LSAE spectral noise subtraction



- Two LMs derived from English Gigaword corpus:
 - Large: 64,000 words Small: 5000 words

Speech recognition and cognition


• Clear increases in accuracy with MMSE. ANOVA: $F_1 = 47.07, p = 0.164$.


ASSETS 2015, Lisbon Portugal

Adapting ASR to older voices

• We adapted ASR using data from DementiaBank and Carolina Conversations, and varied model complexity.

Automating choice of response

ASSETS 2015, Lisbon Portugal

Silicon friends for golden years

Speech is increasingly important for interaction.

Our robot friends will need to be sensitive to differences in language as we age.

Special thanks: Raibul Huq & Colin Harry (robot builders), Jen Boger & Goldie Nejat (study design).

ASSETS 2015, Lisbon Portugal

SLPAT K

• Joint Special Interest Group of

the Association for Computational Linguistics (ACL) & the International Speech Communications Association (ISCA)

• Speech and Language Processing for Assistive Technologies.

- Yearly workshops (next: w/ Interspeech in SanFran).
- Recent special issue of TACCESS.
- Possible Jelinek JHU workshop.

www.slpat.org