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Dysarthria

Neuro-motor articulatory
disorders resulting in
unintelligible speech.

9 Dysarthria 3

Hey everybodyl My name’s
~ here to do a

of my brain doesn’t work that
controls my mouth and | um
can’t talk as perfgctly

7.5 million Americans

have dysarthria

« Cerebral palsy,

 Parkinson’s,
Amyotrophic

lateral sclerosis
(National Institute of Health)
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Nosology of dysarthria

* Types of dysarthria are related to specific sites in the subcortical
Nervous system.

Primary lesion site

Ataxic ~ Cerebellum or its outflow pathways

Flaccid  Lower motor neuron (=1 cranial nerves)

Hypo- : L

Kinetic Basal ganglia (esp. substantia nigra)
Hyper- :

Kinetic Basal ganglia (esp. putamen or caudate)

Spastic  Upper motor neuron

Spastic-

flaccid Both upper and lower motor neurons

(After Darley et al,, 1969)
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Characteristics of dysarthria

Hypo- Hyper- Hyper- Spastic-
kinetic kinetic, kinetic, flaccid
chorea dystonia

Monopitch

Harshness

Mono-loud
Distorted vowels
Slow rate

Short phrases
Hypernasal
Prolonged intervals

Low pitch
Inappropriate s M i
Variable rate I

Breathy voice s
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Strain-strangled
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Dysarthria

The broader neuro-motor deficits associated with dysarthria can
make traditional human-computer interaction difficult.

Can we use

ASR for
dysarthria?

E
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Accounting for aspects of dysarthria

* Ergodic HMMSs can be robust against recurring pauses,
and non-speech events.

918l 09514 00024 {1 (L6R3G

* Polur and Miller (2005)
replaced GMM densities

with neural networks
(after Jayaram and Abdelhamied, 1995),

further increasing accuracy.

08336 LR ]| 8854 L] 0.E771
(From Polur and Miller., 2005)
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Adjusting to the individual speaker
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Acoustic ambiguity
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Non-dysarthric Dysarthric

This acoustic behaviour is indicative of underlying articulatory behaviour.

e
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The TORGO database

* TORGO was built to train augmented ASR systems.
* 9 subjects with cerebral palsy (1 with ALS), 9 matched controls.
* Each reads 500—1000 prompts over 3 hours that cover phonemes and
articulatory contrasts (e.g., meat vs. beat).
* Electromagnetic articulography (and video) track points to <1 mm error.

r--ﬁ, Gsa L R s NSRS . . . T
. 6000 -
BN

5000

4000
E 1000
|
£
2 2000f
H
e 1000 uL|
= Ul B D
g 0 e . :
v T =1
g - - 4
= 1000 "WK ;
- “ut®

LL
=2000
LI
—3000}
_4(](KJL 1 1 1 1 1 1 - - .‘ - 1 - ]
=2000 -1000 0 1000 2000 3000 4000 5000 6000 7000 |
X nacitinn (frant at lafti 1-—S

S POClab oronto &
signal processing and u H N -1%:“&:“8 w TO RO N TO

oral communication




Dynamic Bayes nets with EMA data
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Dynamic Bayes nets with EMA data
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Beyond discrete articulation
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Dynamic speech gestures

We wish to represent speech in a low-dimensional and informative space
that incorporates goal-based and long-term dynamics.

Tongue body
constriction degree

lip
— gperture™
e

glottis

time
[ask-dynamics: Represents speech as goal-based

reconfigurations of the vocal tract.
Mz" + Bz' + K(z — zY)
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Problem 1: Timing

* In TD, pairs of goals are dynamically coupled in time.
* Articulators are phase-locked (0" or 180°; coldstein et at, 2005)

::5*'1@ ﬁ&

* (Q)CV pairs stabilize m—phase.

* V(C)C pairs stabilize anti-phase.
* Kinematic errors occur when

competing gestures are repeated
and tend to stabilize incorrectly.
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Problem 1.5: Timing/rhythm

* Rhythm (the distribution of emphasis) is not part of TD.

* Tremor behaves as oscillations about an equilibrium.
* There is evidence that people with Parkinson’s coordinate

voluntary movement with involuntary tremors (kent et at, 2000).

* Rhythm in ataxic dysarthria formalized by aberrations in a

‘scanning index’, SI, consisting of syllable lengths S;,
n

1S,

i=1v1

n
n
i=19i
n (Ackermann and Hertrich, 1994))

S

SI =
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Problem 2: Feedback

* Dysarthria can affect sensory cranial nerves.

* Parkinson’s disease reduces temporal discrimination in

tactile, auditory, and visual stimulli.
* Likely explanation is that damage to the basal ganglia prohibits

the formation of sensory targets (ent et at, 2000).
* The result is underestimated movement.

* Cerebellar disease results in dysmetria since the internal

model of the skeletomuscular system is dysfunctional.
* The cerebellum is apparently used in the preparation and
revision of movements.
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Interpreting brain signals

* Many people are not merely dysarthric, but have
locked-in syndrome — they cannot even move.

* HMMSs have been used in BCl to classity EEG data.

* What features and sensor locations are most informative?
* How to remove artifacts from very noisy signals?
* How to elicit imagined words?
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Semantics from EEG

* Classify speech stimuli
as either synonymous or
NON-Synonymous with a
prior prime in a speech-
receptive task using only
FEG data with up to
86.84% accuracy

(Parisotto et al., submitted,).
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>~

'Semantics’ from MEG

[dentify the language being
received during auditory
stimuli in English and
Romanian before and after
several weeks of learning
words in the latter using
MEG, with >90% accuracy.
(Parisotto et al., submitted,).

Significant effects of
semantic word category, of
the subject’s ability to play a
musical instrument, and of
the parietal lobe.
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Phonology from EEG

100 | | | |
| | | |
[ [ [ [
o0+ | | : | ] | ] : | | : | : " [ |
[ | | [
| | | |
| | | |
w e ® e e e o e
[ [ | |
| | | I
] | | | |
[ [ [ [
7()— | | | |
| e e T
| | | . . |
| | | |
__oor | L | |
g | . Lo !
5- I I | T
8 3(}*. | | | |
3 | ° | | |
< | | | | 1
40+ | n | ., | "
| | | |
- | | | |
30 | | | |
| | | |
| - |
| [ [ [ I
20 i i [ @ DBNuw
| | | SVM—quad /uw/
: : : ® SVM-rbf+/uw/
10+~ | | | m DBNC/NV
: : : SVM-quad C/V
[ [ [ B SVM-rbf C/V
0 | | | | | | | I T T
1 2 3 4 5 6 7
Subject

] SPOClab T
i P’:E?’ i . . 7 i 2’::0” ation . UNIVERSITY OF
figgﬁ Intergl@@Ng brain signals 21 signal processing and UHN::: @ TORONTO

oral communication




What about
Cinderella?
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Further into the brain with aphasia

I

Broca’s aphasia h. Wernicke's aphasia h

* Reduced hierarchical syntax. * Normal intonation/rhythm.

* Anomia. * Meaningless words.

* Reduced "mirroring” between ¢ “Jumbled’ syntax.
observation and execution of ~ * Reduced comprehension.
gestures (Rizzolatti & Arbib, 1998).
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Pitaghresis Assessment

* Alzheimer’s disease (AD) is a progressive neuro-degenerative

dementia characterized by declines in:

* Cognitive ability
* Social ability
* Functional capacity

healthy advanced
brain ﬂl alzheimer's

Behavioral batterles

* (incl. MMSE) require
the presence of a

healthcare worker.

=>4 Assessing aphasia
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Assessment

* Recent work aims to identify language disorders. E.g.,
° primary progressive aphasia (PPA) and its subtypes

(i.e., semantic dementia (SD) and progressive nonfluent aphasia (PNFA))
* Extended to Parkinson’s disease and Alzheimer’s disease.

* Input: hundreds of features:
* acoustic (e.g., formants, pitch, jitter, shimmer, recurrence) and
* lexical/syntactic (e.g., pronoun frequency, parse tree depth).

Important

All input
features

features

&
w | 1 1 . q ehabilitation 3 Py
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Primary progressive aphasia

* 24 patients with PPA (14 PNFA, 10 SD) and 16 controls.

* Narrative recounting of Cinderella (fter saffran et at. (1989))

* Important features: phonation rate, syntactic complexity, the
‘familiarity' and frequency of NNs and PRPs, and vocal jitter.

oy Assessing aphasia 26

PNFA Control

(n=14) | (n=16)
65.6 64.9 67.8
(7.4) (10.1) (8.2)

_ Years 17.5 14.3 16.8
N | of edu. HE(HN)] (3.6) (4.3)
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dentifying PPA
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Demographic crisis

* Caregivers often assist individuals with AD who live alone,

either at home or in long-term care facilities.
* >$100B are spent annually in the U.S. on caregiving AD.

Number of people age 65 and over, by age group, selected years 1900-2006
and projected 2010-2050

qwillions

90
80 —
70 -
60

50

40 - 65 and over

30 -
20

10 - 85 and over

0 ] ] ] ] T e 1 - I I 1 |

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 |2010 2020 2030 2040 2050
2006 | |

Projected

Note: Data for 2010-2050 are projections of the population. .
Reference population: These data refer to the resident population. A S S e S S m e nt | S n Ot
Source: U.S.Census Bureau, Decennial Census, Population Estimates and Projections.
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* ‘COACH’ automates support of daily tasks 7

@ often assisted by human caregivers. <

* E.g., hand-washing, tooth-brushing.

* Based on partially-observable Markov

decision processes (POMDPs) and
vision-only input.

N\ * Butwhat if the user does not want to
spend their day in front of the sink?
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Speakers

Our goal is to implement two-way
spoken dialogue in ED that can
identify and recover from -~
communication breakdowns. =
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e Ten individuals (6 female) with AD
recruited at Toronto Rehab.

« Age: 77.8 years (o0 = 9.8)
e Education: 13.8 years (o = 2.7)
e MMSE: 20.8/30 (o0 =5.5)

' * Three phases with different partners:

|+ A familiar human-human dyad
(during informed consent),

A human-robot dyad
(during tea-making), and

* An unfamiliar human-human dyad
(during post-study interview).
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Accuracy and MMSE

35

b (N )
- ) -
I

ASR accuracy (%)

[
n

ASR with robots

X

Small vocab
Large vocab

10
8

Despite the clear increasing trend in
accuracy with MMSE, n-way ANOVA:
F, =47.07,
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How to identify breakdowns?

* To be useful, ED needs to mimic some verbal techniques
employed by caregivers, including recovering from
breakdowns.

* Trouble Indicating Behaviors (TIB) (watson, 1999).
* Difficulties can be phonological, morpho/syntactic, semantic (e.g.,
lexical access), discourse (e.g., misunderstanding topic).
* Seniors with AD use TIBs significantly more (p < 0.005) than
matched controls (Watson, 1999).
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How to identify breakdowns?

20

[ |Robot
I 1iuman
15+ -

=

S 10k

=

_D

£

=]

=

g

ol

"
=
==
P
=
'
—
e
==
()
]

* People with AD were much (t(18) = —5.8,p < 0.0001)
‘more likely to exhibit TIB 8 (lack of uptake) with the robot ...
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How to identify breakdowns?

* ... people with AD were much more likely (t(18) = —4.78,
p < 0.0001) to have successful interactions with a robot
(18.1%) than with a non-familiar human (6.7%).

Currently
completing a
POMDP model for

recovery.

= | ldentify breakdowns
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SPOClab builds soﬁvvare to help people with disabilities to
communicate. This is a dehberately broad goal.

We use many features of narrative speech to infer cognitive
state through linguistic assessment.

We build robots that can communicate with people with
dementia and identify breakdowns.




Talking to humans
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Characteristics of dysarthria

Hypo- Hyper- Hyper-
kinetic kinetic, kinetic,
chorea dystonia

Monopitch
Harshness
Imprecise consonants
Mono-loud

Distorted vowels
Slow rate

Short phrases
Hypernasal

Prolonged intervals
Low pitch
Inappropriate silences
Variable rate

Breathy voice

Strain-strangled voice

ﬁ Dysarthria

Spastic-
flaccid
(ALS)
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Correct voicing
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Correct insertions and deletions

* Deleted sounds are patched with synthetic equivalents.
feelin

h

feeling

* |nserted sounds (e.qg., ‘stuttering’) are simply removed.

pr-pr-pr-pronouncead

D 4

pronounced
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Correct vowel frequencies
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Can we separate the vowels so that they are more mutually distinct?
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Correct vowel frequencies

5000 , o 5000
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Correct the tempo

* Dysarthric speech tends to be a lot (often 3x) slower than
typical speech.

* We squish sonorants in time to be closer to their expected
length.

* A phase vocoder squishes (or stretches) the length of a signal
without affecting its pitch or frequency characteristics.

AT !
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Talking to humans

lemg those

Talking to humans 45 signal processing and UHNIT % s
oral communication T T nstitute



Talking to humans

? Talking to humans 46



Extracting TVs
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Quantizing articulation data

Acoustic data (MFCCs) Articulatory data (TVs)
JNE AN
4 A ‘ A

index ]
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Experiments using TADA

Appendix

Convert EMA data to TV.

Learn probabilities of
dysarthric & control
acoustics & articulation.

Generate TV curves with
TADA from words.

Learn probabilities of
TADA tract variables.

Perform noisy-channel
conversions.

Compare expected and

actual space distribution.
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Parameter estimation with CCA

errnn]
X[n]— K >+ H(.) =A[n]
Acoustic | Nonlinear | x[n] rA[ ] Linear transfer- Articulation

frame kernel function function frame

. Minimize Euclidean error
175 — 7 || = 1K wy — Ayl
by solving for w, and w, with CCA.
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Performing transformations

P(Y|X) ——7VY
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Automatic speech recognition (ASR)

"open the pod bay doors”

-~ -
000 60 0

Language model

lab

oronto
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