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TODAY

• I’m going to tell you:
• How talking about cookies can reveal dementia.

• How counting words can tell you what they mean.

• How you can ignore errors in speech recognition.



THE RISING TIDE OF 
DEMENTIA



CLINICAL DECISION 
SUPPORT

"Clinical decision 
support systems link 
health observations 

with health knowledge 
to influence health 

choices by clinicians for 
improved health care”



ASSESSING ALZHEIMER’S
AUTOMATICALLY

• A task that can be done in less than a 
minute, on the couch.

• DementiaBank: 
240 samples from167 people with AD,
233 samples from 97 controls.
• Free-form descriptions of  

“Cookie Theft” (incl. audio)
• Transcribed and annotated, 

e.g.,  with filled pauses, paraphasias, 
and unintelligible words.

• Mini-mental state exam 
(MMSE)



ASSESSING ALZHEIMER’S
AUTOMATICALLY

State-of-the-art accuracy: 85% - 92%

Is this easy?

Extract many, many, many, 
many features related to:
• Words (‘lexical’)
• Grammar (‘syntax’)
• Meaning (‘semantics’)
• Context (‘pragmatics’)
• Voice (‘acoustics’) 



NO

Grandmother of Eight Makes
Hole in One
...

Kids Make Nutritious Snacks
...

Juvenile Court Tries Shooting 
Defendant
...

Kicking Baby Considered to 
be Healthy
...

Squad Helps Dog Bite Victim
...

American Pushes Bottle Up Germans
...

Milk Drinkers are Turning to Powder
...

Local High School Dropouts
Cut in Half
...

• Ambiguity is everywhere. E.g., newspaper headlines:



AI TO THE RESCUE!

• AI involves resolving ambiguity at all levels.
• Reasoning with world knowledge.
• In the early days, knowledge was explicitly encoded in artificial 

symbolic systems (e.g., context-free grammars) by experts. 

• Now, algorithms learn using probabilities to distinguish 
between subtly different competing hypotheses.
• E.g., does a clinical note indicate diabetes or not?
• Examine many examples of both, and then compute something like:

𝑃 𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠	 > 𝑃 𝑛𝑜	𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠 > 0

How do you learn semantics?



LATENT SEMANTIC 
INDEXING

• Consider the following:

• Record 1 appears to be related to the query although it 
contains none of the query terms.
• The query and Record 1 are semantically related.

Term 1 Term 2 Term 3 Term 4

Query ignoring sink

How do you learn semantics of words?

Record 1 water overflowing

Record 2 ignoring sink water overflowing



BAG OF WORDS

• Words are often treated as if they’re marbles in a bag.
• Imagine each of 𝐷 available words is a 0-vector with a unique 1.

0 0 0 0 .. 0 1 0 … 0

𝐷
In this approach, words do not overlap:

sink = 0,0,0, … , 0, 𝟏, 0, … , 0 , &
water = 0,0,0, … , 0, 0, 𝟏, … , 0

sink = 

There is no shared
information

sink1

water

1

sink

water



i see a boy on stool the girl wants to give … 
i 81 47 72 47 23 41 38 62 23 48 50 …

see 26 43 21 33 45 44 21 24 12 9 …

a 80 41 40 22 12 34 56 31 18 …

boy 43 38 45 11 51 20 32 3 …

on 56 41 67 68 31 56 33 …

stool 42 51 13 51 62 1 …

the 86 51 42 12 12 …

girl 23 33 16 34 …

wants 18 88 23 …

to 32 12 …

give 7 …

… … … … … … … … … … … … …Co-occurrence

Corpus

I see a boy on a stool.

The girl wants the boy to give her a cookie

The mother can’t see the water overflowing

I don’t … I don’t know what the… what it is

…

CO-OCCURRENCE 
MATRIX

How do you pull out
hidden information?

Co-occurrence: when two or more terms occur in similar
contexts more often than by chance.



LATENT DIMENSIONS

• Principal components analysis 
(PCA) finds latent dimensions of 
maximum variance within a dataset.

• Imagine each grey dot is a row of 
our co-occurrence matrix – one 
dot per word.

• We can rotate and project words 
down onto fewer latent dimensions.

𝑿

𝒀



𝑿
𝒀

PCA SVD

SINGULAR VALUE 
DECOMPOSITION 1



ignore -0.44 -0.30 0.57 0.58 …

sink -0.13 -0.33 -0.59 0 …

water -0.48 -0.51 -0.37 0 …

overfl. -0.70 0.35 0.15 -0.58 …

… … … … … …

2.16 0 0 0 …

0 1.59 0 0 …

0 0 1.28 0 …

0 0 0 1 …

… … … … …

𝑈 =Σ =

𝑀 =

SINGULAR VALUE 
DECOMPOSITION 2

= 𝑈 ⋅ Σ ⋅ 𝑉∗

“embedding”

i see a boy on stool the girl wants to give … 
i 81 47 72 47 23 41 38 62 23 48 50 …

see 26 43 21 33 45 44 21 24 12 9 …

a 80 41 40 22 12 34 56 31 18 …

boy 43 38 45 11 51 20 32 3 …

on 56 41 67 68 31 56 33 …

stool 42 51 13 51 62 1 …

the 86 51 42 12 12 …

girl 23 33 16 34 …

wants 18 88 23 …

to 32 12 …

give 7 …

… … … … … … … … … … … … …



SINGULAR VALUE 
DECOMPOSITION 3

Rohde et al. (2006) An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence. 
Communications of the ACM 8:627-633.

Body
parts

Animals

Place 
names



REGULARITIES IN 
WORD-VECTOR SPACE

Trained on the Google news corpus with over 300 billion words.



REGULARITIES IN 
WORD-VECTOR SPACE

Expression Nearest token

Paris – France + Italy Rome

Bigger – big + cold Colder

Sushi – Japan + Germany bratwurst

Cu – copper + gold Au

Windows – Microsoft + Google Android

Analogies: apple:apples :: octopus:octopodes
Hypernymy: shirt:clothing :: chair:furniture

Similar relations will be discoverable in genetics texts.



• SVD: Computational costs grow quickly with 𝑀.
‘Hard’ to incorporate new words.

• Neural networks: Don’t capture co-occurrence directly
Just try to model surrounding words.

and the sink was overflowing

and the water was overflowing

…

𝑃(𝑤=>? = 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤𝑖𝑛𝑔|𝑤= = 𝑠𝑖𝑛𝑘)

FROM SVD TO
NEURAL NETWORKS 

Build a model that can
do accurate predictions

in order to learn relations.



NEURAL NETWORKS
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𝑃(𝑤=>J = 𝑤	|𝑤= = 𝑠𝑖𝑛𝑘)

We i) ‘plug in’ each word in sequence, ii) perform matrix 
multiplication, iii) compare the result to the next word, and iv) 
propagate the error back through the weights.

𝑦

The ‘hidden’ (i.e., latent) dimension

	𝑊M 	𝑊N



THE LEARNING BIT

• Our model is 𝜃 = [𝑊M,𝑊N]

• The model is used in:    𝑃 𝑤=>J 𝑤= = RST	( UVW
⊺YVZ)

∑ RST	( \VW ⊺YVZ)]
^_`

• To see how well our network is adjusted, we want to maximize 
an ‘objective function’ that characterizes our prediction:

𝐽 𝜃 = J
b
∑ log 𝑃(𝑤=>J|𝑤=)b
=fJ

• Adjust model 𝜃 using a ‘learning rate’ 𝜂 and a derivative of 𝐽(𝜃):  
𝜃 hi\ ← 𝜃 klm − 𝜂𝛻p𝐽 𝜃

“softmax”

What a wonderful question.



USING WORD 
REPRESENTATIONS

𝑥 	𝑊M

D
 =

 1
00

K

Originally, words didn’t overlap:
sink = 0,0,0, … , 0,1,0, … , 0 , &
water = 0,0,0, … , 0,0,1, … , 0 so

Similarity =  0.0

Through learning, they now do:
sink = 0.67,0.9, … , 0.1, 0.32 , &
water = 0.74,0.8, … , 0.2, 0.44 so

Similarity =			0.67

Transform
𝑣\ = 𝑥b𝑊J

H = 300

https://code.google.com/p/word2vec/



SUMMARY: 
LATENT SPACES

• SVD and neural networks transform words into lower-
dimensional ‘latent spaces’ that encode information.

• This is (part of) what Google does when it ranks the 
relatedness of web pages given search terms.

• It is applicable to (almost) any information retrieval task in biology.

• We don’t need a formal representation of meaning, we can just 
use some statistics of how words co-occur.

“words of a feather flock together.”
“you shall know a word by the company it keeps.”

- J.R. Firth (1957)



ASSESSING ALZHEIMER’S
AUTOMATICALLY

Lexical Noun-to-pronoun ratio;
Avg. word length;
# demonstratives;
Familiarity;
Honoré statistic

Syntax Parse tree depth;
VP →VPG;
VP →AUX VP;
Coordinate conjunctions;
Mean clause length

Acoustic Phonation rate;
Mean F2;
Mean RPDE;
Mean power;
Pause::word ratio

State-of-the-art accuracy: 85% - 92%

What if words are misheard? 

Extract many, many, many, 
many features related to:
• Words (‘lexical’)
• Grammar (‘syntax’)
• Meaning (‘semantics’)
• Context (‘pragmatics’)
• Voice (‘acoustics’) 



SPEECH RECOGNITION
(ASR)

Language model Acoustic model



TYPES OF ERROR

• We can compute word-error rate (WER), to count different 
kinds of errors:

• Substitution error: A word being mistook for another
e.g., ‘think’ given ‘sink’

• Deletion error: An input word that is ‘skipped’
e.g. ‘She ignoring’ given ‘She is ignoring’

• Insertion error: A ‘hallucinated’ word not said.
e.g., ‘He wants the delicious cookies’

given ‘He wants the cookies’

• How do these errors affect subsequent features?



FEATURE SELECTION 1

• Different errors in the text data will have
different effects on the features we extract.

• We want to only use features that are robust against error.

• So we choose a subset 𝑆∗ of 𝑘	features 𝑓z that are best at 
differentiating category 𝑐 (e.g.,  Alzheimer’s disease), using 
Spearman correlation 𝜌:

𝑆∗ = argmax
�

∑ 𝜌���
�
��∈�

𝑘 + 2∑ ∑ 𝜌����
�
�fz>J	

��J
zfJ

�

Maximize relevance

Minimize redundancy



FEATURE SELECTION 2

Feature X

Pr
ob

ab
ili

ty

Alzheimer’s

Controls

• Another approach is to use statistical hypothesis testing.

Feature Y
Pr

ob
ab

ili
ty

Feature X is better
at telling groups apart.

(i.e., feature X gives a smaller
p-value, given a t-test of significance)



ROBUSTNESS FROM 
ERROR

p-value 
(true transcripts)
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SUMMARY

• Useful clinical solutions are possible given Big Data and 
i) natural behavioural tasks, ii) many extracted features, and
iii) modern machine learning.
• However, relevant features can be hidden below the surface

• We can infer hidden information by using latent-space models, 
including modern neural networks.
• However, these can be affected by errors or ‘noise’.

• We can overcome errors and noise by selecting features that are 
appropriate.


