MACHINE LEARNING IN CLINICAL MEDICINE

Frank Rudzicz

TODAY

- I'm going to tell you:
 - How talking about cookies can reveal dementia.

- How counting words can tell you what they mean.
- How you can *ignore errors* in speech recognition.

THE RISING TIDE OF DEMENTIA

Number of people age 65 and over, by age group, selected years 1900–2006 and projected 2010–2050

0 0 0

Note: Data for 2010–2050 are projections of the population. Reference population: These data refer to the resident population. Source: U.S. Census Bureau, Decennial Census, Population Estimates and Projections.

Mini-Mental State Examination (MMSE)

Patient's Name: _____

Date:

Instructions: Score one point for each correct response within each question or activity.

Maximum Score	Patient's Score	Questions			
5		"What is the year? Season? Date? Day? Month?"			
5		"Where are we now? State? County? Town/city? Hospital? Floor?"			
3		The examiner names three unrelated objects clearly and slowly, then the instructor asks the patient to name all three of them. The patient's response is used for scoring. The examiner repeats them until patient learns all of them, if possible.			
5		"I would like you to count backward from 100 by sevens." (93, 86, 79, 72, 65,) Alternative: "Spell WORLD backwards." (D-L-R-O-W)			

CLINICAL DECISION SUPPORT

"Clinical decision support systems link health observations with health knowledge to influence health choices by clinicians for improved health care"

What kind of data is useful?

ASSESSING ALZHEIMER'S AUTOMATICALLY

- A task that can be done in less than a minute, on the couch.
- **DementiaBank:** 240 samples from 167 people with AD, 233 samples from 97 controls.
 - Free-form descriptions of "Cookie Theft" (incl. audio)
 - Transcribed and annotated, e.g., with filled pauses, paraphasias, and unintelligible words.
 - Mini-mental state exam (MMSE)

ASSESSING ALZHEIMER'S AUTOMATICALLY

Extract many, many, many, many, many features related to:

- Words ('lexical')
- Grammar ('syntax')
- Meaning ('semantics')
- Context ('pragmatics')
 - Voice ('acoustics')

State-of-the-art accuracy: 85% - 92%

Is this easy?

NO

• **Ambiguity** is everywhere. E.g., newspaper headlines:

AI TO THE RESCUE!

- Al involves **resolving ambiguity** at all levels.
 - Reasoning with world knowledge.
 - In the early days, knowledge was explicitly encoded in artificial symbolic systems (e.g., context-free grammars) by experts.
 - Now, algorithms learn using probabilities to distinguish between subtly different competing hypotheses.
 - E.g., does a clinical note indicate diabetes or not?
 - Examine many examples of both, and then compute something like: $P(diabetes) > P(no \ diabetes) > 0$

How do you **learn semantics**?

LATENT SEMANTIC INDEXING

• Consider the following:

		Term I	Term 2	Term 3	Term 4
?	Query	ignoring	sink		
	Record I			water	overflowing
	Record 2	ignoring	sink	water	overflowing

- Record I appears to be **related** to the query although it contains **none** of the query terms.
 - The query and Record I are **semantically related**.

How do you learn semantics of words?

BAG OF WORDS

- Words are often treated as if they're marbles in a bag.
- Imagine each of D available words is a **0-vector** with a unique **I**.

$$sink = 0 0 0 0 0 .. 0 1 0 ... 0$$
In this approach, words **do not overlap**:

$$sink = [0,0,0, ..., 0, 1, 0, ..., 0], \&$$

$$water = [0,0,0, ..., 0, 0, 1, ..., 0]$$
There is no shared
information water

CO-OCCURRENCE MATRIX

Co-occurrence: when two or more terms occur in similar contexts more often than by chance.

a		Corp		4.6					31	18	
boy			Corpus						32	3	·
on		Low do you bull out						56	33	·	
stool							62	I			
the			hidden information?					12	12		
girl		I don't I don't know what the what it is					16	34	·		
wants		•••							88	23	
to		_						_	32	12	
give										7	
•••	 	•••		Co-o	ccurre	ence	•••		•••		

LATENT DIMENSIONS

- Principal components analysis (PCA) finds latent dimensions of maximum variance within a dataset.
- Imagine each grey dot is a row of our co-occurrence matrix – one dot per word.
- We can rotate and project words down onto fewer latent dimensions.

SINGULAR VALUE

Communications of the ACM **8**:627-633.

REGULARITIES IN WORD-VECTOR SPACE

Trained on the Google news corpus with over 300 billion words.

REGULARITIES IN WORD-VECTOR SPACE

Expression	Nearest token		
Paris – France + Italy	Rome		
Bigger – big + cold	Colder		
Sushi – Japan + Germany	bratwurst		
Cu – copper + gold	Au		
Windows – Microsoft + Google	Android		

Analogies:apple:apples :: octopus:octopodesHypernymy:shirt:clothing :: chair:furniture

Similar relations will be discoverable in genetics texts.

FROM SVD TO NEURAL NETWORKS

• **SVD**: Computational costs grow quickly with *M*. 'Hard' to incorporate new words.

• **Neural networks**: Don't capture co-occurrence directly Just try to model *surrounding* words.

Build a model that *can* do accurate predictions *in order* to learn relations.

 $P(w_{t+2} = overflowing | w_t = sink)$ and the sink was overflowing and the water was overflowing

. . .

We i) '**plug in**' *each* word *in sequence*, ii) **perform** matrix multiplication, iii) **compare** the result to the next word, and iv) **propagate** the error back through the weights.

THE LEARNING BIT

• Our model is $\theta = [W_I, W_O]$ "softmax" • The model is used in: $P(w_{t+1}|w_t) = \frac{\exp((yW_O)^T xW_I)}{\sum_{w=1}^W \exp((wW_O)^T xW_I)}$ • To see how well our network is adjusted, we want to maximize an 'objecti What a model of a model of the set of the

 $\boldsymbol{\theta}^{(new)} \leftarrow \boldsymbol{\theta}^{(old)} - \eta \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$

USING WORD REPRESENTATIONS

https://code.google.com/p/word2vec/

SUMMARY: LATENT SPACES

- SVD and neural networks transform words into lowerdimensional '**latent spaces**' that encode **information**.
- This is (part of) what Google does when it ranks the relatedness of web pages given search terms.
 - It is applicable to (almost) any information retrieval task in biology.
- We don't need a formal representation of **meaning**, we can just use some statistics of how words co-occur.

"words of a feather flock together." "you shall know a word by the company it keeps." J.R. Firth (1957)

ASSESSING ALZHEIMER'S AUTOMATICALLY

Extract many, many, many, many, many features related to:

- Words ('lexical')
- Grammar ('syntax')
- Meaning ('semantics')
- Context ('pragmatics')
 - Voice ('acoustics')

State-of-the-art accuracy: 85% - 92%

What if words are **misheard**?

SPEECH RECOGNITION (ASR)

Language model

Acoustic model

TYPES OF ERROR

- We can compute word-error rate (WER), to count different kinds of errors:
- Substitution error:
- **Deletion error**:
- Insertion error:

A word being mistook for another e.g., 'think' given 'sink'

An input word that is 'skipped' e.g. 'She ignoring' given 'She is ignoring'

A 'hallucinated' word not said. e.g., 'He wants the delicious cookies' given 'He wants the cookies'

• How do these errors affect subsequent features?

FEATURE SELECTION

- **Different errors** in the text data will have **different effects** on the features we extract.
- We want to only use features that are **robust** against error.
- So we choose a subset S^* of k features f_i that are best at differentiating category c (e.g., Alzheimer's disease), using Spearman correlation ρ :

$$S^{*} = \underset{S}{\operatorname{argmax}} \frac{\sum_{f_{i} \in S} \rho_{cf_{i}}}{\sqrt{k + 2\sum_{i=1}^{k-1} \sum_{j=i+1}^{k} \rho_{f_{i}f_{j}}}} \longleftarrow \text{ Maximize relevance}$$

• Another approach is to use **statistical hypothesis testing**.

ROBUSTNESS FROM ERROR

SUMMARY

- Useful clinical solutions are possible given Big Data and
 i) natural behavioural tasks, ii) many extracted features, and
 iii) modern machine learning.
 - However, relevant features can be *hidden* below the surface
- We can infer hidden information by using latent-space models, including modern neural networks.
 - However, these can be affected by errors or 'noise'.
- We can overcome errors and noise by selecting features that are appropriate.

