
Combining word prediction and r-ary Huffman coding for text entry

Seung Wook Kim1, Frank Rudzicz2,1

1Department of Computer Science, University of Toronto;
2Toronto Rehabilitation Institute, University Health Network;

seungwook.kim@mail.utoronto.ca, frank@cs.toronto.edu

Abstract

Two approaches to reducing effort in switch-based
text entry for augmentative and alternative commu-
nication devices are word prediction and efficient
coding schemes, such as Huffman. However, char-
acter distributions that inform the latter have never
accounted for the use of the former. In this paper,
we provide the first combination of Huffman codes
and word prediction, using both trigram and long
short term memory (LSTM) language models. Re-
sults show a significant effect of the length of word
prediction lists, and up to 41.46% switch-stroke sav-
ings using a trigram model.

1. Introduction

There are approximately 270,000 people in North
America with spinal cord injuries, approximately 47%
of whom develop quadriplegia (also called tetraple-
gia), which is a partial or total paralysis of the limbs
and torso [1, 2]. In addition to these traumatic losses
of motor function, millions more are affected by neu-
romotor disorders, collectively called dysarthria, that
impair the production of speech secondary to var-
ious congenital or traumatic conditions, including
cerebral palsy, stroke, Parkinson’s disease, and mul-
tiple sclerosis.

Individuals with communication disorders often
use augmentative and alternative communication (AAC)
technologies to express themselves, specifically to
synthesize speech from typed text or symbol sequences.
These systems can employ a wide range of inputs,
including hand gestures, typing, or eye and head move-
ments [3] that are designed to minimize muscle move-
ment, given global motor deficits. These modalities
can interact with either screen-based or screen-free
paradigms in which input is transduced to a cursor
position [4]. Typically, symbols are selected when

the user either dwells on them or performs a spe-
cific action, such as blinking or activating a switch,
as shown in Figure 1.

Figure 1: Example of a two-button head-switch
mounted on a wheelchair. Image used by permis-
sion of the Tetra Society of North America.

Through a series of local interviews with AAC
users, we have found that screen-based approaches
can interfere with certain social aspects of conver-
sation. In particular, users emphasized that screens
often form a barrier to eye contact between conver-
sants and that, given a shared screen, conversation
partners will often “read-as-they-go,” and interrupt
the speaker, resulting in editorialization. For these
reasons, we are optimizing a screen-free system us-
ing eye and head movements.

In this paper, we assign codes to alphanumeric
English characters using r-ary Huffman coding, as is
typical. However, since AAC devices are also likely
to benefit from word prediction, the distribution of
those characters in training data will not necessar-
ily resemble actual use. For example, although the
letter ‘e’ is quite frequent, if it tends to occur to-

wards the ends of words, it is less likely to be typed
if those words can be accurately predicted from con-
text. We therefore provide the first work that ad-
justs Huffman codes given distributions subsequent
to word prediction, using both trigram and long short
term memory (LSTM) language models. The result
is up to 41.46% switch-stroke savings using a tri-
gram model.

1.1. Previous work

Previous AAC systems for gestural text entry have
sought to minimize selection complexity by limiting
the number of possible inputs. The H4, EdgeWrite,
and ‘Left, Up, Right, Down’ Writer systems all re-
lied on codes that used four discrete inputs [5, 6, 7],
typically target regions placed at the edges or cor-
ners of a screen. The MDITIM (Minimal Device In-
dependent Text Input Method) system uses a similar
convention, with four inputs dedicated to the cod-
ing of characters and one input reserved as a mod-
ifier, for example, to achieve capitalization [8]. In
order to further simplify the input process, the H4
and MDITIM systems, unlike EdgeWrite, have used
prefix-free codes to avoid the need for a unique ter-
mination event, such as a finger-up or blink, to des-
ignate the end of each character [5, 8].

Expert users, with about 2.5 hours of experience
using the EyeS eye gesture communication system,
had text communication rates of 6.8 words per minute
(wpm), as compared with typical speech rates of 130-
200 wpm, and typing rates of 30-40 wpm for unim-
paired typists [9, 10, 11]. Similarly, users with 5.0
hours of practice using the MDITIM had an aver-
age text entry speed of less than 10 wpm [8]. One
approach to improving communication rate is to re-
duce the number of inputs needed to enter each char-
acter. The H4 system uses Huffman codes to form a
prefix-free code, and resulted in an average text en-
try rate of 20 wpm after 6.5 hours of experience [12].
Roark et al. [13] also uses Huffman coding to select
the symbols to highlight during character scanning
process, minimizing the expected bits per symbol.

Word prediction is another strategy for optimiz-
ing text entry. Trnka et al. [14] showed that word
prediction, using a recency-of-use model, increased
communication rates in an AAC-like onscreen key-
board system and that more advanced methods based
on statistical language modelling proved more effec-

tive, increasing communication rates by 56.8%. The
number of options presented is an important factor
– longer lists increases the chances that the desired
word will be found, but this also increases the visual
or auditory scan time to evaluate the list. Mackenzie
[15] suggested that a list size of N = 5 is optimal.

2. Data

We use three data sets:

Wall Street Journal (WSJ) Selected 2,499 stories
from a three-year WSJ collection consisting
of 1,098,785 word tokens (43,283 word forms).
This dataset contains the most formal language
of the three databases.

Essays A collection of essays, poems, and short sto-
ries from Grade 11 students in high-schools
across Ontario recorded as part of their regular
curricula. This consists of 5,831,405 word to-
kens (114,113 word forms) across 5,448 doc-
uments. The formality of the writing is appro-
priate for teenage writers.

NUS Short Message Service (SMS) Corpus [16] A
collection of 55,835 SMS messages collected
by the NLP group of the National University
of Singapore. This dataset consists of 548,210
word tokens (33,694 word forms) and repre-
sents the least formal language of the three
databases here.

For our purposes, alphabets are reduced to lower-
case alphanumerics and ‘space’. All capital letters
are changed to lowercase equivalents and extrane-
ous characters are deleted. Additional datasets were
considered, including some artificial simulations of
AAC text, but these were either too small for our
purposes, or provided no additional benefit to the
data sets described above.

3. Methods

We train language models to build our word predic-
tion system that produces the list of N most proba-
ble next words given the history of characters typed.
Each alphanumeric English characters and the in-
dices of the prediction list is assigned a code using r-
ary Huffman coding based on the information we get
from the word prediction system, assuming that the

user types with an AAC system that has r switches.
Input savings by using the word prediction system is
calculated for varying N and r values.

We describe the two language models used in
word prediction in section 3.1, and our implementa-
tion of r-ary Huffman coding in section 3.2.

3.1. Language models

We train two types of language model for each data
set. Each produces an N -best prediction list for each
word wi given the previous words wi�n+1, ..., wi�1.
That is, we choose the top N probabilities from the
list L such that

L = {P (wj |wi�n+1...wi�1) : 0  j < |V |} (1)

where |V | is the size of the vocabulary V , and w

j is
the j-th word in V .

3.1.1. Trigram model

We compute the probability of corpus C:

P (C) =

||C||Y

i=1

P (wi|w1...wi�1) (2)

To address sparseness, we apply Witten-Bell smooth-
ing [17] which linearly interpolates the trigram prob-
ability and lower-order smoothed probabilities re-
cursively. In general, the nth-order Witten-Bell prob-
ability is:

Pwb(wi|wi�n+1...wi�1) =
�wi�1

i�n+1
P (wi|wi�n+1...wi�1)+

(1� �wi�1
i�n+1

)Pwb(wi|wi�n+2...wi�1)
(3)

The parameters �wi�1
i�n+1

are computed by

�wi�1
i�n+1

= 1�
N(wi�1

i�n+1)

N(wi�1
i�n+1) + SC(wi�1

i�n+1)
(4)

where

N(wi�1
i�n+1) = |{wi : count(wi�n+1...wi�1 > 0}|

(5)
SC(wi�1

i�n+1) =
X

wj

count(wi�n+1...wi�1wj) (6)

The intuition is to give more weight to trigrams in
the training set, and to back off to the lower-order
probabilities for those that are not.

Trigram t Count logP (t) logPwb(t)
come up with 20 �0.1140 �0.1760
come up to 0 �1 �1.8059
come up sing 0 �1 �6.1763

Table 1: Example trigram probabilites and
smoothed probabilites from the WSJ dataset.

3.1.2. Long Short-Term Memory model

Long short-term memory (LSTM) [18] units are a
special type of unit in recurrent neural networks (RNNs)
designed to solve the vanishing-exploding gradient
problem.

Let s1, ..., sN be sentences in corpus C, which
has N sentences. Suppose w

i
1, ..., w

i
J are words in

sentence si with J words. We define x

i
k to be the

vector word embedding of wi
k. We also define h

l
t 2

<n to be the hidden state of layer l at timestep t.
Then, for a sequence w

i
1, ..., w

i
j , we have x

i
k = h

1
k

for 1  k  j. We apply dropout regularization
only to non-recurrent connections:

0

BB@

i

f

o

g

1

CCA =

0

BB@

�

�

�

⇢

1

CCAT2n,4n

✓
D(hl�1

t)
h

l
t�1

◆
(7)

c

l
t = f · clt�1 + i · g (8)

h

l
t = o · ⇢(clt) (9)

The vectors i, f, o, c 2 <n represent input, forget,
output, and cell vectors respectively. T2n,4n repre-
sents a linear transformation from <2n to <4n, D
represents the dropout operator which sets a percent-
age of its parameter to zero, � represents the element-
wise sigmoid activation function and ⇢ represents
the element-wise tanh activation.

The hidden states hLt of the top layer L are used
to infer yit given a sequence x

i
1, ..., x

i
t. The model is

trained to maxmize the probabilityQN
i=1

QJ
t=1 P (wi

t|xi1...xit�1).
We train a 2-layer LSTM language model with

1,500 hidden units in each layer. Our vocabulary V

contains the 50,000 most frequent words in the given
corpus, and replaces all other words with < unk >.
We use a dropout rate of 65% to the non-recurrent
connections as described above.

3.2. r-ary Huffman coding

The r-ary Huffman coding method constructs trees
in which each leaf node is a unique character from
the alphabet. This results in a prefix-free coding in
which the coded string for each character cannot be
a prefix of the coded string of some other character.
This is in contrast to Morse code in which, e.g., the
letter ‘e’ is encoded as ‘·’, which is the prefix of 17
other alphanumeric characters, including ‘s’ (‘· · ·’),
which can lead to ambiguities.

Huffman coding depends on the prior probabil-
ity of each character, ci, in the alphabet, which is
simply the frequency of that character in the training
corpus (i.e, PH(ci) = Count(ci)/

P
j Count(cj)

[19].
The key to the present work is that the corpora

upon which these frequencies are based are first pro-
cessed by the word prediction software. A corpus
to be studied is divided into training, development,
and test sets. The development and test sets are pro-
cessed using language models trained on the training
set, so that as soon as a word appears in the predic-
tion list, all remaining characters are replaced with
a single special character corresponding to their in-
dex in the prediction list as exemplified in in Table 2.
This processed development set is used to compute
r-ary Huffman codes, and the input savings are cal-
culated between the original and processed test sets
as follows:

IS(org, proc) =
len(org)� len(proc)

len(org)
·100 (10)

where org and proc represent the original and pro-
cessed test sets respectively, and len calculates the
number of switch-strokes needed to type characters
in the sets which would be equal to the number of
characters if Huffman coding is not used. For ex-
ample, if ‘p’ has code length 3, ‘o’ has code length
2, and ‘#’ has code length 1, then len(’pop’) is 8
where len(’p#’) is 4.

4. Experiments

We partition each dataset into five chunks; each is
iteratively used for development and testing, and the
others are used for training. As described in the pre-
vious section, all reported input savings count the
proportion of code symbols saved – not characters;
this is an important distinction – counting the latter,

Original sentence
the results met estimates of analysts who had
already slashed their projections after the company
said in late august that its 1989 earnings could
Processed sentence
t* re* met es@ $ an% w@ # a* sla@ th$ proj*
af@ @ $ % i% l a@ t* i@ 1% $ c#

Table 2: Example of pre-processing, with N = 5
from WSJ dataset. Each special character (*,@, $,
%, #) in bold represents different indices in the pre-
diction list.

WSJ r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 37.85 37.82 37.29 37.72 35.52
N = 4 39.37 39.25 39.18 38.80 37.69
N = 5 40.60 39.93 40.32 39.83 39.22
N = 6 41.46 40.39 41.16 40.62 40.51

Essay r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 30.64 30.42 30.03 30.07 29.06
N = 4 32.22 31.70 32.07 31.29 31.35
N = 5 33.52 32.30 33.34 32.44 33.02
N = 6 34.45 32.77 34.17 33.39 34.39

SMS r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 20.70 20.02 20.42 19.45 18.99
N = 4 22.10 20.54 21.73 20.81 20.81
N = 5 22.70 20.61 22.40 21.50 22.19
N = 6 22.96 20.72 22.76 21.90 23.27

Table 3: Input savings (in %) on each dataset for
different N and r values using the trigram model.

as is typical in AAC research, would not take our
application of the Huffman code into account.

We run 5-fold cross validation for each number
of coding symbols r = {3, 4, 5, 6,1}, where r =
1 is the baseline character code length of 1, which
mimics the case where Huffman coding is not used,
and the length of the prediction list N = {3, 4, 5, 6}.

Table 3 shows input savings for each dataset us-
ing the trigram model for word prediction. As N in-
creases, we get more input savings because the prob-
ability of the target word being in the prediction list
goes up. However, a two-way F -test on N and r

(Table 4) shows that the value of r does not affect
the savings and that N and r do not interact.

Table 5 shows results obtained from the LSTM
model for word prediction. The trigram model per-

SumSq MeanSq F Pr(> F)
N 0.0274 0.027399 5.554 0.0193
r 0.0012 0.001227 0.249 0.6184
N : r 0.0000 0.00010 0.002 0.9645

Table 4: Two-way F-test on N and r.

WSJ r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 25.57 25.24 25.81 25.78 25.47
N = 4 27.11 26.96 27.64 27.81 27.70
N = 5 28.39 28.15 28.71 29.20 29.38
N = 6 29.35 29.22 29.66 30.06 30.70

Essay r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 18.56 18.28 18.81 17.82 19.15
N = 4 20.02 19.74 20.43 19.78 21.23
N = 5 21.21 20.76 21.52 21.10 22.87
N = 6 22.08 21.87 22.17 22.08 24.16

SMS r = 3 r = 4 r = 5 r = 6 r = 1
N = 3 14.43 13.51 14.53 14.01 14.26
N = 4 15.61 14.20 15.66 15.24 16.06
N = 5 16.25 14.94 16.16 15.96 17.42
N = 6 16.83 15.55 16.52 16.36 18.52

Table 5: Input savings (in %) on each dataset for
different N and r values using the LSTM model.

forms much better than the LSTM model; validating
this finding on other sets of data should be the sub-
ject of future work.

The most input savings are obtained from the
WSJ, and the least from the SMS dataset. This may
be due to a more consistent grammatical structure
in the former. The results clearly show that the in-
put savings vary a lot depending on the corpus used.
Trnka et al. [14], who showed that word prediction
increased communication rates, also reported higher
input savings when experimented on the Switchboard
corpus, which has a different topic domain and vo-
cabulary size. Analyzing the relation between the
characteristics of a corpus (e.g., vocabulary size, level
of formality, and grammatical structure) and the in-
put saving rate is ongoing.

5. Conclusion and Future Work

In this paper, we examined input savings by com-
bining word prediction models and r-ary Huffman
coding on datasets with different levels of formal-
ity. Future work should evaluate performance ‘on-

line’ with human participants, which may affect the
optimal value of N , given a possible interaction ef-
fect with scanning time. Moreover, even though the
value of r is not significant in terms of input sav-
ings, people might have different levels of difficulty
in memorizing different code lengths1. Piloting the
combination of word prediction and Huffman cod-
ing with real users is the next step, but the theoreti-
cal basis established in this paper is a requisite first
step, since recruiting and training a sufficient num-
ber of participants will depend on constraining N

and r, in order to obtain the appropriate statistical
power. Alternatives to N -gram and LSTM models,
initialized with pre-trained word embedding vectors,
should also be applied to increasingly large datasets.

6. References

[1] R. Walls, J. J. Ratey, and R. I. Simon, Rosen’s
Emergency Medicine: Expert Consult (Pre-
mium ed.), premium ed. St. Louis Missouri:
Mosby, 2009.

[2] R. A. Spears and A. Holtz, Spinal Cord Injury.
Oxford UK: Oxford University Press, 2010.

[3] S. L. Glennen and D. C. DeCoste, The Hand-
book of Augmentative and Alternative Commu-
nication. San Diego, CA: Singular, 1996.

[4] E. Dymond and R. Potter, “Controlling assis-
tive technology with head movements a re-
view,” Clinical Rehabilitation, vol. 10, no. 2,
pp. 93–103, 1996.

[5] S. J. Castellucci and I. S. Mackenzie, “Gestural
text entry using Huffman codes,” in Proceed-
ings of the International Conference on Multi-
media and Human-Computer Interaction, vol.
119, 2013, pp. 1–8.

[6] J. O. Wobbrock, B. A. Myers, and J. A. Kem-
bel, “EdgeWrite: A Stylus-Based Text Entry
Method Designed for High Accuracy and Sta-
bility of Motion,” in Proceedings of the 16th
Annual ACM Conference on User Interface
Software and Technology (UIST 03), 2003, pp.
61–70.

1We note that the fact that characters in the Morse code can
be encoded in up to five symbols.

[7] T. Felzer and R. Nordmann, “Alternative text
entry using different input methods,” in Pro-
ceedings of the 8th ACM Conference on Com-
puters and Accessibility (ASSETS 06), 2006.

[8] P. Isokoski and R. Raisamo, “Device indepen-
dent text input: A rationale and an example,”
in Proceedings of the ACM Working Confer-
ence on Advanced Visual Interfaces (AVI 00),
2000, pp. 76–83.

[9] M. Porta and M. Turina, “Eye-S: a Full-Screen
Input Modality for Pure Eye-Based Communi-
cation,” in Proceedings of the ACM 2008 Sym-
posium on Eye Tracking Research and Appli-
cations (ETRA 08), 2008, pp. 27–34.

[10] B. Arons, “Techniques, perception, and appli-
cations of time-compressed speech,” in Pro-
ceedings of the 1992 Conference of the Ameri-
can Voice I/O Society, 1992, pp. 169–177.

[11] A. Newell, S. Langer, and M. Hickey, “The
role of natural language processing in alterna-
tive and augmentative communication,” Natu-
ral Language Engineering, vol. 4, no. 1, pp.
1–16, 1998.

[12] I. S. Mackenzie, R. W. Soukoreff, and J. Helga,
“1 Thumb, 4 Buttons, 20 Words Per Minute:
Design and Evaluation of H4-Writer,” in Pro-
ceedings of the 24th Annual ACM Conference
on User Interface Software and Technology
(UIST 11), 2011, pp. 471–480.

[13] B. Roark, R. Beckley, C. Gibbons, and
M. Fried-Oken, “Huffman scanning: using
language models within fixed-grid keyboard
emulation,” Comput Speech Lang, vol. 27,
no. 6, Sep 2013.

[14] K. Trnka, J. McCaw, D. Yarrington, K. F.
McCoy, and C. Pennington, “Word Prediction
and Communication Rate in AAC,” in Pro-
ceedings of the Fourth IASTED Conference on
Telehealth and Assistive Technologies (Tele-
health/AT 2008), 2008.

[15] I. S. Mackenzie, “KSPC as a characteristic of
text entry techniques,” in Proceedings of the
4th ACM International Conference on Human-
Computer Interaction with Mobile Devices and
Services (MobileHCI 02), 2002, pp. 195–210.

[16] T. Chen and M.-Y. Kan, “Creating a live, pub-
lic short message service corpus: the nus sms
corpus,” Language Resources and Evaluation,
vol. 47, no. 2, pp. 299–335, 2012.

[17] I. H. Witten and T. C. Bell, “The zero-
frequency problem: Estimating the probabili-
ties of novel events in adaptive text compres-
sion,” IEEE Transactions on Information The-
ory, July, vol. 37, no. 4, pp. 1085–1094, 1991.

[18] S. Hochreiter and J. Schmidhuber, “Long
short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[19] J. van Leeuwen, “On the construction of Huff-
man trees,” in Proceedings of ICALP, 1976,
pp. 382–410.

