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Abstract

This paper argues that automatic speech recognition (ASR) should accommodate
dysarthric speech by incorporating knowledge of the production characteristics of
these speakers. We describe the acquisition of a new database of dysarthric speech
that includes aligned acoustics and articulatory data obtained by electromagnetic
articulography. This database is used to train theoretical and empirical models
of the vocal tract within ASR which are compared against discriminative models
such as neural networks, support vector machines, and conditional random fields.
Results show significant improvements in accuracy over the baseline through the
use of production knowledge.

1 Introduction

Despite advances in automatic speech recognition (ASR) for the general population, many of the
services they provide remain effectively unusable by individuals with severe speech disorders. One
group of such disorders, called dysarthria, is caused by neuromotor disorders such as cerebral palsy,
multiple sclerosis, and stroke. People with dysarthric speech are able to form and comprehend
full sentences but lack control over the muscles used in speech, which is in turn unintelligible.
The neurological damage that causes dysarthria also affects other physical activity and can slow
keyboard input 150 to 300 fold in severe cases compared with regular users [1, 2]. By contrast,
dysarthric speech is often only between 10 and 17 times slower than regular speech, at about 15
words per minute in the most severe cases [3]. Speech recognition is therefore an important access
method for those affected by dysarthria.

Unfortunately, standard modelling techniques have failed to yield acceptable rates of recognition
for speakers with dysarthria. Numerous attempts at modifying acoustic hidden Markov models
have not raised word-recognition rates above 10% for speakers with severe dysarthria in contexts
where speakers without dysarthria obtained 84.9% word-level recognition [4]. This paper argues
the position that since dysarthria is an endogenous phenomenon, ASR models designed for this
population need to incorporate knowledge of dysarthric articulation. We present the first database
of dysarthric speech which includes 3D measurements of the vocal tract in section 2. Sections 3
and 4 respectively show that the use of articulatory data can reduce entropy theoretically and error
empirically relative to acoustic-only representations. We conclude by discussing several aspects of
dysarthric speech to which modern approaches in ASR are not amenable.

1.1 Representations for speech production

Articulatory features (AFs) are quantized abstractions of speech production according to distinctive
configurations of the vocal tract. Here, articulatory features are collected into seven categories,
each with a number of possible values. Parallelizing streams of information in this manner allows
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asynchronous modulation of speech acts across phoneme boundaries, which can partially account for
co-articulation effects and speaker variability [5], which are particularly exacerbated in dysarthric
speech. The features used here are based on those of Wester [6] and are listed in table 1.

Feature Description (and values)
Manner (M) high-level categorization of speech sound

approximant, fricative, nasal, retroflex, silence, stop, vowel
Place (Pl) location of primary constriction

alveolar, bilabial, dental, labiodental, velar, silence, nil
High/Low (HL) ventral position of the tongue

high, mid, low, silence, nil
Front/Back (FB) anterior position of the tongue

front, central, back, nil
Voice (V) presence/absence of glottal vibration

voiced, unvoiced
Round (R) circularity of the lips

round, non-round, nil
Static (S) movement of articulators (e.g., diphthong)

static, dynamic

Table 1: Articulatory features, a description of their characteristics, and their possible values.

In the absence of AF annotations, values can be derived directly from phoneme annotations. Here,
we assign to each MFCC frame a 7-dimensional vector of AF values based exclusively on the
phoneme annotation at that frame. This assignment is derived directly from the phoneme-to-AF
transformation table of Frankel et al. [5]. This incorporates recommendations by Wester et al. [7] in
which the Front/Back feature includes the normally excluded central value, and diphthongs are split
into their component vowels, which are mapped to their corresponding AFs. Unlike Frankel et al.
[5], we label the Place feature of phonemes /b/ and /m/ as bilabial rather than labiodental.

2 The TORGO database of dysarthric articulation

The TORGO database of dysarthric articulation consists of time-aligned measurements of the vocal
tract and the resulting acoustics for 7 speakers with cerebral palsy, one with amyotrophic lateral
sclerosis, and age- and gender-matched controls. Vocal tract movement is measured by two sys-
tems. The first infers 3D positions of facial markers given stereo video sequences. The second
uses electromagnetic articulography (EMA), in which the speaker is placed within a low-amplitude
electromagnetic field. Tiny sensors within this field allow the inference of articulator positions and
velocities to within 1 mm of error [8]. Here, measurement coils are placed as in other studies (e.g.,
the University of Edinburgh’s MOCHA database [9]), namely on the upper and lower lip (UL and
LL), lower incisor (LI), and tongue tip, middle, and back (TT, TM, and TB). Unlike many other
studies, we record 3D rather that 2D midsagittal data, and also include left and right mouth corners
(LM and RM) to measure lip rounding. The TORGO database is the first to measure dysarthric data
with EMA and will be made public by the Linguistic Data Consortium in 2011. Figure 1(a) shows
an example of this setup. Figure 1(b) shows the degree of lip aperture (i.e., the distance between
UL and LL) over time for two speakers, one of whom has dysarthria. Here, the dysarthric speech is
notably slower and has more excessive movement.

All articulatory data are smoothed with third-order median filtering in order to minimize measure-
ment ‘jitter’ and are aligned with associated acoustic data by the recording mechanism. Acoustic
noise is removed with spectral subtraction using minimum mean-square error estimation. Speech
stimuli include random repetitions of phonetically balanced short sentences originally used in the
TIMIT database [10], and pairs of monosyllabic words identified by Kent [11] as having relevant
articulatory contrasts (e.g., beat versus meat as a stop-nasal contrast). Phoneme boundaries and
pronunciation errors are transcribed by a speech-language pathologist to the TIMIT phone set.

Table 2 shows pronunciation errors according to manner of articulation for dysarthric speech as
determined by a registered speech-language pathologist. Plosives are mispronounced most often,
with substitution errors exclusively caused by errant voicing (e.g. /d/ for /t/). By comparison, only
5% of corresponding plosives are mispronounced in regular speech. Furthermore, the prevalence
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Figure 1: (a) Electromagnetic articulograph system. (b) Lip aperture over time for four iterations of
/ah p iy/ given a dysarthric and control speaker.

of deleted affricates in word-final positions, almost all of which are alveolar, does not occur in the
corresponding non-dysarthric speech.

SUB (%) DEL (%)
i m f i m f

plosives 13.8 18.7 7.1 1.9 1.0 12.1
affricates 0.0 8.3 0.0 0.0 0.0 23.2
fricatives 8.5 3.1 5.3 22.0 5.5 13.2

nasals 0.0 0.0 1.5 0.0 0.0 1.5
glides 0.0 0.7 0.4 11.4 2.5 0.9

vowels 0.9 0.9 0.0 0.0 0.2 0.0

Table 2: Percentage of phoneme substitution (SUB) and deletion (DEL) errors in word-initial (i),
word-medial (m), and word-final (f) positions across categories of manner for dysarthric data.

3 Entropy reduction using articulation

Measuring the statistical disorder in the acoustic and articulatory data, as well as the a posteriori
disorder of one given the other can suggest the relative merits of incorporating knowledge of articu-
latory behaviour into ASR systems for dysarthric speakers. Since our observations are continuous,
we must use differential entropy defined by

H(X) = −
∫
X

f(X) log f(X)dX,

where f(X) is the probability density function of X . The differential entropy has known forms for
a number of distributions f(X), such as the multivariate normal,

fX(x1, ..., xN ) =
exp

(
− 1

2 (x− µ)T Σ−1(x− µ)
)

(2π)N/2 |Σ|1/2

H(X) = 1
2 ln

(
(2πe)N |Σ|

)
,

(1)

where µ and Σ are the mean and covariances of the data. However, since our acoustic and articu-
latory data follow non-Gaussian distributions, we choose to represent these spaces by mixtures of
Gaussians and we estimate the differential entropy of these distributions by the method of merging
Gaussians incorporating equation 1. Namely,

H̃(X) =

L∑
i=1

ωi

(
− logωi + 1

2 log((2πe)N |Σi|
)
,

where ωi is the weight of the ith(1 ≤ i ≤ L) Gaussian and Σi is that Gaussian’s covariance matrix
[12], with L empirically set to 32. While differential entropies can be negative and not invariant
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under change of variables, other properties of entropy are retained [12], such as the chain rule for
conditional entropy

H(Y |X) = H(Y,X)−H(X),

which describes the uncertainty in Y given knowledge of X . Here, we quantize entropy with the
nat, which is the natural logarithmic unit.

We measure the differential entropy of acoustics (H(Ac)), of articulation (H(Ar)), and of acoustics
given knowledge of the vocal tract (H(Ac |Ar)) in order to obtain theoretical estimates as to the util-
ity of articulatory data. Table 3 shows these quantities across six speakers in the TORGO database.
As expected, the acoustics of dysarthric speakers are much more disordered than for non-dysarthric
speakers, however there is very little difference in the entropy of articulation among the speakers in
terms of their statistical disorder. Although dysarthric speakers clearly lack articulatory dexterity,
this implies that they nonetheless articulate with a level of consistency similar to their non-dysarthric
counterparts, which is borne out in the clinical literature [13]. This consistency allows for significant
reductions to the entropy of the resulting dysarthric acoustics, despite the fact that this equivocation
H(Ac |Ar) is an order of magnitude lower than for non-dysarthric speakers.

Speaker H(Ac) H(Ar) H(Ac |Ar)

Dysarthric

M01 66.37 17.16 50.30
M04 33.36 11.31 26.25
F03 42.28 19.33 39.47

Average 47.34 15.93 38.68

Control

MC01 24.40 21.49 1.14
MC03 18.63 18.34 3.93
FC02 16.12 15.97 3.11

Average 19.72 18.60 2.73

Table 3: Differential entropy, in nats, across dysarthric and control (non-dysarthric) speakers for
acoustic ac and articulatory ar data.

In order to better understand these results, we compare the distributions of the vowels in acoustic
space across dysarthric and non-dysarthric speech. Vowels in acoustic space are characterized by
the steady-state positions of the first two formants (F1 and F2) as determined automatically by ap-
plying the pre-emphasized Burg algorithm [14]. We fit Gaussians to the first two formants for each
of the vowels in our data, as exemplified in figure 2 and compute the entropy within these distribu-
tions. Surprisingly, the entropies of these distributions were relatively consistent across dysarthric
(34.6 nats) and non-dysarthric (33.3 nats) speech, with some exceptions (e.g., iy). However, vowel
spaces overlap considerably more in the dysarthric case signifying that, while speakers with CP can
be nearly as acoustically consistent as non-dysarthric speakers, their targets in that space are not
as discernible. Some research has shown larger variance among dysarthric vowels relative to our
findings [15], which may partially be due to our use of natural connected speech as data, rather than
restrictive consonant-vowel-consonant non-words.
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Figure 2: Contours showing first standard deviation of the first two formants for distributions of the
six most frequent vowels in both dysarthric and non-dysarthric speech in the TORGO database.

4



4 Articulatory models in ASR for dysarthric speech

In this section we compare two discriminative methods (i.e., neural networks and support vector
machines) that take acoustics alone against generative dynamic Bayes networks that incorporate
articulatory information on the task of frame-level phone recognition with dysarthric speech. Given
phonemic annotations for 46 phonemes in TORGO, we infer articulatory features as representative
of articulatory knowledge, as described in section 1.1. These systems are compared against a tristate
left-to-right HMM baseline with observation likelihoods at each state computed over mixtures of
16 Gaussians in typical Baum-Welch training and Viterbi decoding. Prior to training each HMM,
the Gaussian mixtures for all states are first initialized to a common Gaussian mixture obtained by
performing k-means clustering with full covariance over all data for the associated triphone.

In all cases, acoustic data are sampled at 16kHz and converted to 42-dimensional feature vectors of
Mel-frequency cepstral coefficients (MFCC) consisting of 0th- to 12th-order cepstral coefficients,
log energy, and δ and δδ coefficients. We conflate all dysarthric data together and all non-dysarthric
data together and apply 10-fold cross-validation on random permutations of 90% training and 10%
test data on each set.

4.1 Dynamic Bayes networks

Bayes networks provide a popular statistical framework that describes precise instantaneous condi-
tional relationships. Traditional Bayesian learning is restricted to universal or immutable relation-
ships and does not model dynamic systems or time-varying relationships. Dynamic Bayes networks
(DBNs) are directed acyclic graphs connecting random variables that generalize the stochastic mech-
anisms of Bayesian learning to time sequences. Given an N -variable observation sequence Z(1:N)

1:T
of arbitrary length T , its likelihood is computed by ‘unrolling’ a 2-frame DBN to T frames, and
multiplying all posteriors,

P (Z
(1:N)
1:T ) =

N∏
i=1

PB1(Z
(i)
1 |par(Z

(i)
t ))×

T∏
t=2

N∏
i=1

PB→(Z
(i)
t |par(Z

(i)
t )),

(2)

where conditional distributions, B→ are drawn over adjacent frames in time for the ith state at time
t, Z(i)

t by P (Zt|Zt−1) =
∏N

i=1 P (Z
(i)
t |par(Z

(i)
t )), given the parents of Z(i)

t , par(Z(i)
t ). This tem-

poral model generalizes both the hidden Markov model and the Kalman filter [16]. Given a specified
topology between variables and a data set D, the posterior distribution over the model parameters
θ is learned either with maximum likelihood for fully observed sequences, or with expectation-
maximization given hidden variables, enabling state-based methods [17].

We test two DBN topologies with AF variables. The first AF DBN is based on similar work by
Frankel et al. [5], and the second is a sparser version of that DBN with certain conditional depen-
dencies removed, as shown in figure 3(a). All AFs are observed in the DBN during training but
inferred during testing.

We also test three DBN topologies trained directly from EMA measurements. Here, we conflate the
instantaneous EMA position data by first reducing their dimension to Np = 4 or Np = 8 principal
components by singular value decomposition specific to each phone in which K = 4, K = 8, or
K = 16 mean vectors are computed according to the sum-of-squares error function. During training,
the DBN variable A is the observed index of the mean vector nearest to the current frame of EMA
data at time t. During inference, this variable is hidden and we marginalize over all its values when
computing the likelihood. In this way, DBN-A is essentially a DBN representation of an HMM
with the hidden mixture index replaced by observed quantized articulation. Similarly, we follow the
same procedure on the velocities and accelerations of the articulators, producing indices Av and
Aa. These variables are used in alternative DBN topologies DBN-A2 and DBN-A3. In DBN-A2,
the observation vector is trisected, with each 14-dimensional vector (i.e., MFCC, δ, and δδ) being
conditioned on P, Q, and one of A, Av and Aa. In DBN-A3, conditions Aa on Av, and Av on
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A and conditions the 42-dimensional observation vector on all variables. The three kinematic DBN
topologies are shown in figure 3(b).
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Figure 3: Two-frame dynamic Bayes networks with (a) theoretical articulatory features, and (b)
EMA measurements differing by their connectivity. Nodes Ph, Q, O, A, Av, and Aa represent
phoneme, state, MFCC observations, and EMA position, velocity, and acceleration, respectively.
Inter-frame conditional links are dashed for clarity. Filled and empty nodes represent observed and
hidden variables, respectively. Square and round nodes are discrete and continuous, respectively.

4.2 Neural networks

Despite their general popularity, neural networks (NNs) are rarely studied with regards to dysarthric
acoustics, with some exceptions [18]. The two types of three-layer NN we consider here are the
feed-forward multi-layer perceptron (MLP) and the recurrent Elman network (ELM) [19], which
are primarily distinguished by the latter’s time-delayed replication of the hidden layer as additional
contextual input. The output of each NN consists of 46 nodes (i.e., the number of phonemes under
consideration), and the ith node is uniquely active when training the ith value of that phoneme. The
(non-contextual) input to each NN consists of 210 nodes in which the first 42 nodes are the values
for the current MFCC vector, as defined above, and the subsequent 168 nodes are the values for the
two previous and two following MFCC vectors in the sequence. In other words, input consists of
the current MFCC and 2 frames of context on either side. All networks are fully connected between
layers, with 500 hidden nodes as in similar work on non-dysarthric speech [5], and select the class
having the highest posterior probability.

Activation functions at each node are tan-sigmoid (i.e., a(x) =
[
2/
(
1 + e−2x

)]
− 1) in the hidden

layer, and linear in the output layer, given a weighted sum of all inputs x =
∑

j ωjaj , where aj
is the activation of node j and ωj is the weight of the connection from node j to the current node,
as usual. All NN training is performed by resilient back-propagation, which adjusts update values
according to sign changes in partial derivatives.

4.3 Support vector machines

General maximum margin classifiers are of increasing interest in ASR due to their robustness against
both sparse data and rapid transient changes in acoustic sequences [20]. Here, we use a soft-margin
SVM and extend the process to k-class discrimination by training k(k−1)/2 binary classifiers, each
delineating two class regions [21].

SVMs depend on kernel functions, κ, to describe the distance between two points of data. We
consider two of these that differ slightly in the form of their input. The first kernel is a symmetric
radial basis function (RBF), that generalizes to non-linear decision boundaries as follows:
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κRBF (x,y) = exp

(
− (x− y)

2

2σ2

)
, (3)

given vectors x and y, and width parameter σ.

The second kernel, κDTW , is a sequence kernel that can be generalized to arbitrary sequences u
and v having non-equal lengths, as proposed recently by Wan and Carmichael [20]. This kernel
exploits the notion of distance between sequences inherent in dynamic time warping (DTW), and
converts it to a form amenable for use in SVMs. The approach is to convert local Euclidean distances
between frame vectors to angles by projecting these d-dimensional vectors onto a unit hypersphere
H centered α units from their origin in the (d+1)st dimension. Namely, every vector ui is converted
to the unit vector ûi sharing an origin with H by

ûi =
1√

u2
i + α2

[
ui
α

]
. (4)

Given two unit vectors, ûi and v̂j that define points on the surface of H , the angle between them is
by definition

ds(ûi, v̂j) = θûi,v̂j = arccos(ûi, v̂j). (5)

Given these local distances, we apply symmetric DTW on whole sequences u and v and get the
minimum global distance from the non-linear aligned Viterbi path Γ with

Dglobal(u,v) = min
Γ

1

||Γ||

||Γ||∑
p=1

ds(ûp, v̂p). (6)

This distance is then converted to the kernel

κDTW (u,v) = cosDglobal(u,v), (7)

which is symmetric if the symmetric version of DTW is used, which is a requirement for use in SVM
classification. In order for the quadratic programming problem to have a definite solution, the kernel
must either be a valid dot product, or satisfy Mercer’s condition, which is to say that given a real-
valued kernel κ(x, y), all square integrable functions g(x) will give

∫ ∫
κ(x, y)g(x)g(y)dx dy ≥ 0.

While the cosine over an aggregate of sequences is not strictly a dot-product, it has been shown to
be empirically useful in speech classification nonetheless [20].

As for the NN models, input consists of the current MFCC frame and 2 frames of context on either
side.

4.4 Experiments

All models are applied over whole unsegmented utterances as continuous tasks. Each frame of
speech is classified by NN and SVM methods given short windows of input observations, as de-
scribed above. Connected-state models (i.e., HMM and DBN) are connected together so that all
phonemes are equally likely to follow all others in order to evaluate these models as substitutes for
standard acoustic models. Accuracy is measured at the frame level.

The results in table 4 indicate that the DBN-A model reduces error relative to the HMM baseline
by 13.5% for the dysarthric speakers, and 8.2% for the non-dysarthric speakers, which is significant
at the 95% confidence level. Moreover, each DBN model performs better than all discriminative
models for the dysarthric group, despite the DBN being a generative model. This result shows a
clear benefit of incorporating articulatory knowledge during the training process.
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Model Dysarthric Non-dysarthric
HMM 34.3 73.1
NN-MLP 41.9 74.4
NN-ELM 42.2 75.1
SVM-RBF 42.3 74.7
SVM-DTW 42.0 74.5
DBN-F (default) 42.6 74.8
DBN-F (sparse) 42.4 74.3
DBN-A 43.2 75.0
DBN-A2 42.6 75.0
DBN-A3 42.7 75.3

Table 4: Phone classification accuracies (%) at the frame level for models of speakers with and
without dysarthria.

5 Discussion

Since speakers with dysarthria are relatively sparse in the population, the standard approach of
merely collecting more data may not be applicable. In this paper we’ve proposed that buttressing
acoustic data with knowledge of the vocal tract can offset the need for more data. Section 3 showed
that articulatory knowledge can theoretically be used to reduce the statistical disorder in the acoustics
from speakers with dysarthria and section 4 confirmed this empirically.

However, there are a number of supersegmental aspects of dysarthric speech that cannot be en-
capsulated by the frame-based approach taken here and in ASR research generally. For instance,
sonorants uttered by speakers with dysarthria in TORGO are significantly slower than their con-
trol counterparts at the 95% confidence interval for /eh/ and at the 99.5% confidence interval for
all other phonemes. Furthermore, our dysarthric data contains considerable involuntary velopha-
ryngeal noise (often accompanied by difficult respiration), audible swallowing, and stuttering. In
clinical circles, some of these can be partially explained by disruptions of the pathways of verbal
motor commands that include sensory feedback [22], including exteroceptive stimuli (auditory and
tactile), and interoceptive stimuli (particularly proprioception). Barlow argues that the redundancy
of sensory messages provides the necessary input to the motor planning stage, which relates abstract
goals to motor activity in the cerebellum [23]. Since dysarthria represents the distortion of the ex-
ecution of those plans, a model of ASR that explicitly encodes the long-term abstract dynamics of
speech [24] may be the most fertile ground for future research.
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