
CLAVIUS: UNDERSTANDING LANGUAGE UNDERSTANDING IN

MULTIMODAL INTERACTION

Frank Rudzicz

Department of Electrical and Computer Engineering

McGill University, Montréal

September 2006

A Thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfilment of the requirements for the degree of

Master of Engineering

c© FRANK RUDZICZ, 2006

Abstract

Natural communication between humans is not limited to speech, but often requires simultaneous coordi-

nation of multiple streams of information - especially hand gestures - to complement or supplement un-

derstanding. This thesis describes a software architecture, called CLAVIUSwhose purpose is to generically

interpret multiple modes of input as singular semantic utterances through a modular programming interface

that supports various sensing technologies. This interpretation is accomplished through a new multi-threaded

parsing algorithm that co-ordinates top-down and bottom-up methods asynchronously on graph-based unifi-

cation grammars. The interpretation process follows a best-first approach where partial parses are evaluated

by a combination of scoring metrics, related to such criteria as information content, grammatical structure

and language models. Furthermore, CLAVIUSrelaxes two traditional constraints in conventional parsing -

namely, it abandons forced relative ordering of right-hand constituents in grammar rules, and it allows parses

to be expanded with null constituents.

The effects of this parsing methodology, and of the scoring criteria it employs, are analyzed within the

context of experiments and data collection on a small group of users. Both CLAVIUSand its component mod-

ules are trained on this data, and results show improvements in performance accuracy, and the overcoming

of several difficulties in other multimodal frameworks. General discussion as to the linguistic behaviour of

speakers in a multimodal context are also described.

i

Résumé

La communication naturelle entre les humains n’est pas limitée à la parole, mais s’exige souvent de la co-

ordination simultanée de plusieurs sources d’information - particulièrement les gestes manuelles - lorsqu’ils

complétent ou ajoutent à la comprehension. Cette thèse décrit une architecture de logiciel, appelée CLAV-

IUS, dont le but est l’interprétation générique de plusieurs modes d’entrée comme des énoncés ayant des

significations uniques par une interface de programmation modulaire qui soutient de diverses technologies de

sensation. Cette interprétation est accomplie par un nouvel algorithme multi-fileté d’analyse grammaticale

qui coordonne des méthodes asynchronés sur des grammaires d’unification fondées sur une représentation

graphique. La procédure d’interprétation suit une approche de meilleur-en-premièr donc les analyses gram-

maticales sont évalués par une métrique combinatoire de marquage, liée à des critères tels que le contenu

de l’information, la structure grammaticale et les modèles de la langue. De plus, CLAVIUSdétend deux con-

traintes traditionnelles dans l’analyse grammaticale conventionnelle - notamment, il abandonne que l’ordre

des constituants mains-droits soit obligatoire dans les règles de grammaire, et il laisse que l’analyse peut se

composer des constituants nuls.

Les effets de cette méthodologie d’analyse, et des critères de marquage qu’il utilise, sont analysés dans

le contexte des évaluations et d’une collecte de données sur un group d’usagers. CLAVIUSet ses modules

compositionnels sont entraı̂nés sur ces données, et les résultats montrent des améliorations dans l’exactitude

d’exécution, et une surmontage des plusieurs difficultés dans les autres systèmes semblables. La discussion

générale quant au comportement linguistique des usagers dans ce contexte multimodale est aussi décrite.

ii

ACKNOWLEDGEMENTS

Working on CLAVIUS has been all of these things at one time or another, among other things, often in parallel:

invigorating, intriguing, exhausting, frustrating, gratifying and of course, fun. This section acknowledges

those who have specifically had a direct influence in this work.

I am indebted to Professor Jeremy Cooperstock for providing me with the accommodating environ-

ment in which this research took place. Jeremy encouraged me to forge my own research directions, and

emphasized the importance of academic rigour and publication.

The members of the Shared Reality Lab at McGill University have all at one point or another contributed

in some way, either through collaboration or in casual discussion. I especially thank the other members of

the Modeller’s Apprentice team - François Rioux and Michael Wozniewski, who constituted one of the most

productive and fun teams with whom I’ve ever worked. Part of §3.5.6 of this thesis is adapted from a prior

publication of ours[15]. I also thank Stephen Spackman for early discussions during the inception of this

project, and his assistance regarding relevant literature.

My family has been extremely supportive throughout my entire life and have contributed their patience,

love, and respect to that ongoing project. They deserve my utmost thanks, and are really a whole lot of fun.

This thesis is dedicated to Melissa de Souza, my beautiful and wonderful fiancée. She is my ultimate

source of inspiration and joy and has been the most motivating and encouraging individual in everything I’ve

accomplished. This thesis marks one more day for me, my lovely ;).

This research was funded by la bourse de maitrisse of the fonds québécois de la recherche sur la nature

et les technologies.

iii

TABLE OF CONTENTS

TABLE OF CONTENTS

Abstract . i

Résumé . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xii

LIST OF NOTATIONS AND ABBREVIATIONS . xiv

CHAPTER 1. Introduction . 1

1.1. Multimodal Human-Computer Interaction . 1

1.1.1. Early History . 2

1.1.2. Examples of MMI in Practise . 3

1.1.3. Applicability of MMI . 4

1.2. Thesis Objectives and Contributions . 6

1.2.1. Contributions . 6

1.3. Organization . 7

1.3.1. Syntax Used in this Thesis . 7

CHAPTER 2. Background and Related Work . 9

2.1. Features and Unification . 9

2.1.1. Feature Structures . 10

2.1.2. Unification . 12

2.1.3. Unification Grammars . 15

2.2. Divergent Approaches in MMI . 16

2.2.1. Semantic Fusion . 16

iv

TABLE OF CONTENTS

2.2.2. Prosodic Co-Analysis . 17

2.2.3. Deterministic Unification . 17

2.2.4. Weighted Finite State Machines . 18

2.3. Psychological Aspects of Multimodal Human-Human Communication 19

2.3.1. Anaphora . 19

2.3.2. Form vs. Meaning . 20

2.3.3. Peculiarities of Multimodal Language . 20

CHAPTER 3. Clavius System Architecture . 21

3.1. Towards Generic Multimodal Understanding . 21

3.2. Systematic Component Decomposition . 21

3.2.1. Stage 1 : Tracking . 23

3.2.2. Stage 2 : The Searcher . 24

3.2.3. Stage 3 : Application Interface . 25

3.3. Data Representation . 26

3.3.1. Clavius-specific constraints on DAGs . 26

3.4. Configuration Management . 27

3.4.1. Multimodal Grammars . 27

3.5. Input and Tracking . 28

3.5.1. Communication Protocol and Lexica . 28

3.5.2. N-Best Lists . 28

3.5.3. Strategies for Redundant Tracker Combination and Selection 29

3.5.4. Continuous Speech (dictation) Tracker . 30

3.5.5. Continuous Speech (prosodic) Tracker . 31

3.5.6. 2D/3D Hand Position Tracker . 32

3.5.7. Keyboard Tracker . 33

3.5.8. Mouse Tracker . 33

3.6. Search Space . 34

3.6.1. Search Nodes . 35

3.6.2. Randomized Search Trees . 35

3.7. Scorer and Partial Ordering . 37

3.7.1. Knowledge Sources . 37

3.8. Cognition and Application Interface . 37

3.8.1. State and World Interface . 38

3.9. Deployment Overview . 38

v

TABLE OF CONTENTS

3.9.1. Software Engineering . 39

CHAPTER 4. Algorithmic and Linguistic Issues . 41

4.1. The GS Algorithm . 41

4.1.1. Multimodal Bi-Directional Parsing . 41

4.1.2. Generalization . 42

4.1.3. Specification . 43

4.1.4. Cognition . 43

4.1.5. Memory Management . 45

4.2. Parse Scoring and Domain-Centric Knowledge . 46

4.2.1. Hard Constraints . 47

4.2.2. Module Parametrization . 47

4.3. Temporal Alignment, κ1 . 47

4.4. Common Ancestry Constraint, κ2 . 49

4.5. Probabilistic Declarative Grammar, κ3 . 50

4.5.1. Independence Assumptions . 50

4.5.2. Training . 50

4.6. Input Coverage, κ4 . 51

4.7. Information Content, κ5 . 51

4.8. Multimodal Language Model, κ6 . 52

4.9. Dialogue Model, κ7 . 53

4.10. Functional Constraints, κ8 . 54

4.10.1. Instantiation and Definition . 55

4.10.2. Aspects of Functional Constraints . 56

4.11. Wordnet Ontology, κ9 . 57

4.12. Prosodic Information, κ10 . 58

4.13. Consequences of the GS Algorithm . 58

4.13.1. Infinite recursion . 59

4.13.2. Complete Coverage . 59

4.13.3. Unique Expansion . 60

CHAPTER 5. Experiments and Analysis . 61

5.1. Experimental Setup . 61

5.1.1. Task Description . 61

5.1.2. Trackers and Artificial Noise . 62

vi

TABLE OF CONTENTS

5.1.3. Language and Configuration . 63

5.1.4. Recording Mechanism and Data Transcription . 63

5.1.5. Test Platform . 64

5.1.6. Participants . 64

5.1.7. Analysis Methodology . 64

5.2. Empirical Analysis . 66

5.2.1. First Round Reparameterization . 67

5.2.2. Accuracy Maximization on κ1, κ3,κ4 and κ5 . 68

5.2.3. Second Round Reparametrization . 69

5.3. Investigative Analysis . 70

5.3.1. Work Expenditure . 72

5.3.2. Questions of Grammatical Usability . 73

5.3.3. Co-occurrence statistics . 74

5.3.4. Sentence structure . 75

CHAPTER 6. Concluding Discussion and Remarks . 77

6.1. Features of the GS Algorithm . 78

6.1.1. Asynchronous collaboration . 78

6.1.2. Unordered constituents . 78

6.1.3. Unspecified edges . 78

6.1.4. Constraint Functions . 78

6.2. Possible Future Explorations . 79

Computational Aspects . 79

Linguistic and Interactivity Aspects . 79

APPENDIX A. Essential Background . 81

A.1. Mathematic Essentials . 81

A.1.1. Graphical Models . 81

A.1.2. Optimization . 82

A.1.3. Derivation of Kullback Leibler . 82

A.2. Linguistic Essentials . 84

A.2.1. Lexography and Morphology . 84

A.2.2. Phrase Structure . 85

A.2.3. Ambiguity and Uncertainty . 85

A.2.4. Language Models . 85

vii

TABLE OF CONTENTS

A.2.5. Measures of Accuracy . 86

APPENDIX B. Example Grammar . 88

REFERENCES . 100

viii

LIST OF FIGURES

LIST OF FIGURES

1.1 Example of mobile technology with stylus and speech interface. 3

1.2 Example of large screen multimodal interface (from Sharma et al. [100]). 4

2.1 An example feature structure graph (N,nr, δ, θ) where N = {n0, n1, n2, n3, n4}, nr = n0,

δ = {((n0, φa) , n1) , ((n1, φb) , n2) , ((n0, φc) , n2) , ((n2, φd) , n3) , ((n2, φe) , n4)}, and θ =

{(n3, θx) , (n4, θy)} . 11

2.2 Prototypical unifications. In a) all atomic unifications succeed except those having different non-null

values. In b) the resulting graph is the union of the information in the component graphs. In c) and

d) if outgoing arcs of component graphs have the same feature, the respective subgraphs must also

unify. 12

2.3 Simplified example graphical representation of the grammar rule S ← NP VP, with the added

constraint that the number (NUM) of the noun phrase and verb phrase must agree. 15

2.4 Sentence meaning as a function of F0 contour (frequency vs. time) for appositive and vocative

utterances (from O’Shaughnessy [76]). 17

2.5 Transducer relating gesture, G, and speech,S, to meaning, M , τ : (G ×W) → M (from Johnston

and Bangalore [50]). 18

2.6 A hierarchical ontology of human gesticulation. 19

3.1 The Shared Reality Environment. 22

3.2 Simplified information flow between fundamental software components in Clavius. Rectilinear and

ovoid elements represent static objects and dynamic threads, respectively. Hashed arrows represent

network communication. 23

3.3 During tracking, user activity is sensed and analyzed by the tracker before being tokenized and sent

to Clavius’ search space. 23

3.4 Simplified Generalisation and Specification examples. 25

ix

LIST OF FIGURES

3.5 A simplified grammatical expansion of the phrase put↘this↘here. 26

3.6 Required structure of TIME feature (with example time values). 27

3.7 Example lexical entries for speech and mouse trackers. Note that empty fields in lexica (for instance,

X or Y, above) are typically filled at run-time with values from the tracker. 28

3.8 Architecture of the CMU Sphinx-4 framework [110] . 30

3.9 Example of hand segmentation. Binary mask resulting from the skin segmentation process (left).

Bounding boxes (right) are created around the two largest blobs of connected skin pixels. The

bounding box is defined by its centre coordinate, width and height. 32

3.10Examples of deixis and area-drawing by the mouse. Clavius – not the tracker – will identify that the

cylinder is selected by the deixis and that all three objects are selected in the drawn area. 34

3.11Example treap. Each SEARCH NODE is labelled (k :: p), where k is the KEY of the node, and p is its

PRIORITY. 36

3.12Example subspace, where each element is a treap keyed by their common category (ex. NP, VP, ...).

The highest scoring node in each treap, and the best node overall, is highlighted. 37

3.13Simple deployment layout, with one central processor for all tasks and data management. 39

3.14Distributed deployment layout, where one central server allocates work orders and maintains data

integrity, one processor is assigned to each modality, and D ≥ 1 additional processors execute an

arbitrary number of Generalizer and Specifier threads on the shared space. 39

4.1 Example of GENERALIZATION. 43

4.2 Example of SPECIFICATION. 44

4.3 Two gaussian curves NA

(
µA, σ2

A

)
and NB

(
µB , σ2

B

)
representing timespans for constituent parses

ΨA and ΨB , respectively. 48

4.4 Different curves of κ4 given varying parameters κ
(c)
4 . 51

4.5 Example 7-word breakdown of “paint↘ orange”, under κ6 representation. 53

4.6 Example use of functional constraints in the Clavius XML grammar format. 55

4.7 Example of graphical incorporation of the functional constraint OBJECTAT, with parameters

instantiated by re-entrant nodes. 56

5.1 Example state of REPLICATOR tool showing 1) user particulars, 2) instructions, 3) system status, 4)

the control panel, 5) the target pane, and 6) the current pane. 62

5.2 Two-layer neural network used in reparameterization of scoring weights. 65

x

LIST OF FIGURES

5.3 Initial accuracy rates for unimodal Sphinx versus random initial weight configurations, partitioned

by action type. 67

5.4 Motion of accuracy on training data, for each set of weights, over iterations of the training data set

∆. 68

5.5 Change in Relative Error Reduction for the configurations . 71

5.6 Relationship between accuracy and the average difference between weights of ‘competing’ modules

(ω3, ω4), and (ω1, ω5). 72

5.7 Average number of edges expanded, given sentence length. 73

5.8 Comparison of onset times of arm gesture (from Holzapfel et al.[43], left) and of mouse gesture

(right) following associated speech keywords. 74

A.1 Two interpretations of the phrase “I shot an elephant in my pyjamas”, from Groucho Marx. The

left parse suggests that the shot elephant was in the interlocutor’s pyjamas, whereas the right parse

indicates that the shooter was wearing their pyjamas at the time of the shooting. 86

xi

LIST OF TABLES

LIST OF TABLES

1.1 Convention used to represent multimodal phrases textually. 8

3.1 Example interaction sequences with a virtual blocks world using speech coupled with pointing

gestures. 22

3.2 The prosody lexical schema. 31

3.3 The 2D deictic gesture lexical schema. 33

3.4 The mouse and speech/keyboard lexical schemas. 34

3.5 Read, write, and delete permissions granted to threads, according to subspace. 35

3.6 The most frequent set operations in Clavius, and their asymptotic behaviour as implemented by

treaps (of size N). 36

3.7 Necessary software components for compiling and running Clavius. 40

4.1 Two dimensional representation of multimodal segments in Figure 4.5 53

4.2 Subset of dialogue events types, from [45]. 54

4.3 The description language for constraint functions, including functions (fcn), terms, and parameterization

(PARAMS). 55

4.4 Relations between time intervals, and functions returning 1.0 in each case, and 0.0 otherwise. . . 57

5.1 Action types available in REPLICATOR. 62

5.2 Five weight configurations for ωi in the scoring function. 65

5.3 Partition of utterances by action type, where conjunctions combined different action types 3% of

the time (these were included separately in the test set). 66

5.4 Usage of multimodality, according to grammar rule. 67

5.5 Accuracy rates for Sphinx and Clavius across the four stages of training of the latter, according to

various parametrizations, partitioned according to task. 70

xii

LIST OF TABLES

5.6 Five final weight configurations for ωi after reparametrizations. 71

5.7 Use of locatives in various sentence structures, according to the arity of the locative. 75

A.1 Selection of common parts of speech and their tags, from a subset of the Penn Treebank, plus

additional tags POINT and AREA for deictic gestures. 84

xiii

LIST OF NOTATIONS AND ABBREVIATIONS

LIST OF NOTATIONS AND ABBREVIATIONS

MMI abbrev. Multimodal Interaction . 1

HCI abbrev. Human-Computer Interaction . 1

NLP abbrev. Natural Language Processing . 1

ASR abbrev. Automatic Speech Recognition . 4

RER abbrev. Relative Error Reduction . 5

HMM abbrev. Hidden Markov Model . 5

TDAG abbrev. Typed Directed Acyclic Graph . 10

FS abbrev. Feature Structure. 10

ΨA a particular DAG or feature structure . 10

δi an arc in some graph Ψ .10

|ΨA| size of GA, defined as the number of arcs in GA . 10

Φf a feature in the feature set FEAT. 10

v the subsumption relation, defined between two feature structures . 11

t the Unification operator, with feature structure arguments . 12

Γ Grammar . 15

Γi the ith rule in grammar Γ . 15

LHS,RHSLeft-Hand Side, Right-Hand Side of a grammar rule Gammai, respectively 24

Ξ[a] Subspace a, where a is G(eneralizer), S(pecifier, active) or s(pecifier, inactive) 34

σi Search node . 35

γi the set of constituents on the RHS of Γi . 42

γ
(j)
i the jth RHS constituent of Γi . 42

κi The ith scoring module used in computation of score, Score(Ψ) .46

ωi Weight associated with module κi in computation of score, Score(Ψ).46

∆ A set of training data. Datum ∆i encapsulates user input and transcription 64

xiv

CHAPTER 1

Introduction

Whether describing a scene, or objects and actions in space, humans make frequent use of gestures not only

to supplement, but also to complement their speech. For instance, when providing directions, a speaker will

often depict significant landmarks and the spatial relationships between them with their hands – the trajectory

and distance between a fork in the road, for example, and a building.

The key concept is that the human language is not a decoupled process, but involves the simultaneous

coordination of multiple streams of information – not just speech. This will be expanded upon shortly.

Multimodal interaction (MMI) represents a paradigm shift in engineering whereby traditional user in-

terfaces are replaced by more intelligent software capable of incorporating these multiple components of

natural user communication simultaneously in order to infer their underlying semantic meaning. Through

the combined processing of multiple input modes, of which speech and gesture are just two examples, these

systems have made significant breakthroughs in the fields of Natural Language Processing (NLP) and Human-

Computer Interaction (HCI) .

In this thesis a new software framework called Clavius is presented that combines an extensible archi-

tecture for MMI with a new set of algorithms that expand on modern NLP techniques to handle some pecu-

liarities of multimodal language. As a consequence of a modular framework, various divergent approaches

to this task can be explored and incorporated within a single framework.

The following section introduces the field of multimodal interaction research, briefly overviewing popu-

lar or interesting approaches thereof, as well as current benefits and challenges (§1.1). Relevant psychological

theory (§2.3) is then briefly touched upon before describing the goals and contributions of this thesis (§1.2).

1.1. Multimodal Human-Computer Interaction

A multimodal system is any one that allows users to express themselves using more than one channel of

communication. Examples of the more prevalent of these include:

speech: : natural human speech recorded by microphone.

1.1. MULTIMODAL HUMAN-COMPUTER INTERACTION

gesture: : gesticulation of the hands, as recorded by video or specialized equipment (ex. sensor-

laden gloves) (see §2.3).

gaze/face: : the direction vector of the user’s eyes (and therefore attention), and the shape of one’s

lips (indicative of the articulation of their speech). These are typically recorded by video-camera

fixed on the user’s face.

pen: : use of a small stylus on a 2D reactive surface, such as a PDA or tablet PC, often used for

handwriting recognition (see §1.1.2.1).

typing: : traditional keyboard entry.

Multimodal interfaces have both taken advantage of and advanced the development of new hardware

technologies. Current directions in MMI include expansion into more exotic hardware interfaces that incor-

porate haptic (“touch”) information[119] [64], body position [4], and even directly measure brain activity

[103].

1.1.1. Early History. The goal of supporting more expressive, efficient and flexible means of in-

teracting with machines represents an ongoing effort in Human-Computer Interaction. Already, multimodal

interfaces have allowed for increasingly challenging applications that are usable by more people in a wide

range of types of physical environments, and it is expected that eventually this ‘next step’ towards human-like

sensory perception in machines will allow our technological counterparts to interact with humans naturally

and transparently in everyday environments.

Most research in multimodal human-computer interaction traces its origins to work done by Richard

Bolt at the Massachusetts Institute of Technology (MIT) in the early 1980s [14]. That worked involved staged

interactions within a “media room” in which a seated user interacted with abstract objects on a wall-sized

display using rudimentary speech commands augmented with gesture, such as “create a blue square there”,

and “put that there”. In these examples, arm gestures provide the computer with information otherwise

absent in the referring words, namely co-ordinate locations, and the identity of objects. A technological

breakthrough at the time, it demonstrated two key facets of multimodal interaction:

(i) that spontaneous multimodal expression provides an especially versatile and natural interface to

the user, and

(ii) that pronouns used as verbal arguments in HCI achieve the same usefulness as in ordinary dis-

course by being pronounced in the presence of a deictic reference to an object that functionally

defines their meanings.

Since that innovative early step, research in MMI has been divided primarily between exploration of

the methods used to integrate information from the various modalities, and the empirical study of users

in multimodal environments. For the most part, the abilities users possess in these environments have not

2

1.1. MULTIMODAL HUMAN-COMPUTER INTERACTION

changed drastically since these early systems, which often concentrated solely on direct manipulation of

2-dimensional maps or charts [20] [21].

Moreover, despite more than two decades of pursuant research, no dominant paradigm has yet emerged

for the generic interpretation of multimodal interaction. A commonality amongst many divergent approaches,

however, is an apparent reluctance to treat multimodal language as a unique linguistic phenomenon, which

results in computational models that are retrofitted to older approaches, as examples throughout this thesis

demonstrate.

1.1.2. Examples of MMI in Practise. A wide diversification and specialization in hardware in-

terfaces allows for various permutations of modalities, including speech with pen input, speech with lip

movements, speech with manual gesturing, and gaze tracking with manual input. They also allow for vary-

ing physical environments in which these can be deployed - from portable devices to large or immersive

spaces. It is important to note that MMI systems cover a wide range of complexities, and that this may limit

comparability to some degree.

1.1.2.1. Mobile MMI. As noted earlier, stylus input is indicative of multimodal mobile devices such

as the PDA/Palm pilot, tablet PC, or cell phone, as shown in Figure 1.1. The small visual displays and

cumbersome keypad input on these devices present limitations that cannot be overcome by voice browsers

alone [30]. Combining speech with pen or keypad input, however, has led to increased access by a device

to different types of programs and enhanced experiences in such mobile applications as stock trading or

appointment scheduling. For example, stocks may be selected from a graphical list with the stylus, while

commands applied to these selections may be spoken (eg. “sell”). Interaction with the stylus is then still

possible while speech or audio feedback is being conveyed by the device – creating a degree of concurrency

not possible in unimodal interaction.

Studies in such interaction scenarios indicate that flexible MMI allows users to manage changes in their

cognitive load as the task complexity increases [36].

Figure 1.1: Example of mobile technology with stylus and speech interface.

3

1.1. MULTIMODAL HUMAN-COMPUTER INTERACTION

1.1.2.2. Large Screen MMI. Interacting with large screens with arm gestures and speech has been

employed chiefly to map-based applications in areas such as military intervention [117], crisis management

[100], and weather narration [57]. This sort of arrangement typically involves a user standing directly before

a large screen where arm gestures indicate virtual objects or locations on the screen, and speech conveys

commands, as exemplified in Figure 1.2. Arms may be tracked by any combination of video-based tracking,

infra-red (IR) sensors or wearable gyroscopic devices.

Unlike mobile MMI, large-screen displays are not encumbered by the same physical limitations. In

this case, MMI is often used to augment the usual interaction paradigm by giving the user more locative

freedom. Specifically, users are not necessarily constrained to sit in a particular spot with their hands resting

on a keyboard but may move around the environment. This is made possible by distributing sensing devices,

such as the microphones that record speech, around the environment – or at least by making these devices

wireless, offering a degree of untetheredness.

Figure 1.2: Example of large screen multimodal interface (from Sharma et al. [100]).

1.1.3. Applicability of MMI. A chief benefit of co-ordinating multiple modalities is the increased

usability gained from compensating for any weakness in one modality with the strengths in others. For

example, popular mobile phone manufacturers, such as Motorola, have included automatic speech recognition

(ASR) software since the late 1990s to circumvent the difficulty of text input on a small keypad [41], or

navigating through menus on a small screen [46]. There is also widespread evidence that suggests a general

subjective preference of users to interact multimodally. For example, in separate studies of map-based tasks,

researchers found that all subjects spontaneously interacted multimodally, and that between 70% [28] [38],

and 95% [79] of those subjects preferred multimodal interaction to its unimodal counterpart.

Divergent approaches to recognition in MMI are discussed further in §2.2.

1.1.3.1. Accessibility. Multimodal user interfaces also have implications for accessibility, in particu-

lar for physically impaired individuals who may have only limited availability of their voice, hearing, sight,

or motor control. Offering redundant pathways to information or control in software is also of importance

4

1.1. MULTIMODAL HUMAN-COMPUTER INTERACTION

to “situationally impaired” individuals. For example, voice entry of one’s credit card information to a tele-

phony system may be desirable in the home, but not in a public environment. Speech commands also become

relevant to motorists who need to look up and dial a phone number while their hands and vision need to be

engaged elsewhere. This same type of multimodal exploitation is found in operating rooms, where members

of the surgical team can access patient information verbally, and receive this information aurally and visually

to maximize comprehension in an aseptic environment.

1.1.3.2. Accuracy & Biometrics. More technically, integrating co-related information from concur-

rent cross-modal information streams provides a benefit in recognition accuracy, specifically in MMI systems

that perform this integration early in the process. For example, if an MMI interpreter has evidence that a user

is pointing towards an image of a house, this information can be used to suggest that an ambiguous spoken

utterance is “this house” rather than “this horse”. The error suppression achievable with a multimodal system,

as compared with a unimodal one, can be in excess of 40% Relative Error Reduction (RER) [78].

Furthermore, in the sub-field of MMI concerned exclusively with the recognition process, information

from modes extraneous to the interaction are used to disambiguate or more accurately recognize unimodal

utterances. For example, recording a speaker’s lips with video, and associating measurements of quadrature

values in the video’s optical flow1 with acoustic features in an associated trained Hidden Markov Model

(HMM) framework have demonstrated improvements in accuracy in speech recognition by at least 4% at

Signal-to-Noise Ratio (SNR) = 5 dB and 13% at SNR = 10 dB [105] [106] [71] for connected digit gram-

mars, given baseline audio-only accuracy of 41% and 58%, respectively. This differs from MMI in that the

interaction mechanism is unimodal (eg. speech-only).

Combining unique properties of speech that can help to identify users with information from video for

face recognition or lip-reading has also proven to be a useful mechanism for advanced security via biometrics

[29].

1.1.3.3. Complications. There are, however, complications in unifying various methods of interac-

tion, ranging from low-level signal processing to high-level semantic analysis. New modes added to a system

have been shown to have a multiplicative effect on such things as ambiguity, computational complexity, and

representation [8] [22]. Also, since MMI is a relatively young field of research, there does not yet exist a

small de facto set of technologies or methodologies that can conclusively be shown to dominate all others.

One of the emerging themes in multimodal research involves the difficulty of re-applying techniques

across application domains of potentially varying complexity. For example, multimodal discourse (possi-

bly with some virtual avatar) [115] might require some degree of integrated planning, whereas a map-based

querying will not [78]. This disparity in task complexity can be seen as a limiting factor in the generaliza-

tion of multimodal techniques to new tasks, although distributed component models such as Multiplatform

1The optical flow is defined as the distribution of apparent velocities in the movement of brightness patterns in an image.

5

1.2. THESIS OBJECTIVES AND CONTRIBUTIONS

[39] based on message passing between processes have recently been gaining in popularity to deal with this

dilemma [18].

These issues, among others, are discussed throughout this thesis.

1.2. Thesis Objectives and Contributions

Clavius is a generic interpretation layer between users and some arbitrary software that they use. It

deciphers what a user says and does, for example, and passes this information along to the appropriate appli-

cation. It provides a multimodal language-based integration engine within a generic framework that produces

a structured semantic representation of user communication from raw data. Although its purpose is to recog-

nize multimodal phrases, it is also amenable to unimodal user input, such as standard text- or speech-based

processing.

This software was designed to meet the following broad goals:

Flexibility: The core recognition system must minimize the number of assumptions as to the nature

of the application, or class of user input with which it will eventually be used.

Scalability: Augmentations to the abilities of the system must be made easily. This includes, for

example, the ability to handle new types of input.

Efficiency: Chapter 2 will show that the speed of recognition has been an ongoing problem in MMI

research. Clavius must address this issue meaningfully.

Structured semantics: Complex analysis of the meaning of phrases and sentences should be possi-

ble in order to draw inferences and constrain the process, as much as possible.

1.2.1. Contributions. The general approach in Clavius uses graph-based data structures (§2.1) that

encode sensory information, syntactic structure and semantic knowledge within descriptions of a user’s in-

teraction with an application. The actual method used is a novel ‘parsing’ algorithm – the GS Algorithm –

that integrates various approaches to multimodal interaction by means of a modular architecture. The GS

Algorithm, and the architecture built to accomodate it form the two main innovations of this thesis. Some

specific innovative aspects that overcome or address shortcomings in other work (see Chapter 2) include:

Mutual information: : Input from one mode can be used to inform interpretation in other modes.

For example, if a word is spoken with a simultaneous gesture to an area, the nature of that gesture

can be used to infer what the speaker said.

Distribution and collaboration: : Distributing the responsibility for different tasks across multiple

machines or processing threads allows for a dynamic, robust, and efficient system.

Unified semantics: : Multimodal grammars allow a degree of semantic or world knowledge to be

incorporated in the combination and interpretation of partial results.

6

1.3. ORGANIZATION

Real-time recognition: : Interpretation takes place continuously as soon as new input is introduced,

instead of waiting until sensory activity has ended (such as after a long pause). This means that

the beginning of a sentence may be interpreted while the user is still uttering it. This is sometimes

referred to as interactive parsing [108].

Interruptible Recognition: : At any time, Clavius may interrupt itself in order to return its best

possible hypothesis, but may decide to deliberate further it believes that by doing so it can improve

the correctness of its estimate.

Heuristics: : Since the problem of MMI is still in its infancy, and has many disparate approaches

(see §2.2), a simple scoring paradigm that can unify various solution concepts (over various do-

mains) is employed.

Automated Learning: : Clavius is highly customizable ‘by hand’, but is also amenable to training

itself off-line according to interaction data.

In Clavius, unlike many speech recognizers [65], the goal is not constrained only to complete and fully

grammatical sentences (for formal approximations to natural languages). In fact, Clavius can also accept

‘sentences’ that consist only of unexpected sentence fragments, but which still have internal structure and

meaning.

1.3. Organization

The rest of this thesis is organized into four chapters. Chapter 2 defines some necessary linguistic

and mathematical background forming the foundation of this work. Chapter 3 then presents a system-level

overview of Clavius, describing component software structures and the flow of information. This is fol-

lowed by a more detailed look at some of the algorithmic details of those component structures in Chapter

4, including an exposition on the GS Algorithm and the modular behaviours it uses. Finally, Chapter 5 ex-

plores the properties of Clavius experimentally through the analysis of multimodal interaction data with a test

application.

Appropriate literature references are discussed where appropriate, according to subject. Since the con-

tent of the reference material is spread across fairly disparate domains, this provides a more logical progres-

sion through the thesis than having a separate chapter solely devoted to literature review.

1.3.1. Syntax Used in this Thesis. Although there currently exists no concise standard for repre-

senting multimodal phrases textually, the convention in Table 1.1 will be adopted for the remainder of this

document. Other conventions will be defined as their underlying concepts are introduced. Any parametriza-

tion of symbols will take the form of attribute-value matrices, defined in Chapter 2.

7

1.3. ORGANIZATION

Feature Description Example

Speech Spoken words only This is this.

Speech + point gesture ↘ refers to the maximal extent of a pointing gesture, and its position in the string reflects its

temporal relation with spoken words. Any word or series of words underlined are semantically

related to the nearest↘.

This↘ is↘ this.

Speech + area gesture ↘ and ↙ refer to the start and end points of a gesture outlining or circling a 2-dimensional

area. Their placement in the string reflects their temporal relation with spoken words. Any

word or series of words underlined are semantically related to the nearest (↘,↙) pair.

Look in this area↘↙.

Speech + symbolic ges-

ture

L
X refers to a symbolic gesture, specified by the subscript X . This incorporates mimetic,

referential and modalizing gestures.

Place
L
4. : draws a pyra-

mid at the location of
L
4.

Table 1.1: Convention used to represent multimodal phrases textually.

8

CHAPTER 2

Background and Related Work

Before discussing the architectural and algorithmic details of Clavius, some fundamental concepts must be

defined formally, in order to motivate design decisions.

This chapter begins with a brief discussion of graph unification (§2.1), which serves as the fundamental

operator of Clavius’ grammar processor. It continues with a survey of existing approaches to multimodal

interaction that diverge fundamentally over varying computational models (§2.2). From here, psychological

aspects (§2.3) are discussed before concluding with particular linguistic features of multimodal interaction

(§2.3.3).

Further linguistic and mathematical background necessary for the comprehension of this thesis are de-

scribed in Appendix A.

2.1. Features and Unification

Constraint-based formalisms are typified in computational linguistics by the use of complex structures

to describe various features of words, phrases, and sentences. There are several advantages of this approach

relevant to MMI. For instance, expressing linguistic and semantic information declaratively frees the gram-

mar from the control process, allowing for a greater degree of re-usability, should different combinations of

modalities or mode-tracking software be necessary. Furthermore, expressing linguistic concepts structurally

has generally led to smaller grammars than would be necessary otherwise [88]. This simultaneously helps

reduce both the multiplicative effect of adding more modes on the size of a grammar, and also the generative

capacity of that grammar, since irreconcilable differences in the topology or values of these feature structures

can be used to prohibit combination of incongruous phrases or words in the search process. Reducing the

size of the search space is a chief objective in multimodal research [49].

Pollard’s Head-driven Phrase Structure Grammar (HPSG) [86], for example, is indicative of a constraint-

based formalism popularly applied to linguistics in the form of a special representation format called feature

structures.

2.1. FEATURES AND UNIFICATION

2.1.1. Feature Structures. In Clavius, all user activity is described by collections of data structures

called feature structures. A Feature Structure (FS) , over a set of features FEAT and a set of values VAL is a

rooted, connected, typed directed acyclic graph (TDAG) (N,n0, δ, θ) such that :

• N is a finite set of nodes,

• n0 ∈ N is the root of the graph,

• δ : N× FEAT→ N is a partial function. Specifically, the arc (or directed edge) δi = ((ni,Φ) , nj)

is a directed connection from ni to nj having feature Φ ∈ FEAT . Here, in δi, ni is the parent

of nj , and nj is the child of ni. An arc of feature Φ from ni to nj is sometimes represented by
•
ni

−→
Φ

•
nj .

• θ : N → VAL is a set of tuples (ni, v) assigning values v ∈ VAL to nodes. θ(n) = v is sometimes

used to mean the value of node n is v. Values of nodes can be of any type (integer, character,...),

but are compared bitwise to determine equivalence. A node can also have null value, λ.

A particular graph, ΨA, is a complete specification of all variables in (N,n0, δ, θ), distinguished from

other graphs by its subscript. Each node ni in ΨA can but does not necessarily have to be associated with a

value (i.e., ||θ|| ≤ ||N ||). In fact, typically only the leaf nodes (nodes without any out-going arcs), have an

associated value. The notation ni → v refers to node ni having value v. Nodes without associated values are

called anonymous nodes.

In general, Clavius allows only one arc of type Φ to lead out of any node ni. Formally, for any two arcs

δj and δk leading from ni such that δj = ((ni,Φj) , nj) and δk = ((ni,Φk) , nk), if Φj = Φk, then it must

follow that nj = nk, and therefore that δj and δk are the same arc. In certain very specific instances, however,

issues of implementation require that this constraint be waived, at the expense of additional computational

structure, as discussed in §3.3.1.

The size of a particular feature structure |Ψa| is defined as the number of directed edges present in Ψa.

In §A.1.1.1 it was shown that if Ψa has a set N of nodes, then |N |(|N |−1)
2 ≥ |Ψa| ≥ |N |−1. This provides an

important processing bound, namely that all of Clavius’ algorithms that traverse graphs are bounded above

by O(|N |2). This limit can in fact be lowered, as will be described later.

All non-root nodes ni, i = 1..(||N || − 1) must be reachable from the root node n0. That is, there

must be a path from n0 to nj , which is recursively defined as a sequence of arcs, S = {δ0...δj}, such that

if δ0 = ((n0,Φi) , ni), then either ni = nj (for some Φi), or else there exists some path from ni to nj . The

path from ni to nj is sometimes represented by ni nj , where ni is called the ancestor of nj , and nj is the

descendant of ni.

Furthermore, all paths in graph Ψ must be acyclic, meaning that there does not exist any path Sab in Ψ

such that two arcs exist where δa = ((na,Φa) , nk) ∈ Sab and δb = ((nb,Φb) , nk) ∈ Sab, and δa 6= δb. In

10

2.1. FEATURES AND UNIFICATION

Figure 2.1: An example feature structure graph (N,nr, δ, θ) where N = {n0, n1, n2, n3, n4},
nr = n0, δ = {((n0, φa) , n1) , ((n1, φb) , n2) , ((n0, φc) , n2) , ((n2, φd) , n3) , ((n2, φe) , n4)}, and θ =
{(n3, θx) , (n4, θy)}

other words, for any path in Ψ, no node nk in that path can be entered more than once. That is not to say

that nodes in Ψ cannot have more than one parent, only that the parents of these nodes cannot also be their

descendants. Nodes with more than 1 parent are called re-entrant. Although formalisms for cyclic feature

structures exist in other disciplines such as uncertainty in artificial intelligence [90], these complicate issues

of grammar representation and execution and therefore are almost never used in computational linguistics.

A visual example of a feature structure (typed directed acyclic graph) is provided in Figure 2.1, with one

re-entrant node (n2). Further examples of feature structures that represent linguistic entities (via grammar

rules), are provided in §2.1.3.

2.1.1.1. Subsumption of Feature Structures. A morphism, g, in the context of feature structures is a

mathematical operator that maps each node n in one graph to some node m in another, written as g(n) = m.

A feature structure Ψa = (N,n0, δ, θ) is a substructure of another Ψb = (N ′, n′0, δ
′, θ′) (written Ψa ≤ Ψb)

if

(i) ∀n ∈ N and Φ ∈FEAT, if ∃δ(n, Φ), then ∃δ′(g(n),Φ) and g(δ(n, Φ)) = δ′(g(n),Φ).

(ii) ∀n ∈ N , θ(n) = θ′(g(n))

Note that normally some hierarchical operator other than ‘=’ is defined for point ii), but this is not

the case in Clavius. This basically implies that all the topological and value information of one graph is

‘contained’ within another.

Feature structures can also be partially ordered according to the degree of their information content by a

relation called subsumption. Subsumption is defined syntactically by graph morphisms that map all nodes of

one graph to those in a subgraph of another. That is, a feature structure Ψb (defined above) subsumes another,

Ψa, (written Ψb v Ψa) , if and only if Ψa ≤ Ψb and g(n0) = n′0 for some morphism g. Namely, Ψa is a

substructure of Ψb, where the root of Ψa is mapped to the root of Ψb by the same morphism that defines that

substructure.

11

2.1. FEATURES AND UNIFICATION

Figure 2.2: Prototypical unifications. In a) all atomic unifications succeed except those having different
non-null values. In b) the resulting graph is the union of the information in the component graphs. In c) and
d) if outgoing arcs of component graphs have the same feature, the respective subgraphs must also unify.

These are important relations that will be discussed further in §2.1.3 and §4.1.3.

2.1.2. Unification. Unification in NLP was developed separately and concurrently by Kay [53] [54]

and Colmerauer [24], who approached it from slightly different purposes. Its use in Clavius follows the

former more closely in that it concentrates on unification of structure rather than value terminals.

Unification, denoted by the operatort serves as the fundamental operation in the Clavius search process.

It serves both as an amalgamator of information in two distinct feature structures, and as a boolean test as to

whether those structures can be combined properly. Since all user activity is represented by these structures,

described more concretely in §2.1.3, it is important to be able to combine these, so that graphs representing

words can be combined into graphs that form phrases and sentences.

The t operator takes two FSs as arguments and produces a third. That is, ΨC = ΨA t ΨB =(
N (c), n

(c)
0 , δ(c), θ(c)

)
means that ΨC is the unification of ΨA and ΨB . It is a recursive operator and has the

behaviour simplified in Algorithm 1, given ΨA = (N,n0, δ, θ) and ΨB = (N ′, n′0, δ
′, θ′).

In the above, SUBGRAPHAT(n) returns the subgraph rooted at node n, ROOTOF(Ψ) returns the root

node of graph Ψ, and COPYGRAPH(Ψ) returns a new copy of the graph Ψ (that is, an exact morphism of

graph Ψ). At the end of a successful unification, the resultant graph will subsume both of the input graphs,

and will generally contain more structural and semantic information. For example, if two graphs can be said

to describe a certain word, then their unification will provide more information about that word, if such a

combination is possible. For clarification, examples of unification are shown in Figure 2.2.

Unification is obviously a commutative operation such that ΨC = ΨA t ΨB = ΨB t ΨA. This is

contrasted with similar graph-combination algorithms in other multimodal systems, namely SMARTKOM[3],

12

2.1. FEATURES AND UNIFICATION

Algorithm 1: UNIFY

Data: feature structures ΨA and ΨB

Result: ΨC = ΨA tΨB

begin
if ||N || = ||N ′|| = 1 then //ΨA & ΨB are atomic

ΨC ← Unify Atomic (ΨA,ΨB)
return ΨC

if ||N || = 1 or ||N ′|| = 1 then //only one of {ΨA,ΨB} is atomic
ΨC ← Unify Mixed (ΨA,ΨB)
return ΨC

// Both ΨA and ΨB are complex feature structures
for all δA = ((n0,Φ) , ni) , δB = ((n′0,Φ

′) , n′i) s.t. Φ = Φ′ do //check arcs of all common
outgoing features

// If the nodes they point to unify, success, otherwise fail
Ψa ← SubgraphAt (ni)
Ψb ← SubgraphAt (n′i)
Ψc ← Unify (Ψa,Ψb)
if Ψc = ∅ then

return ∅
else //Attach the subgraph to ΨC

nc ← RootOf (Ψc)
create δC =

((
n

(c)
0 ,Φ

)
, nc

)
// Copy in all subgraphs led to by arcs not common to ΨA and ΨB

for all δA = ((n0,Φ) , ni) where 6 ∃Φ′ = Φ s.t. δB = ((n′0,Φ
′) , n′i) do

nc ← CopyGraph (SubgraphAt (ni))
create δC =

((
n

(c)
0 ,Φ

)
, nc

)
for all δB = ((n′0,Φ

′) , n′i) where 6 ∃Φ′ = Φ s.t. δA = ((n0,Φ) , ni) do
nc ← CopyGraph (SubgraphAt (n′i))
create δC =

((
n

(c)
0 ,Φ′

)
, nc

)
end

Algorithm 2: UNIFY ATOMIC

Data: feature structures ΨA and ΨB

begin
if θ(n0) = λ then

ΨC ← ΨB

return ΨC

if θ′(n′0) = λ then
ΨC ← ΨA

return ΨC

if θ(n0) = θ′(n′0) then
ΨC ← ΨA

return ΨC

// nodes have non-null, non-equal values
return ∅

end

13

2.1. FEATURES AND UNIFICATION

Algorithm 3: UNIFY MIXED

Data: feature structures ΨA and ΨB

begin
if ||N ′|| > 1 then only ΨA is atomic

if θ(n0) = λ then
ΨC ← ΨB

return ΨC

else if ||N || > 1 then only ΨB is atomic
if θ(n′0) = λ then

ΨC ← ΨA

return ΨC

return ∅
end

where parse graphs are combined according to ‘overlay’– a non-commutative approximation of the chart

parser described in §2.2.3. The ‘overlay’ method conditionally unifies utterance parses against background

knowledge or default expectations. This background knowledge is thereby used to automatically fill in for

unspecified components of a partial parse.

Other common divergences from standard unification includes type-value hierarchies (so that values in

θ can be subsumed), and the use of other graph-structured data as semantic frames-of-reference. These are

not employed in Clavius, especially in the latter case, so as to minimize the use of ‘external’ information

during graph recombination.

2.1.2.1. Implementation of the Operator t. The algorithm that implements t accepts two feature

structures, ΨA and ΨB , and returns either an empty graph and notification of error, or the unification of the

two. The Clavius implementation is recursive and non-destructive, so that the two input graphs are preserved

unchanged after unification. Other implementations will sometimes avoid a processing bottleneck incurred by

the presence of re-entrant nodes by implementing a destructive version of unification that is at least linearly

proportional in time to the size of the larger of the two graphs[52]. This, however, typically requires that

copies be made of at least one of the input graphs, so that the originals are preserved. This results in a lower

bound in time that is linearly proportional to the size of both graphs, or at best of the smallest, if such a

distinction can be made in O(1).

The Clavius implementation of Algorithm 1, is O (max (|ΨA| , |ΨB |)) since every edge of each graph

is visited exactly once on successful unification. The best case, however, is Ω(1) which represents merely

the length of one path in each graph from the root node to a value, since the algorithm terminates as soon as

an inconsistency is detected. In the typical case this is a much more efficient approach than that presented

by Jurafsky and Martin [52] because, for reasonably complex grammars, the majority of unification attempts

will fail.

14

2.1. FEATURES AND UNIFICATION

Figure 2.3: Simplified example graphical representation of the grammar rule S ← NP VP, with the added
constraint that the number (NUM) of the noun phrase and verb phrase must agree.

In Clavius, each grammar Γ is associated with a sorting function, β, that uniquely orders the set of all

features in a grammar (for instance, by the order that they first appear in Γ). This ordering is essentially

arbitrary and serves only to simplify implementation details. If feature Φi precedes arc Φj according to β,

this is written Φi ≺β Φj . Since in general outgoing arcs are constrained from a node to have distinct features,

β can also be said to order the arcs from a node within some graph Ψ, although again this is purely pragmatic.

In addition to internal (but arbitrary) ordering of graph arcs, the other unique aspect to the implemen-

tation of t in Clavius is its handling of re-entrant nodes. Specifically, during unification, a hash table (RE-

ENTRANTHASH is generated on the fly keyed by nodes from input graphs ΨA and ΨB) tracks their associated

node in output graph ΨC . For instance, if nx is a re-entrant node in ΨX , and ΨX and ΨY are being unified

to create ΨZ , then RE-ENTRANTHASH{nx} = nz gives the node nz ∈ ΨZ that corresponds to nx. This

hash is useful in several ways, especially since it avoids repeated traversals of the same subgraph and keeps

re-entrant nodes in input graphs from being translated to multiple nodes in output graphs.

2.1.3. Unification Grammars. All lexical-level terminals (spoken words and gestural atoms) in

Clavius are represented as DAGs. Furthermore, all grammar rules such as some ith rule Γi S← NP VP1 are

represented by DAGs, as exemplified in Figure 2.3, and discussed in §3.3.1). Therefore, parsing2 consists of

localized unification of grammar-rule graphs with either lexical terminal graphs, or some other constituent-

level graph. This process is elucidated in Chapter 4.

There are several advantages to using unification of feature structures as a methodology for multimodal

language parsing, some of which are described in the following subsections. A common representation

paradigm for both grammar rules and potential parses of user input simplifies the implementation, and allows

for subsumption and substructures to be taken advantage of by the GS Algorithm.

1This rule states that a sentence (S) consists of a noun phrase (NP, ex. “the Force”) and a verb phrase (VP, ex. “is with you”)
2See Appendix A for more background.

15

2.2. DIVERGENT APPROACHES IN MMI

2.1.3.1. Agreement. Various agreement phenomena in English constrain the lexical morphology

(§A.2.1) in order to help partially distinguish grammatical from ungrammatical phrases. For example, present-

tense verbs will often take a terminating -s if their subject is third-person singular (eg. this train leaves), but

not if the subject has some other form (eg. these trains leave , I leave). The problem is further exacerbated

by whether the noun is nominative (I,...) or accusative (me,...), resulting in an explosion in the size of any

representational grammar.

The solution is to parametrize grammar rules, and to use these extra arguments as constraints. For exam-

ple, S← NP(sing) VP(sing) can be used to signify that both the noun and verb phrases have to have singular

person. Agreement between information in disparate nodes becomes especially relevant in constraining the

search. For instance, one may wish to prohibit unification of a gesture towards an image of a single virtual

object with a spoken plural noun phrase such as “these objects”.

2.2. Divergent Approaches in MMI

In the few decades since Bolt’s seminal work (§1.1), there has not yet emerged a single paradigm that

accommodates all potential uses of multimodal interaction, or all theoretical methodologies thereof, despite

some vary broad recent attempts by the W3C to create a unified standards base [25]. Varying techniques

have been applied to solving the problem of combining information across disparate modes such as nearest-

neighbour temporal alignment, neural networks [27], salience measurement [33], and biologically-inspired

rhythm tracking [114].

Several additional divergent formalisms that are more relevant to the development of Clavius are dis-

cussed in subsections §2.2.1 through §2.2.4, below.

2.2.1. Semantic Fusion. Given the availability of unimodal speech and gesture recognizers, a pop-

ular methodology has simply been to combine the information held in the ‘best’ unimodal hypotheses of

utterances after the fact. For example, once a speech recognizer has a list of its n-best interpretations of a

sentence, a multimodal component may attempt to cross-correlate their component information with com-

plementary information in unimodal gestural interpretations from an independent tracker at the utterance

level.

An increasingly popular approach to this integration process has been to merge attribute/value data

structures recursively [112] according to predefined rules, although the exact approach used to correlate such

complementary information varies on the representation schemes of the recognizers used. Such a method-

ology, though, invariably depends on complete sentence-level hypotheses to be determined before hand,

requiring that such processing be done only after an utterance has been completed. The implications of using

a top-down approach as a means of rectifying problems of accuracy are further compounded by the lack of

shared processing across modes that could greatly refine or direct the search process during its initial pass

16

2.2. DIVERGENT APPROACHES IN MMI

[101]. Integration at the semantic level can also be restrictive, especially if there is a fundamental lack of

understanding of the human speech/gesture production mechanism. Despite these limitations, such systems

can be trained very easily on unimodal data, which are more prevalent and easy to collect.

Classic examples of systems based on semantic fusion include Put That There [14], ShopTalk [21],

QuickSet [22], and CUBRICON [73].

2.2.2. Prosodic Co-Analysis. Pitch/accent association in English often underlines discourse-level

aspects of information flow. The fundamental frequency, F0, is the physical aspect of speech corresponding

to audible pitch, inversely derived by the time between two successive glottal closures [40]. Efficiently

estimating F0 often involves counting zero-crossings of the speech signal within short time periods, although

a more accurate method is to take the inverse Fourier transform of the energy spectrum |S
(
ejω

)
|2 [77].

The shape of the F0 contour can be used to decipher the delimitation of phrasal units, but more impor-

tantly can be used by the speaker to emphasize certain words, thereby shifting their semantic content [76].

For instance, by shifting emphasis on the end of the phrase It’s the baker, Mister Jones., the speaker either

informs the listener as to the identity of a third-person baker in the appositive case, or merely inflects as to

the person being addressed in the vocative case, as demonstrated in Figure 2.4.

Figure 2.4: Sentence meaning as a function of F0 contour (frequency vs. time) for appositive and vocative
utterances (from O’Shaughnessy [76]).

This approach has been used statistically in MMI to provide a model relating the temporal alignment

of active hand gestures to words having prominent speech segments (ex. the word “this” in “erase↘ this”)

[57]. It is adopted to Clavius as discussed in §4.12.

2.2.3. Deterministic Unification. Unification of feature structures (§2.1) is often implemented in

MMI within the context of semantic fusion, although this is not theoretically necessitated. It differs slightly

17

2.2. DIVERGENT APPROACHES IN MMI

from common semantic fusion, though, in that it restricts all unimodal recognizers to be represented within

a common feature structure framework, typically a unification grammar [50][51] [43]. The prototypical

approach to multimodal parsing with unification grammars is shown in Algorithm 4 (from Johnston [49]).

Algorithm 4: CHARTPARSE

begin
while ∃ edge in AGENDA do

remove best edge from AGENDA, and make it current edge
for each EDGE ∈ CHART do

if current edge ∩ EDGE = ∅ then
create set NEWEDGES = (∪ current edge *EDGE) ∪ (∪ EDGE*current edge)
add NEWEDGES to AGENDA

add current edge to CHART
end

Obstacles to this approach have included computational complexity (effectively all admissible edges are

created) and tractability. Chapters 3 and 4 discuss how these obstacles, and others met by other implementa-

tions, can be overcome within the unification model in Clavius.

2.2.4. Weighted Finite State Machines. Partially in order to overcome perceived issues of compu-

tational complexity in unification-based parsing, some research groups abandoned this approach in favour

of finite state machines [50] [51]. Finite state machines have been applied extensively to many aspects of

language processing, including phonology, morphology, chunking, parsing, machine translation, and general

speech recognition. Their adaptability from data, their effectiveness of decoding, and their compositional

calculus make them an attractive general-purpose representational framework.

In a multimodal interface with n modes, a finite-state automaton over n+1 tapes is necessary to construct

a joint interpretation, where the n + 1th tape represents the semantic output, which may take the form of a

compositional predicate calculus. Fortunately, such machines can be encoded directly from context-free

grammars, but they also abandon several advantages of feature structures – namely the ability to represent

complex semantic information.

Figure 2.5: Transducer relating gesture, G, and speech,S, to meaning, M , τ : (G×W)→M (from Johnston
and Bangalore [50]).

18

2.3. PSYCHOLOGICAL ASPECTS OF MULTIMODAL HUMAN-HUMAN COMMUNICATION

Hand/Arm Movementhhhhhhhhhhhh

((((((((((((
Gestures
``````̀

       
Manipulative Communicative

XXXXX
�����

Acts
b
bb

"
""

Mimetic Deictic

Symbols
aaa

!!!
Referential Modalizing

Unintentional Movement

Figure 2.6: A hierarchical ontology of human gesticulation.

2.3. Psychological Aspects of Multimodal Human-Human Communication

Singular conceptual representations – especially those related to spatial descriptions – can be manifested

in variety of combinations of speech and gesture [59]. For instance, Cassell and Prevost [19] show that

roughly 50% of the meaningful semantic components of spatial descriptions between humans are expressed

either by speech or by gesture exclusively while the other 50% were encoded redundantly across both. This

suggests, at least, that humans regularly split conversation over multiple channels – but in which situations

does this occur, and how is it useful?

Figure 2.6 shows a hierarchical decomposition of human gestures according to their usage and meaning

(from Pavlovic [83]). Deictic gestures, in particular, are generally used in conjunction with speech to indicate

an object or location, given the context of the speaker’s frame of reference. This lessens the cognitive load

on both the speaker and hearer, especially in spatial descriptions [70], in accordance with Zipf’s Principle of

Least Effort [121]. Specifying the identity of referred objects in this way produces shorter sentences requiring

fewer assumptions to be made as to the knowledge of the hearer. Gesticulation might also be useful in helping

the speaker conceptualize the subjects of their communication, and to retrieve the appropriate lexicography in

their description [60]. That is, hand and arm movements seem to facilitate both spatial working memory and

speech production [55]. Naturally, encouraging such an important verbal aid in human-computer interaction

should therefore be desirable.

2.3.1. Anaphora. Series of actions are not often performed in isolation and users may typically need

to refer to objects repeatedly in subsequent commands. This is especially pronounced in NP/pronominal

relationships across sentences, as in :

Put↘this, and↘this in↘ here↙. Colour them blue.

19



2.3. PSYCHOLOGICAL ASPECTS OF MULTIMODAL HUMAN-HUMAN COMMUNICATION

where the noun phrase (NP (PRP this) and (PRP this)) refers to the same collection of objects as

(PRP them). A multimodal system must be able to infer equivalence of this type if it is to take advan-

tage of its users’ natural speaking patterns. Approaches to this phenomena in NLP have included simple

surface-level heuristics [10] and deeper use of semantics [42]. In MMI, restricting the language to query or

command-based interaction has allowed researchers to implement simple context trees to localize information

[21].

2.3.2. Form vs. Meaning. In speech, the distinction between lexical and sentential meaning is that

the relation between the word form and its semantic realization is arbitrary in the former, and compositional

in the latter. For instance, the lexical meaning of dog, chien, and hund are all the same, though their surface-

structure differ. On the other hand, the difference sentential meaning of “the man ate the lobster” versus “the

lobster ate the man” depends on relative ordering of constituents to instantiate verb/object arguments for the

verb.

Psycholinguistic [68] and engineering [56] studies suggest that even deictic gestures also do not exhibit

a one-to-one mapping of form to meaning. Multimodal interaction in general deals with highly ambiguous

input spaces, where the emphasis must lie in functional grammatical constructions.

2.3.3. Peculiarities of Multimodal Language. A significant dichotomy between multimodal and

unimodal spoken language is the use of locative constituents, which are almost always instantiated as prepo-

sitional phrases depicting location, as in “I left the cake out [in the rain]LOC”. Surprisingly, some sources

suggest that the canonical English S-V-O-LOC 3 word order is almost completely supplanted in pen/voice

interaction by a LOC-S-V-O word order. Two separate research teams found corroborating evidence that

for a fixed set of speakers, ˜95% of locative constituents were in sentence-initial position during multimodal

interaction, compared to ˜96% in sentence-final position (as in the example above) for unimodal speech

[80] [79] [7]. The Clavius data collection, described in Chapter 5, confirms higher rates of sentence-initial

locatives, though generally within imperative command structure.

2.3.3.1. Conversational Multimodality. As previously mentioned, use of gesture in multimodal con-

versation generally leads to simpler sentences. This can come with the cost of an added degree of dysfluency

in practise, however. Specifically, vocative dysfluencies (“uh”, “err”,...) must be considered in addition to

gestural dysfluencies – namely hesitations or false-starts during gesticulation.

Current systems implementing multimodally conversing virtual agents, while still in very early devel-

opment, have resulted in generally encouraging or favourable impressions by test users, although these still

appear to be most taken by the novelty of MMI [11].

3SUBJECT-VERB-OBJECT-LOCATIVE

20



CHAPTER 3

Clavius System Architecture

Clavius is a generic multimodal dialogue system that employs an extensible best-first search strategy over

stochastic/semantic data structures in order to multiplex multiple streams of human activity into a control

stream to the application to which they refer.

This chapter covers an architectural overview and a component analysis of the system. It begins with

broad usage scenarios (§3.1) and a high-level, structured decomposition of software components (§3.2), fol-

lowed by a more pragmatic discussion of their functionality (§3.3 - §3.8 ). An overview of the deployment

methodology (§3.9) is then provided, and is concluded by notes regarding the general approach to software

engineering (§3.9.1). Algorithmic details, specifically those related to mathematical and linguistic theory, are

covered in Chapter 4.

3.1. Towards Generic Multimodal Understanding

The purpose of Clavius is to act as an interpretation layer between an arbitrary software application and

its users. Clavius is the result of an effort to combine sensing technologies for several modality types, speech

and video-tracked gestures being the most important among them, within the immersive virtual enclosure

[15] [94] at McGill University’s Shared Reality Environment, shown in Figure 3.1.

Although Clavius is not constrained to certain modality combinations, application types or interaction

schemas, it is expected to be used generally in command-based interaction, where the stereotypical usage

scenario involves the relocation and manipulation of virtual objects, as exemplified by the sequences in Table

3.1. These consist of simple commands on objects, and their immediate operation by the application.

3.2. Systematic Component Decomposition

Figure 3.2 shows a high-level breakdown of the most significant software components of Clavius, and

the communication paths between them, inspired initially by work from Neel and Minker [23], and discussed

further in the indicated sections. Note that, although all components within Clavius are customizable at



3.2. SYSTEMATIC COMPONENT DECOMPOSITION

Figure 3.1: The Shared Reality Environment.

Translocation

Copy and Pasting

Table 3.1: Example interaction sequences with a virtual blocks world using speech coupled with pointing
gestures.

startup by an XML1-based configuration manager (§3.4), the chief operating characteristics of language and

behaviour are determined by the application designer at runtime externally from the core system, making it

highly customizable and scalable. Approaching the problem in this way also helps to localize functionality

into smaller modular components [72].

Subsections §3.2.1 to §3.2.3 give a simplified hypothetical chain of operation through the system be-

tween the time sensory data is first introduced, and the eventual construction of a valid hypothesis for the

intended meaning of a user’s utterance. In the example covered in the following subsections, it is assumed

that a hypothetical user has uttered the multimodal phrase “put ↘this ↘here” in order to move a virtual

object around an immersive environment.

1eXtensible Markup Language.

22



3.2. SYSTEMATIC COMPONENT DECOMPOSITION

Figure 3.2: Simplified information flow between fundamental software components in Clavius. Rectilinear
and ovoid elements represent static objects and dynamic threads, respectively. Hashed arrows represent
network communication.

Figure 3.3: During tracking, user activity is sensed and analyzed by the tracker before being tokenized and
sent to Clavius’ search space.

3.2.1. Stage 1 : Tracking. Trackers are independent programs that sense and monitor a particular in-

put modality, such as speech, and perform rudimentary interpretation of activity in that modality. Specifically,

a tracker will classify a given input signal into one of the equivalence classes provided to it by a ‘lexicon’, or

23



3.2. SYSTEMATIC COMPONENT DECOMPOSITION

vocabulary. For example, a speech tracker monitoring the signal level on a microphone recognizes individual

words, and a gesture tracker monitoring video will recognize particular gestures.

These interpretations are sent in the form of fully qualified graphs, or ‘tokens’ to Clavius for further pro-

cessing over a TCP/IP network connection according to a pre-determined XML format (see §3.5.1). Trackers

are responsible for providing each token with a likelihood score. Given the above example, if the speech

tracker is only 80% confident that a word it hears is put, then the token it sends to Clavius will have a score

of 0.8, as exemplified by Ψh in Figure 3.3.

A collection of T trackers monitor user activity asynchronously and independently of one another over

the M modalities used by an application. Typically, T = M , so each modality is monitored by a unique

dedicated tracker, but Clavius allows for T > M , so that certain modalities can be monitored by more than

one tracker. Implications of this capability are discussed in §3.5.3. Trackers will typically be implemented as

stand-alone programs run on machines directly attached to appropriate sensing equipment, and they can be

implemented in any language capable of TCP/IP network communication.

This component is covered in greater detail in §3.5.

3.2.2. Stage 2 : The Searcher. Upon the receipt of token Ψh for put, Clavius inserts this hypothesis

into the searcher. The Searcher consists of specialized data structures and the concurrent operators acting

upon them to determine the best interpretation for an utterance, given the input. The search space is com-

posed of numerous substructures containing hypothetical partial parses of which a subset potentially lead to a

sentence-level interpretation. These partial parses are built according to a specialized multimodal grammar,

based on the input tokens provided to the search space by the trackers. In the ongoing hypothetical scenario,

if at this point three tokens have been inserted into the search space by the trackers – namely Ψh : (VB put),

Ψi : (POINT↘), and Ψj : (DT this), then the task of combining these into grammatical phrases falls upon

two concurrent processes: the generalizer and the specifier.

3.2.2.1. Generalization and Specification. Generalization provides the ‘bottom-up’ component of the

GS Algorithm, according to the terminology of Jurafsky and Martin [52]. This process takes partial parses

from the search space and attempts to attach these to the right-hand sides (RHS) of grammar rules. For

example, as shown in Figure 3.4, if Γr : ObjectReference ← DT POINT is a rule in the grammar, and the

parse Ψj : (DTthis) exists in the search space, then a new parse Ψk : (ObjectReference(DT this)(POINT))

is created that is then put back into the search space. Naturally, this process leads towards sentence-level

parses.

Similarly, specification provides the ‘top-down’ component of the GS Algorithm. This part of the pro-

cess combines two partial parses having the same top-level category in order to amalgamate their respective

information content. Continuing with the above example, at this point the generalization process has taken

place as shown in Figure 3.4, and the partial parse Ψk it has generated exists within the search space. Also, a

24



3.2. SYSTEMATIC COMPONENT DECOMPOSITION

Ψj : DT

this
GENERALISATION

=⇒

Ψk : ObjectReference
Z
Z

�
�

DT

this

POINT

Ψk : ObjectReference
Z
Z

�
�

DT

this

POINT

Ψl : ObjectReference
Z
Z

�
�

DT POINT

↘

SPECIFICATION
=⇒

Ψm : ObjectReference
Z
Z

�
�

DT

this

POINT

↘

Figure 3.4: Simplified Generalisation and Specification examples.

similar process has gone into producing Ψl : (ObjectReference(DT)(POINT↘)) in the search space – that

is, it is the result of another generalization step based on the input token for the gesture “↘”. The Specifier

then combines Ψk and Ψl to form a new partial parse Ψm which combines the information of the two, as

shown in Figure 3.4.

The combined process of the GS Algorithm is described in detail in §4.1. Both generalization and

specification choose which partial parses to consider based on the individual scores that all such graphs

possess, discussed below.

3.2.2.2. Memory Management. Partial parses remain in the search space indefinitely unless forcibly

removed. A memory manager decides if any parses should be removed, and if this is the case – it performs

the expulsion. For example, if the speech tracker from Stage 1 has also produced hypotheses that, instead

of “put”, the user said “pat” or “pot”, then graphs representing these alternatives may be deleted when it

becomes clear that neither will form part of an acceptable sentence-level hypothesis. This process is described

in greater detail in §4.1.5.

3.2.3. Stage 3 : Application Interface. While the three threads of the Searcher work to form par-

tial parses, a fourth thread – Cognition – monitors the potential sentences that they have so far produced.

Given various types of ambiguity, there may be several divergent explanations for a user’s input. For exam-

ple, if there is some acoustic or sensory noise obscuring the input, Cognition may need to decide between

hypotheses “Cut his↘ hair.” and “Put this↘ there↘”.

At a certain point, Cognition will select the latter from the search space and send this accepted hypothesis

to the application in the form of a graphical structure simplified in Figure 3.5. The application, on receiving

this interpretation, will perform whatever action is appropriate – such as moving the indicated object to the

indicated location. This is normally also accompanied with a change of state information shared between

Clavius and the application.

25



3.3. DATA REPRESENTATION

S

VP̀
`````̀%%


V

put

NP

ObjectReference
Z
Z

�
�

DT

this

POINT

↘

NP

Location
Q
Q

�
�

RB

here

POINT

↘

Figure 3.5: A simplified grammatical expansion of the phrase put↘this↘here.

Further detail on the engineering aspects behind each component are provided in the sections below.

3.3. Data Representation

The fundamental data type in the Clavius framework is the directed acyclic graph, whose characteristics

were introduced in §2.1. Every node in a graph has reserved memory space to hold arbitrary data types as the

atomic ‘value’ at that node. This is accomplished by allocating with the void *, and encapsulating the data

type and size within each graph node.

Important data types include:

ERRCODE: is an 8-bit mask that is the return value of almost all functions. 0x00 represents func-

tion success, 0xFF represents function failure (error), and 0x01 represents null output.

SCORE: this is a double-precision floating point that is used in the ordering of all partial parses.

TIME: the time format is not strictly enforced by Clavius, but must be consistent between all track-

ers and must be amenable to ordering using the strcmp string-comparison system call. In prac-

tise, time has been represented by an integer string of the form “s:u”, where s and u are the

seconds and (remainder) microseconds from Epoch (00:00:00 UTC, January 1, 1970).

3.3.1. Clavius-specific constraints on DAGs. Certain assumptions were made in the implementa-

tions of graphical structures and associated operators in Clavius, based on the fact that these structures would

primarily be used to represent phrases and words. Therefore, certain features are required to be present in all

graphs in the search space. Those features, and the meaning of their values, are:

cat: The grammatical category associated with the graph.

score: The raw score associated with the graph.

time: The time spanned by the encompassing graph.

26

3.4. CONFIGURATION MANAGEMENT

content: Any semantic variables associated with this graph. The value of this feature is an arbitrary

subgraph of the grammar engineer’s design – and can point to a leaf node of null value. Its

presence, however, is assumed for the purposes of several utility algorithms.

The value of the time feature is an internal node rooting of a binary tree having subfeatures t start and

t end, as indicated in Figure 3.6.

Figure 3.6: Required structure of TIME feature (with example time values).

Additionally, all graphs implementing grammar rules are required to include the following arc features:

rhs: This arc points to an internal node representing the set of constituents on the right-hand side

(RHS) of the rule it represents.

constituent: A constituent of a grammar rule is an element of the RHS of a rule, such as B and C

in A← B C. To represent multiple constituents in a feature structure, an exception to the regular

condition that all outgoing arcs of an internal node have distinct features (Φi 6= Φj) (§2.1.1) is

necessary. Therefore, the RHS node nj (δi = ((ni, RHS) , nj)) can have multiple outgoing arcs

of type CONSTITUENT, for each element on the RHS of the rule.

Certain modules associated with the scoring of partial parses require that additional constraints be placed

on the structure of DAGs. These are discussed where appropriate in sections §4.5 and §4.10.

3.4. Configuration Management

All software components query a central configuration manager that is instantiated at runtime with

command-line parameters and a specified XML-based configuration file format. All configuration data is

maintained in key-value pairs for fast hash-based retrieval. Among the important system-level configuration

details are the IP network addresses of all components, the location and login details (username/password)

for all relevant databases. Other configuration details are described where appropriate throughout this thesis.

3.4.1. Multimodal Grammars. The most significant configuration of Clavius’ run-time is the gram-

mar, which is also specified in XML format by the interaction engineer. This grammar is essentially an

order-invariant list of grammar rules, as shown in the example Clavius grammar in Appendix B.

27

3.5. INPUT AND TRACKING

3.5. Input and Tracking

As described in §3.2.1, trackers are implemented separately from Clavius. This approach was taken

specifically to allow alternate trackers to be swapped in and out without altering the complex internal structure

of Clavius. Trackers will typically be modifications of existing software that have been designed for specific

sensory applications.

Each tracker is instantiated independently of Clavius, and must be active and awaiting input when Clav-

ius is started. All device driver handling is performed by the tracker, which is also responsible for the scoring

of its own hypotheses, according to its own lexicon and configuration.

3.5.1. Communication Protocol and Lexica. Lexica are specialized vocabularies in Clavius that

describe ‘words’ in terms of structured argument/value pairs. These are specified in XML, as exemplified in

Figure 3.7, and serve as the primary run-time descriptor for trackers.

Trackers essentially select from the provided lists of lexical entries to describe their monitored input,

and send the appropriate clav_token XML elements to Clavius over TCP/IP. These XML elements can

optionally be compressed for network transmission, though this is not necessary. The format of the received

tokens is validated by Clavius upon receipt according to the same XML lexica used to configure the trackers.

In cases where arguments are not specified by the lexicon – such as the (x, y) co-ordinates in the example

in Figure 3.7 – the tracker is also responsible for filling these with appropriate values.

...

<clav_token>
<mode> SPEECH </mode>
<cat> DT </cat>
<num> s </num>
<word> a </word>

</clav_token>

...

<clav_token>
<mode> MOUSE </mode>
<cat> DEIXIS </cat>
<x> </x>
<y> </y>
<left> </left>
<middle> </middle>
<right> </right>

</clav_token>

...

Figure 3.7: Example lexical entries for speech and mouse trackers. Note that empty fields in lexica (for
instance, X or Y, above) are typically filled at run-time with values from the tracker.

3.5.2. N-Best Lists. ‘Noisy’ modes such as speech or vision-based tracking are often difficult to

interpret and there may be multiple possible hypotheses for the same input. At this stage of the recognition

28

3.5. INPUT AND TRACKING

process, there is no way to make use of contextual information to help decide between ambiguous possibili-

ties, so in theory they should all be considered by Clavius. In practise, though, only a subset of the competing

hypotheses survive to be sent to Clavius in the form of an n-best list. Since each tracker determines the

scores of each token, these can be ordered by decreasing likelihood and either the best n are sent for some

fixed cutoff n, or n can be dynamic, with the threshold set by some minimum allowable score.

Once sent to Clavius, the n-best list is broken up into its component tokens and inserted individually

into the search space. Additional constraints must then be enforced by Clavius in order to ensure that these

tokens are considered as disjunctive alternatives for the same input, as discussed in §4.4.

3.5.3. Strategies for Redundant Tracker Combination and Selection. As previously mentioned,

the Clavius architecture allows for T > 1 trackers to monitor the same mode simultaneously. This is, of

course, not the expected deployment scenario – but it is possible that the interaction engineer might have

multiple pieces of tracking software for the same tracked mode, and reason to assume that putting them in

parallel will aid the recognition process.

All trackers are meant to identify their mode to Clavius by a ‘mode key’. Clavius identifies redundant

trackers by grouping them into sets by common mode key. When a tracker in one of these groups reports

input to Clavius, it is then possible (though not necessary) for Clavius to wait a specified time for the other

redundant trackers to report their interpretations. At this point, Clavius will apply one of the following

combination mechanisms, according to its configuration:

hard merge: Clavius essentially selects one of the T trackers as being the best indicator of actual

user input, and inserts only the tokens from this tracker into the search space. The tracker selected

has the highest average score among its n best hypotheses, and can therefore be considered as the

most ‘confident’ in its prediction.

soft merge: n-best lists of tokens from all redundant trackers are concatenated into a single list.

Redundant tokens in this list are those representing the exact same hypothesis (and hence having

the exact same argument/value structure), but coming from different trackers. These redundant

tokens are identified and replaced by a single token having the same argument structure, and a

score representing the average of all redundant tokens. The resulting list contains no redundant

tokens, and the n-best of this list are then sent to Clavius. This mechanism provides a good

heuristic combining the confidence in a hypotheses across multiple trackers.

no merge: All hypotheses from all trackers are inserted immediately into the search space by Clav-

ius. This method is not preferred, since the distribution of scores becomes uncorrelated across

tokens and redundant tokens will clutter the search space.

In all cases, the same mechanisms used to prevent multiple uses of ambiguous input from n-best lists

are used to prevent multiple uses of redundant input from multiple trackers, as discussed in §4.4.

29

3.5. INPUT AND TRACKING

3.5.4. Continuous Speech (dictation) Tracker. Continuous speech dictation provides the recogni-

tion of individual words, while the source speech is still being uttered according to the lexicon is shown in

Table 3.4.

The CMU Sphinx-4 framework [63] is the latest addition to Carnegie Mellon’s suite of open source

speech recognition tools and serves as the basis for speech recognition in Clavius. It is a collaborative effort,

jointly designed by CMU, Sun Microsystems Laboratories, and Mitsubishi Electric Research Laboratories.

Sphinx includes an acoustic trainer (limited and fully continuous) and various speech decoders capable

of n-best list generation and phoneme recognition. It is capable of bigram and trigram language models –

which will become relevant to specialized constraints discussed in §4.8 and uses limited subphonetic HMM

topologies on phones, diphones and triphones.

The main Sphinx-4 decoder is based on the conventional Viterbi search algorithm and beam search

heuristic, and uses a lexical-tree search structure similar to its predecessors but with improvements in speed

and accuracy [62]. A high-level decomposition of the framework is shown in Figure 3.8, where the Linguist

and Decoder components of the recognizer have been modified for Clavius.

Figure 3.8: Architecture of the CMU Sphinx-4 framework [110]

3.5.4.1. Sentence recognition vs. true dictation. CMU Sphinx only begins recognition of raw PCM2

recorded speech once a ‘timeout’ has been observed – that is, a short period of low signal activity on the

microphone. The result is that CMU Sphinx can only provide the n-best sentence-level hypotheses for its

input, defeating some benefits of the Clavius architecture. Although ‘true’ commercial dictation systems exist

that can report on word-level hypotheses as soon as they occur, such as Dragon system’s NaturallySpeaking

[6], these were not available to this project.

2Pulse Code Modulation.

30

3.5. INPUT AND TRACKING

Prosody Lexicon
Word Arguments Purpose

Shift
direction either a raise or drop in pitch
amount the degree of difference in F0 detected

Table 3.2: The prosody lexical schema.

For the purposes of the current Clavius implementation, the CMU Sphinx framework was used to emu-

late a dictation system. Specifically, once a sentence is recognized by Sphinx, it is split up into its component

words which Sphinx can time stamp. If a given word is polysemous and belongs to n > 1 parts of speech (the

word “box” can be both a noun, and a verb, for example), then n graphs are encoded in the appropriate XML

format, and sent individually to Clavius as an n-best list. In this way, the need for part-of-speech tagging is

completely circumvented and the parsing algorithm is left to select from the available word-tag associations

itself, according to the relative scores of graphs using the different interpretations.

3.5.4.2. The JSGF Grammar Format. CMU Sphinx also uses a different grammar format from Clav-

ius, and therefore a unimodal ‘speech-only’ grammar must be extracted from the multimodal Clavius gram-

mar. Sphinx uses the Java Speech Grammar Format (JSGF) which is a popular, BNF-style representation

scheme [5]. Currently, the responsibility of translating the Clavius grammar to JSGF format for the benefit

of the CMU Sphinx-based speech tracker lies with the interaction engineer.

3.5.5. Continuous Speech (prosodic) Tracker. Acoustic prosody has been used in MMI as a means

of identifying important time- and semantically correlated expressions across modes [57] where dramatic

shifts in a speaker’s pitch (fundamental frequency, F0) can be indicative of important activity in another

mode.

The autocorrelation algorithm [13] measures F0 within windows of 1200 samples, s[0..1200], for speech

sampled at 44.1 kHz. Given s, the algorithm shifts these samples towards the right in increments δ, from

δ = 1 to δ = 600, providing new sample sets sδ[0..1200+δ]. For each shifted sample set, the autocorrelation

function r(s) =
1200∑

i=600

|s[i]− sδ[i]| measures the absolute difference between the original and shifted sample

sets. As the shift approaches F0, the value of r(s) decreases, and thus the δ giving the minimum r(s) recorded

is taken as the value of F0 for the windowed speech3.

Given changes in F0 over the speech signal, dramatic shifts can be determined heuristically as changes

above some minimum threshold α, within a small window of time t, where α and t are chosen at configuration

time. Such a shift constitutes the lexical entity of this tracker, as shown in Table 3.2 and further discussed in

§4.12. This approach is an approximation to the method used by Kettebekov, where prominent segments are

identified according to the maximum gradients of the pitch slope [57].

3Normally, the differential of the autocorrelation function would be used to detect minima

31

3.5. INPUT AND TRACKING

3.5.6. 2D/3D Hand Position Tracker. In Clavius, the desired mode of gestural interaction involves

untethered deictic arm gestures in an immersive virtual environment. Tracking the distance and angle between

the user’s head and their hand (or hands) for this purpose is accomplished via an overhead camera. For

instance, to track the 2D top-down head position, image differencing (background removal) is performed

between the current video frame and a reference frame averaging pixels of the 3 previous frames. This pixel

difference can be assumed to correspond primarily to the user’s body, the centre of which can be assumed to

correspond to the 2D position, (xh, yh), of the user’s head [109].

In order to locate the hands in the pixel difference map, skin colour segmentation is used, as shown in

Figure 3.9. Conditions for skin colour (based on Peer and Solina [85]) have been determined empirically

for the illumination conditions in the SRE environment, dependent on camera sensitivity, and adhering to the

following constraints in RGB space:

(3.1) {r, g, b} ∈ SKIN↔ (r > 70) ∧ (g > 30) ∧ (b > 20)

∧ (max[r, g, b]−min[r, g, b] > 55) ∧ (|r − g| > 15) ∧ (r > g) ∧ (r > b)

Figure 3.9: Example of hand segmentation. Binary mask resulting from the skin segmentation process (left).
Bounding boxes (right) are created around the two largest blobs of connected skin pixels. The bounding box
is defined by its centre coordinate, width and height.

Given the overhead positions of the head and right-most hand,(xr, yr), assumed to be the dominant

hand of the user, it becomes trivial to calculate the distance d =
√

(xh − xr)2 + (yh − yr)2 and angle

θ = arccos |yh−yr|
d between them, assuming the user is facing the top of the frame (normal to y = 0).

Once d and θ have been calculated, rudimentary gesture recognition can occur. Three types of gestural

segments are important to Clavius, namely preparation, stroke/point, and retraction as suggested by Mc-

Neill [68]. Estimating these three gestures can be done heuristically by comparing measurements of d with

customizable thresholds Dinner and Douter as follows:

preparation: occurs when a hand leaves the state of rest at the side of the body, passing from

d < Dinner to Dinner ≤ d < Douter.

32

3.5. INPUT AND TRACKING

Deictic Gesture Lexicon
Word Arguments Purpose

Deixis

type (preparation | point | retraction)
hx x-position of head in video frame
hy y-position of head in video frame
d distance of head to hand, in pixels, in video frame
θ angle between head and hand in video frame

Table 3.3: The 2D deictic gesture lexical schema.

stroke/point: occurs when a hand nears its maximal distance from the body, according to the user’s

reach, passing from Dinner ≤ d < Douter to Douter ≤ d.

retraction: : occurs when a hand returns to a state of rest, passing from Dinner ≤ d < Douter to

d < Dinner.

These gestures are encoded as soon as they occur (according to d) and sent to Clavius, in the format

indicated in Table 3.3. Note that a user may begin a preparation gesture, but may retract before a stroke/point

gesture, if they are unsure of their target.

Unfortunately, problems including occlusion, varying illumination, false positives and poor pixel con-

nectivity lead to somewhat unreliable tracking at the time of empirical analysis. Furthermore, geometric

errors incurred by projecting vectors through inaccurate head and hand positions onto the virtual environ-

ment are compounded by the use of a second camera used to deduce 3D positions. For these reasons, the

mouse tracker of §3.5.8 is currently the primary source of deictic gesture recognition.

3.5.7. Keyboard Tracker. The keyboard tracker is a drop-in replacement for the continuous speech

dictation tracker (§3.5.4) in that its arguments are the same, with the same semantics. Specifically, the POS

(part-of-speech) argument specifies the part of speech of the tokenized word, and lex the lexicography of the

word, as shown in Table 3.4. A token is sent when the space bar is hit and a non-empty string of characters

has been entered since the last space. If the POS of a word is ambiguous – for instance, the word colour can

be either a noun or a transitive verb – then each possible interpretations are sent to Clavius in an n-best list,

thereby circumventing the need to perform POS tagging. The scores associated with each token are meant to

be the unigram prior probability of the word P (W) in some corpus, although these may be initialized at the

discretion of the application designer if no suitable corpus yet exists.

3.5.8. Mouse Tracker. The mouse tracker reports on two types of activity by the mouse, as shown

in Figure 3.10. First, a single-point deixis is identified by a mouse click, and described by the position of the

mouse within a window, and the status of its buttons. If the mouse is displaced by a minimum distance before

a depressed button is released, then this is identified by the tracker as a drawn area, and is reported once the

button returns to its ‘up’ state. The arguments of each of these lexical entries is given in Table 3.4. Every

33

3.6. SEARCH SPACE

Mouse Lexicon
Word Arguments Purpose

Deixis

x x-position in window
y y-position in window
left status of left button (up|down)
middle status of middle button (up|down)
right status of right button (up|down)

Area

x x-position of area’s left edge
y y-position of area’s top edge
width pixel width of the drawn area
height pixel height of the drawn area

Speech/Keyboard Lexicon
Word Arguments Purpose

Word
POS part-of-speech (ex. VB, NN, ...)
lex the word itself (ex. go, house, ...)

Table 3.4: The mouse and speech/keyboard lexical schemas.

token it sends has a score of 1.0, and does not have multiple interpretations for the same input (n-best list of

length 1).

An example of the usage of this lexicon is shown in the grammar in Appendix B.

Figure 3.10: Examples of deixis and area-drawing by the mouse. Clavius – not the tracker – will identify that
the cylinder is selected by the deixis and that all three objects are selected in the drawn area.

3.6. Search Space

Internally, Clavius can be defined as a pseudo-blackboard system, since it involves a number of processes

that work simultaneously and asynchronously on a shared data space. Blackboard systems are typically char-

acterized by the distributed nature of their subsystems and are especially useful in approximating solutions

to problems for which no deterministic solution is known [16]. Similarly, Clavius was designed to be highly

modular and distributed, as the eventual system was expected to require significant processing power.

All partial parse hypotheses reside in the SEARCH SPACE, which is partitioned into the following three

subspaces , according to the processing threads of §3.2.2.1:

Ξ[G]: The Generalizer’s Active Subspace.

Ξ[SActive]: The Specifier’s Active Subspace.

Ξ[SInactive]: The Specifier’s Inactive Subspace.

34

3.6. SEARCH SPACE

These subspaces are named according to the process that accesses their members, and whether their

members can be transferred to another subspace. For example, graphs in Ξ[SActive] are selected by the SPEC-

IFIER thread, and then moved to Ξ[SInactive]. Table 3.5 summarizes the permissions granted to the indicated

processing threads. This distinction is further clarified in §4.1.

Read Write Delete

Ξ[G] Generaliser, Memory Manager Generaliser, Specifier, Trackers Generaliser, Memory Manager

Ξ[SActive] Specifier, Memory Manager Generaliser Specifier, Memory Manager

Ξ[SInactive] Specifier, Memory Manager, Cognition Specifier Memory Manager

Table 3.5: Read, write, and delete permissions granted to threads, according to subspace.

Since for more complex applications the number of partial hypotheses is likely to become very large,

it becomes expedient to partition the search space further. For algorithmic reasons that will become clear in

§4.1, and because the CATEGORY of a graph can be determined in O(1) (because of the restrictions in §3.3.1),

each subspace is implemented as a hash table [58] of subsets of graphs, keyed by the CATEGORY of those

graphs, as exemplified in Figure 3.12. Specifically,

DEFINITION 3.6.1. for the hash table h holding subspace Ξ[A] containing the set of graphs

{ΨA,1,ΨA,2, ...,ΨA,|h|}, where |h| =
∣∣Ξ[A]

∣∣ – the element h (c), contains the subset {ΨA,j | CATEGORY(ΨA,j) =

c}.

3.6.1. Search Nodes. All partial parse graphs are encapsulated within container SEARCH NODES

within the search space, to ensure that each graph is handled independently of, and separately from all others

within the context of data structure management.

A search node, or node refers to the atomic object, σi that encapsulates a partial-parse graph Ψi. This

distinction is particularly useful to abstract the mechanisms for data storage away from the linguistic mecha-

nisms of unification parsing. Although a particular partial hypothesis and its encapsulating search node can

often be referred to interchangeably, the search node also allocates additional ‘blackboard’ space used to

facilitate the computation of scores, further discussed in Chapter 4.

3.6.2. Randomized Search Trees. The subsets that comprise each subspace can become very large

themselves, especially for ‘higher’ grammar categories (such as sentences), and it is therefore important that

they be organized to make certain operations as efficient as possible. Treaps are specialized binary search

trees that are efficiently height-balanced. Specifically, every node, v, in the treap has both a key and a priority,

and is organized with respect to other nodes such that:

• If v is in the left subtree of u, then KEY(v) < KEY(u)

• If v is in the right subtree of u, then KEY(v) ≥ KEY(u)

35

3.6. SEARCH SPACE

• If v is a child of u, then PRIORITY(v) < PRIORITY(u)

An example treap is shown in Figure 3.11. If the priorities associated with each node x1, x2, ..., xn of a

treap are uniform randomly distributed, then the resulting treap is height balanced at O(lg n) in expectation,

as discussed in [98] and [26].

Figure 3.11: Example treap. Each SEARCH NODE is labelled (k :: p), where k is the KEY of the node, and p
is its PRIORITY.

The most common operations on sets of parses in Clavius are summarized in Table 3.6, along with their

asymptotic running times, given treap size N . Treaps are especially efficient at these operations, given that

search nodes need to be ordered. Since a pointer indicates the node with the highest priority in a treap, reverse

depth-first traversal from that node effectively orders the nodes in the treap by decreasing (or non-increasing)

order. Most of these operations are used heavily by the Generalizer and Specifier, although trimming a node

is only performed by the memory manager, although frequently. Trimming a node refers to removing all

nodes below a given node. All operations must maintain the treap properties.

Operation Asymptote
Find best node O(1) (amortized)

Find the M -best nodes O(M) (expected)
Insert new node O(lg N)

Delete given node O(lg N)
Trim a given node O(1)

Table 3.6: The most frequent set operations in Clavius, and their asymptotic behaviour as implemented by
treaps (of size N).

Furthermore, the value pair (key, priority) required of search nodes can easily be instantiated by the

score and timespan of their component graphs, respectively, since these values must be present in all search

graphs (§3.3.1). Setting key = score orders the treap by score (a reverse post-fix depth first traversal lists

the nodes in order of decreasing score). Setting priority = time (or, at least, end-time) means that all nodes

36

3.8. COGNITION AND APPLICATION INTERFACE

below a given node are older than that node. Therefore, if a given node is “too old” to be considered for a

partial parse, so too are all nodes below it.

Parallel set operations such as intersection, union, and difference on treaps of size m and n have also

been shown to run asymptotically in O(m lg(n+m
m))) expected work and polylogarithmic depth [12]. This

has potential applicability in future expansions to the internal data management of Clavius.

Figure 3.12: Example subspace, where each element is a treap keyed by their common category (ex. NP, VP,
...). The highest scoring node in each treap, and the best node overall, is highlighted.

3.7. Scorer and Partial Ordering

Upon being created, all partial parses are assigned a score on <[0..1] approximating their likelihood of

being part of an accepted multimodal sentence. This score is effectively a linear combination of scoring

modules, which are defined in mathematical detail in §4.2. The scorer software component of the Clavius

architecture is essentially a static object that responds to requests of other components. For instance, the

Generalizer thread may pass a graph Ψ to the Scorer to be evaluated, and the Scorer, in turn, will pass this

graph to its various dynamically loaded knowledge sources for further evaluation.

3.7.1. Knowledge Sources. Each knowledge source is an independent code module designed to

measure a unique aspect of the given graph Ψ according to its particular metric of multimodal language (see

Chapter 4). These are compiled into independent object code modules, which are then dynamically loaded

using the dl_open directive by the Scorer. Since the Scorer calls each source dynamically to score Ψ, each

must implement the same function declarations, including initialization and scoring. The intention is to allow

interaction engineers to write new scoring modules specifically for their project, without needing to change

Clavius.

This is discussed in detail in §4.2.

3.8. Cognition and Application Interface

Clavius decides when to stop searching for a better sentence-level hypothesis and to simply return its

best so far (see §4.1.4 for details). This essentially allows the system to trade deliberation time for more

37

3.9. DEPLOYMENT OVERVIEW

accurate results, and vice-versa. The class of algorithms having this feature is called Anytime algorithms, and

has been used by intelligent systems in signal processing, and mobile robotics[120].

The Cognition module decides when a sentence ΨB represents the correct interpretation of user input

and communicates this directly with the Application over the network. This encodes the semantic informa-

tion of the sentence along with a classification of the type of sentence, constituting a dialogue act.

3.8.1. State and World Interface. The state of the world is held in a MYSQL database according

to a relational database model whose structure is defined by the interaction engineer. This database is up-

dated with any state information from the Application the engineer deems appropriate, and is accessed by

certain knowledge sources in order to make informed decisions about the partial parses they evaluate. This is

discussed in further detail in §4.1.4.

3.9. Deployment Overview

Deployments of multimodal systems are often highly application-specific [74], and hence are limited

in their scalability and applicability in arbitrary computing environments. They are typically bisected into

two main architectural subcateogires: feature-level deployments or “early fusion” – in which signal-level

recognition in any mode affects and influences the course of recognition in the others [82][84], and semantic-

level deployments or “late fusion” – which consists of an independent collection of N recognizers and an

N + 1th component that unifies their output (see CUBRICON [73], for example). Early fusion may be

more appropriate for more temporally synchronized input modes [66][93] due to the possibility to exploit

codependencies early, although the late fusion approach may be more easily scaled up and trained – mainly

due to the preponderance of available unimodal data. Clavius is an example of feature-level early fusion.

Clavius is a modular collection of libraries and resources that can be deployed in a number of ways, and

essentially combines aspects of both feature-level and semantic-level deployments. It is grammar-based, and

places almost no assumptions on the type of application or physical interface with which it is used – and is

hence highly generic.

There are essentially two extremes of deployment methodology with the Clavius architecture that vary

in the degree of their concurrency. In the first, all processing occurs on a single host – including all tracking

and application logic, as shown in Figure 3.13. In the second model, processing threads are maximally spread

over multiple machines, as shown in Figure 3.14. In the latter case, each tracker would ideally be run on a

dedicated machine attached to the appropriate sensing equipment. Since the generalization and specification

processes are so decoupled, multiple instances of either function can be spread over an arbitrary number of

machines in this scheme – improving concurrency and hence execution time. The mutex-controlled critical

sections of Clavius that provide protection to the search space does not need to be modified as the number of

accessing methods scale up – hence each partial parse will only be accessed by one thread at a time.

38

3.9. DEPLOYMENT OVERVIEW

Regardless of the deployment scheme used, all communication between Clavius and the trackers, the

application, and the world database must occur over TCP/IP, even if exclusively on the local host. Further-

more, all machines must have their internal clocks synchronized to between the nearest 200µs and 10ms,

which is possible through the Network Time Protocol [87] – an externally run service. No additional network

security has yet been implemented.

Figure 3.13: Simple deployment layout, with one central processor for all tasks and data management.

Figure 3.14: Distributed deployment layout, where one central server allocates work orders and maintains
data integrity, one processor is assigned to each modality, and D ≥ 1 additional processors execute an
arbitrary number of Generalizer and Specifier threads on the shared space.

3.9.1. Software Engineering. The core framework was developed for the Linux platform with the

version 2.6 kernel, with further deployment information outlined in §5.1.5. Clavius has undergone four phases

39

3.9. DEPLOYMENT OVERVIEW

of development, roughly a) preliminary research (spring 2005), b) development (summer 2005), c) quality

assurance and bug-fixing (fall 2005), and d) experiment and analysis (winter 2006).

All code within the core of Clavius is written in C, with trackers and testbed applications written in C++

and JAVA. The final size of the code base is approximately 10900 lines of C code in the core of Clavius, with

approximately 1580 lines of original JAVA code for ancillary test applications, and an additional 1631 lines

of configuration, including grammars.

In Clavius, a procedural programming model was employed, although aspects of object oriented pro-

gramming were accomplished via opaque types, and modular structures. To save time and management

overhead, all memory allocation is performed at startup by the use of ‘free lists’.

Table 3.7 lists the software components that are required to build and run Clavius.

Component Description
MySQL≥ 4.1 World state. Spatial extensions used to compare world objects.
libxml≥ 2.6 Decoding of all network communication.
POSIX threads Required for multithreaded architecture.
GNU sockets Used for all communication by Clavius with components.

Network Time Protocol server Synchronization of parser and tracker timestamps.

Table 3.7: Necessary software components for compiling and running Clavius.

40

CHAPTER 4

Algorithmic and Linguistic Issues

This chapter delves deeper into some of the concepts and components introduced in Chapter 3, concentrating

on their algorithmic, mathematical, and linguistic consequences. First, the GS Algorithm is examined in

greater detail in §4.1, concentrating on implementation details. Then, §4.2 describes the general mechanism

of applying scores to partial parses, before the various approaches designed for that purpose are discussed in

§4.3 - §4.12. Finally, §4.13 discusses some consequences of the GS Algorithm.

4.1. The GS Algorithm

The GS Algorithm consists of multiple concurrent, asynchronous processes operating on the search

space. It was inspired initially by bottom-up multidimensional chart parsing [49], before issues of computa-

tional efficiency with this approach drove development towards a best-first dynamic programming strategy,

such as those employed in the Viterbi and CYK algorithms [52].

The GS Algorithm employs a high degree of parallelism. Multiple instances of the two chief processors

– Generalization and Specification – are used simultaneously to explore the search space bi-directionally, as

discussed in the following subsections.

4.1.1. Multimodal Bi-Directional Parsing. Clavius’ parsing strategy combines bottom-up and top-

down approaches, but differs from other approaches to bi-directional chart parsing [97][91] in several key

respects, introduced in the following subsections before being presented in practice in §4.1.2 and §4.1.3.

4.1.1.1. Asynchronous Collaborating Threads. A defining characteristic of the approach in Clavius

is that graphs Ψ are selected asynchronously by two concurrent processing threads, rather than serially in

a two-stage process. In this way, processes can be distributed across multiple machines, or dynamically

prioritized. Generally, this allows for a more dynamic process where no thread can dominate the other. In

typical bi-directional chart parsing the top-down component is only activated when the bottom-up component

has no more legal expansions [1].

4.1. THE GS ALGORITHM

4.1.1.2. Unordered Constituents. Clavius incorporates the unconvential approach of placing no manda-

tory ordering constraints on the set of constituents γi of any rule Γi, hence the rule Γabc : A −→ B C parses

the input “ C B”. Temporal ordering can easily be maintained, however, as explained in §4.10.2.3.

4.1.1.3. Partial Qualification. Whereas existing bi-directional chart parsers maintain fully-qualified

partial parses by incrementally adding adjacent input words to the agenda, Clavius can construct parses that

instantiate only a subset of their constituents, so Γabc also parses the input “B”, for example.

4.1.2. Generalization. A GENERALIZER thread monitors the best partial parse, Ψg , in Ξ[G], and

creates new parses Ψi for all grammar rules Γi having CATEGORY(Ψg) on the right-hand side. Effectively,

these new parses are instantiations of the relevant Γi, with one constituent unified to Ψg . This provides

the impetus towards sentence-level parses, as simplified in Algorithm 5 and exemplified in Figure 4.1. It

abstracts information in a given graph Ψg to ‘higher-level’ grammar categories, so if DEPTH(Ψi) = d, then

its generalization will have depth d + 1.

Naturally, if rule Γi has more than one constituent (c > 1) of type CAT(Ψg), then c new parses are

created, each with one of these being instantiated.

Algorithm 5: GENERALIZE

Data: Subspaces Ξ[G], and Ξ[SActive], and Grammar Γ
Result: New partial parses written to Ξ[G], chosen parses moved to Ξ[SActive]

while data remains in Ξ[G] do
σg := Best node

(
Ξ[G]

)
Ψg := Graph of (σg)
foreach rule Γi ∈ Γ s.t. Cat (Ψg) ∈ RHS (Γi) do

((nroot,ΦRHS) , nrhs) := Get RHSNode (Γi)
foreach j such that nrhs’s jth outgoing arc is δj = ((nrhs,Φconstituent) , nj), and Cat
(Ψg) = Cat (nj) do

Ψi :=
[
•
−→

RHS •
]

for k = 1..|| RHS (Γi)|| do each constituent of Γi

if k = j then desired constituent
add Ψg to kth slot of Ψi’s RHS

else
add null arc to kth slot of Ψi’s RHS

Ψi := Unify (Γi,Ψi)
if ∃Ψi then

σi := Encapsulate (Ψi)
Apply Score (Ψi) to σi

Insert σi into Ξ[G]

Move σg into Ξ[SActive]

42

4.1. THE GS ALGORITHM

Since the GENERALIZER is activated as soon as input is added to Ξ[G], the process is interactive [108],

and therefore incorporates the associated benefits of efficiency. This is contrasted with the all-paths bottom-up

strategy in GEMINI [32] that finds all admissible edges of the grammar.

Figure 4.1: Example of GENERALIZATION.

4.1.3. Specification. A SPECIFIER thread provides the impetus towards complete coverage of the

input, as simplified in Algorithm 6 (see Figure 4.2). It combines parses in its subspaces that have the same

top-level grammar expansion but different instantiated constituents. The resulting parse merges the semantics

of the two original graphs only if unification succeeds, providing a hard constraint against the combination

of incongruous information. The result, Ψ, of specification must be written to Ξ[G], otherwise Ψ could never

appear on the RHS of another partial parse. Consequences of this approach are discussed in §4.4 and §4.6.

Specification is necessarily commutative and will always provide more information than its constituent

graphs if it does not fail, unlike the ‘overlay’ method of SMARTKOM [3], which basically provides a subsump-

tion mechanism over background knowledge. In Clavius, the specified graph ΨU (Algorithm 6) subsumes

both of its component parses, ΨU v Ψs and ΨU v Ψj . According to the nature of subsumption, the resulting

graph will always contain more information than its components – and hence cover more of the user input in

this case.

4.1.4. Cognition. The COGNITION thread serves a dual role as the interface between Clavius and

both the application it controls, and the world state database that they share. It is primarily a monitoring

43

4.1. THE GS ALGORITHM

Algorithm 6: SPECIFY

Data: Subspaces Ξ[SActive], and Ξ[SInactive], Grammar Γ, and Beam width W
Result: New partial parses written to Ξ[G], chosen parses moved to Ξ[SInactive]

while data remains in Ξ[SActive] do
σs := Best node

(
Ξ[SActive]

)
σj := Best node

(
Ξ[SInactive]

)
Ψs := Graph of (σs)
Ψj := Graph of (σj)
w := 1
while ∃Ψj and w ≤W do

if ActiveConstituents (Ψs)∩ ActiveConstituents (Ψj) = ∅ then
ΨU := Unify (Ψs,Ψj)
if ∃ΨU then

σU := Encapsulate (ΨU)
Apply Score (ΨU) to σU

Insert σU into Ξ[G]

σj := predecessor of σj in Ξ[SInactive]

Ψj := Graph of (σj)
w := w + 1

Move σs into Ξ[SInactive]

Figure 4.2: Example of SPECIFICATION.

tool, augmented with networking code. The main functions it performs are summarized in the following

subsections, each of which is implemented by an interruptible thread.

4.1.4.1. Sentence Acceptance. The only task that the COGNITION thread must necessarily perform is

the acceptance of interpretations for user input, and the transmission of this interpretation to the application

that input controls.

44

4.1. THE GS ALGORITHM

Specifically, whenever a new sentence-level parse, ΨB is inserted into the Specifier’s inactive sub-

space, Ξ[SInactive] and it is the highest-scoring sentence-level parse, COGNITION is signalled and begins a

countdown of T µs, specified by system configuration, but typically between 2 or 3 seconds. If a new best

sentence-level parse during this time, the countdown is restarted.

When a countdown is started, the average score, sµ of the N next best sentence-level parses in Ξ[SInactive]

is taken, for configuration parameter N . At the end of the countdown T , ΨB has not been superseded, but

its N best predecessors might comprise new alternate hypotheses. The average of these scores, s′µ is taken

and compared with the original average sµ. If s′µ − sµ > θ for some parameter θ (the difference will never

be negative), this implies that the search process is improving its estimates at the ‘high end’, and that further

deliberation may yield a better ΨB . If this is the case, the countdown is again restarted until the scores of the

N best competitors no longer approach SCORE(ΨB) by the minimal amount.

Once this occurs, ΨB is been accepted, and COGNITION sends it in the XML format of Clavius gram-

mars (Appendix B), to the APPLICATION over the network.

4.1.4.2. Queries. The COGNITION module connects to and reads from the MySQL WORLD data-

base, as specified by its configuration. All scoring modules that make use of this information send properly

formatted SQL queries to COGNITION that in turn performs the database lookup, and sends the results to the

issuing module. The COGNITION module also prohibits modification of this database.

4.1.4.3. Dialogue Awareness. If implemented, special scoring modules that make use of the flow of

dialogue between the human user and their application can query COGNITION to indicate the dialogue act

most recently issued by the application, and the user (assuming the previous recognition was correct). This

is discussed in §4.9.

4.1.5. Memory Management. There are several reasons to perform memory management to trim the

size of the search space. First, there is the obvious fact that finite memory would be exhausted as new parses

accumulate in [ΞInactive], and that the resulting treaps would be excessively costly to traverse and manage.

Another basis for memory management is to simply aid the Generalization and Specification processes by

removing hypotheses from their consideration that are unlikely to be of consequence to them. Unlike the

former, the latter rationalization implies evaluation of the partial parses to determine candidacy for removal.

Despite these grounds for the automatic reduction of the search space, Clavius does not reset the search

spaces to their initial empty states once a sentence has been approved by the COGNITION module. Maintain-

ing such intermediate data once a hypothesis has been accepted is an uncommon practise, but is useful for

two reasons: to correct for possible mistakes, and to allow for unifications with anaphoric (§2.3.1) entities.

The memory management thread traverses all treaps in each subspace in a prefix depth-first search

(nodes are examined before its children). When it encounters search node σm, it may do one of the following:

45

4.2. PARSE SCORING AND DOMAIN-CENTRIC KNOWLEDGE

(i) if TIME START(σm) <CURRENT TIME−θT for some parameter θT , then σm and all nodes below

it (by virtue of the treap property) are too old for consideration, and the whole subtreap rooted at

σm is removed (trimmed - §3.6.2) in O(1).

(ii) if the difference between the score of the best graph in the treap and SCORE(GRAPH OF(σm))

is greater than some parameter θS , then σm’s score may be considered to low for consideration.

Therefore, the σm and the entire left subtreap of σm can be removed.

4.2. Parse Scoring and Domain-Centric Knowledge

The score of every non-lexical (tracker) partial parse Ψ, SCORE(Ψ), is a weighted linear combination

of |S| independent scoring modules, or KNOWLEDGE SOURCES:

Score(Ψ) =

|S|X
i=0

ωiκi(Ψ)

= ω1κ1(Ψ) + ω2κ2(Ψ) + ...ω|S|κ|S|(Ψ)

(4.1)

Each module presents a score function κi : Ψ → <[0..1] according to a unique criterion of multimodal

language, weighted by a vector
−→
Ω , where each component ωi is also on <[0..1]. Furthermore, enforcing

|S|∑
i=0

ωi = 1 ensures that 0 ≤ Score(Ψ) ≤ 1 for any Ψ, thus normalising the score space, and controlling the

partial ordering of parses.

The criteria of multimodal language explored in this model are outlined in §4.3 - §4.12. In Clavius, these

criteria generally represent a particular and precise aspect of multimodal communication, and individually

define a partial ordering over the set of all Ψ. Their co-representation in this form is meant to provide a

transparent and extensible mechanism in which new discoveries about MMI could be easily added to the

system, and one in which disparate approaches can be combined.

Apart from the obvious priority scheme existing between the modules via their weights, all κi are

considered to be independent from each other. This implies that the partial ordering of Ψ (according to

grammar Γ) by any κj does not effect the ordering by κk, k 6= j. Data localization and abstraction has ensured

that this is pragmatically the case within the current implementation of Clavius, however §5.3 describes how

criteria can nevertheless sometimes operate against one another, despite having similar goals by ‘preferring’

divergent parse classes.

Although the assumption of fixed linear independence between criteria is common in practise, it is not

necessarily theoretically optimal. For instance, researchers at IBM have demonstrated that weights automati-

cally assigned to audio and visual components of MMI based on audio-stream fidelity (the degree of voicing

in the audio) at run-time improves accuracy by 7% in ‘clean’ speech and by 26% in ‘noisy speech’(noise at

8.5dB SNR)[37] when compared to the audio-only WER. They also show another technique, more similar

46

4.3. TEMPORAL ALIGNMENT, κ1

to Clavius, where audio and visual streams are independently trained offline, and have their relative weights

jointly trained to minimize WER multimodally, achieving 5% relative improvement over N-best re-scoring.

This approach is similar to other weighting schemes for audio-visual fusion in speech recognition [17] [111],

with characteristic results.

Finally, values for the set
−→
Ω can currently be trained off-line using supervised MLE on acquired training

data annotated with desired parses, as explained in §5.1.7.1. This model does not readily allow the weights to

be trained or updated on-line during user interaction, although incremental automatic weight update mecha-

nisms could be incorporated in the future.

4.2.1. Hard Constraints. A side effect of only using κi : Ψ → <[0..1] is that it precludes scoring

modules from explicitly forbidding partial parses from consideration. If some graph Ψ represents some

impossible parse, and only a single κi recognizes this, returning a score of 0 still allows for a SCORE(Ψ) > 0

if wj , kappaj(Ψ) > 0 for at least one j 6= i.

Therefore, some scoring modules implement ‘hard constraints‘ that expressly forbid unification outright,

returning κi(Ψ) = −∞ in those exceptional cases, therefore SCORE(Ψ) = −∞, and Ψ is not added to the

search space, so all parses under consideration still have a score in <[0..1].

An example of hard constraints in practise is given in §4.4.

4.2.2. Module Parametrization. Scoring modules can accept externally-specified parameters that

control their behaviour. This is of primary importance, as it allows training each knowledge source according

to the specific domain of their criterion. These may include parameters to Gaussians, thresholds or HMM

transition weights, for example. When modules take externally-specified arguments, these are differentiated

by their superscript, such as κ
(σ)
i , and are introduced below where appropriate.

4.3. Temporal Alignment, κ1

A pronounced correlation in time exists between co-referring speech and gestural events, notably be-

tween demonstrative pronominals and deixis. The κ1 module, therefore, partially orders parses Ψ whose

constituents cover similar timespans in proximity and scope. A stochastic mechanism is used to measure the

similarity of timespans, where each timespan [TIME START(Ψ),TIME END(Ψ)] is modelled with a Gaussian

N(µ, σ2), as shown in Figure 4.3, such that

µ =
TIME START(Ψ) + TIME END(Ψ)

2

and

47

4.3. TEMPORAL ALIGNMENT, κ1

σ2 =

κ
(σdef)

1 if TIME START(Ψ) = TIME END(Ψ),

κ
(c)
1 (TIME END(Ψ)− TIME START(Ψ)) otherwise.

where the chief parameterization is specified by κ
(c)
1 . Timespans are modelled by Gaussians in this way

so that the similarity amongst both their lengths and locations can be simultaneously compared, while also

using a smooth nonlinear function to account for possible measurement error in timing.

Figure 4.3: Two gaussian curves NA

(
µA, σ2

A

)
and NB

(
µB , σ2

B

)
representing timespans for constituent

parses ΨA and ΨB , respectively.

The Kullback-Leibler distance, or Relative Entropy, is a frequently used information-theoretic distance

measure between two continuous probability densities on x ∈ X , p and q [67]:

(4.2) KL (p‖q) =

Z
p(x) log

p(x)

q(x)
dx

However, equation 4.2 is non-symmetric as κ1 requires. A symmetric version, for Gaussian distributions

NA

(
µA, σ2

A

)
and NB

(
µB , σ2

B

)
, whose derivation is given in §A.1.3, obeying the triangle inequality used in

κ1 is:

SKL (NA‖NB) = SKL (NB‖NA)

=
(σ2

1 − σ2
2)2 + ((µ1 − µ2)(σ

2
1 + σ2

2))2

4σ2
1σ2

2

(4.3)

Unlike the amount of overlap between NA and NB , SKL (NA‖NB) can be computed very quickly (in

O(1)). Since SKL : NA×NB → <[0..∞] and is a measure of distance, e−SKL(NA‖NB) is used as a measure

of similarity on <[0..1] where identical timespans have maximal score:

48

4.4. COMMON ANCESTRY CONSTRAINT, κ2

e−SKL(NA‖NA) = e−0

= 1

Therefore, κ1(Ψ) is the average similarity between all of Ψ’s existing constituents, RHS(Ψ):

(4.4) κ1(Ψ) =

X
ΨA, Ψb ∈ RHS(Ψ)

ΨA 6= ΨB

e−SKL(NA‖NB)

NUM PAIRS(RHS(Ψ))
,

where Ni

(
µi, σ

2
i

)
is parametrized by the timespans in Ψi, as described above. The result is that phrases

with co-referring cross-modal utterances are more highly scored. Further consequences are discussed in

§5.2.2.

4.4. Common Ancestry Constraint, κ2

A consequence of accepting n-best lexical hypotheses for each word is the risk that two competing

hypotheses for the same input might be unified into a single phrase during SPECIFICATION. That is, if ΨA

and ΨB represent alternatives for the same input, no partial parse Ψ should exist such that ΨA ≤ Ψ∧ΨB ≤ Ψ.

The κ2 module expressly prohibits such simultaneous substructures by providing a simple hard-constraint

(§4.2.1). Metadata encoded in each word-level graph Ψ by the trackers indicate a unique ID, k(Ψ) for each

n-best list. If ΨA and ΨB are lexical alternatives, then k(ΨA) = k(ΨB). When Ψ is generalized, creating

parse Ψ′, then k(Ψ′) = k(Ψ).

Given this metadata, the κ2 module can compute {k(ΨA)} ∩ {k(ΨB)}, and therefore

(4.5) κ2(Ψ) =

8>>>>><>>>>>:
1.0 if calling thread is GENERALIZER,

1.0 ∀ΨA 6= ΨB ∈ RHS(Ψ), {k(ΨA)} ∩ {k(ΨB)} = ∅,

−∞ otherwise.

.

When κ2(Ψ) = −infty, then even if ω2 = 0, Score(Ψ) = −∞ and is not added to the search space.

When graphs ΨX and ΨY are specified to form graph Ψ, this module encodes in the latter the metadata

k(Ψ) = {{k(ΨA)} ∪ {k(ΨB)}}, allowing for the comparison in Equation 4.5 to properly prohibit illegal

parses.

49

4.5. PROBABILISTIC DECLARATIVE GRAMMAR, κ3

4.5. Probabilistic Declarative Grammar, κ3

More common grammatical constructions are emphasized by transforming the multimodal grammar

into a probabilistic one according to the Probabilistic Context-Free Grammar (PCFG) formalism. Specif-

ically, given grammar rules Γi,j : N (j) ← ζ(i), for sequences of terminals and non terminals, ζ(i), each

is augmented with a probability, P (Γi,j) approximating its likelihood of being used in a parse, under the

constrain that:

(4.6) ∀i
X

j

P
“
N (j) ← ζ(i)

”
= 1

That is, the probabilities of all rules with N (j) on the LHS sum to 1. The value κ3(Ψ) is the product of

the probabilities of all rules used in a parse:

(4.7) κ3(Ψ) = P (Γ(Ψ)) ·
Y

Ψc∈RHS(Ψ)

κ3(Ψc)

, where Γ(Ψ) represents the top-level Γi expansion in Ψ. The κ3 module requires that Clavius XML

grammars be augmented with features Φ = PΓ with floating point values representing the associated proba-

bilities. Currently, these values are linear, although logarithmic representation may be used instead to avoid

numerical underrun errors.

Probabilities applied to individual features Φ of graphs have been used in exponential probabilistic

models [48], but not yet in Clavius.

4.5.1. Independence Assumptions. There are certain assumptions implicit in κ3’s probabilistic

grammar model. Namely, given the parse ΨA with constituent substructures Ψi and Ψj (Ψi 6= Ψj):

Place invariance: κ3(Ψi) is independent of Ψi occurring before or after Ψj .

Ancestor-free: κ3(Ψi) and κ3(Ψj) are independent of their use in the production of ΨA.

Context-free: The rule expanding ΨA from Ψi and Ψj expands to a unique nonterminal N (A) in

the grammar.

In this model, the probability of a sentence w1m = w1 w2 . . . wm, is P (w1m) =
∑
Ψ

κ3(Ψ) for all Ψ

that cover w1m, which might be grammatically ambiguous.

4.5.2. Training. Training the probabilities of a PCFG can be done in two ways, depending on the

data. For unannotated data, the Inside-Outside algorithm can be used to generate a new grammar Γ repre-

sentative of the input set [67]. This approach is not well-suited to Clavius, as it will typically not be able to

include semantic constraints, for instance. Therefore, all P (Γi,j) are trained according to maximum likeli-

hood estimation on annotated training data, as discussed in Chapter 5.

50

4.7. INFORMATION CONTENT, κ5

4.6. Input Coverage, κ4

For reasons discussed in §5.3, it is necessary to explicitly apply a preference for longer sentences – or

those that cover as much of the input as possible. This can be accomplished easily by a <[0..1] function of the

number of words in a given parse Ψ. Specifically,

(4.8) κ4(Ψ) =
2

1 + e−κ
(c)
4 NUMBEROFWORDSIN(Ψ)

− 1

The function NUMBEROFWORDSIN can be computed in O(1) given metadata similar to that used

in §4.4. The parameter κ
(c)
4 can be instantiated according to the expected length of sentences used in an

application, as shown in Figure 4.4, although this does not change the ordering of parses by κ4 – just the

range of its contribution to the overall Score. For instance, smaller values of κ
(c)
4 may be used for longer,

more conversational sentences, and larger κ
(c)
4 for shorter command-driven sentences.

Figure 4.4: Different curves of κ4 given varying parameters κ
(c)
4 .

This approach is similar to the effect of the reduce-reduce conflict resolution in GEMINI [32], in that

parses covering more input are preferable to shorter ones, and are examined first.

4.7. Information Content, κ5

Many problems in NLP can be cast as classification problems where semantic or statistical context pre-

dicts membership in linguistic classes. Important problems of relevance to Clavius, such as part-of-speech

tagging, PP-attachment, parsing and categorization have been approached via Information Theory as an ex-

tension to regular conditionally probabilistic models[89] [9]. The use of information theory is especially

applicable to Clavius, since the feature structures it uses are inherently amenable to semantic evaluation.

The κ5 scoring module uses a maximum joint entropy model to combine diverse pieces of contextual

evidence in estimating the probability of linguistic classes co-occurring within a given linguistic context. In

51

4.8. MULTIMODAL LANGUAGE MODEL, κ6

Clavius, this is useful in maximizing the coverage of the input early in the search process, in conjunction with

κ4 §4.6.

As previously discussed in §3.3.1, all sentence-level graphs must have a single arc with feature con-

tent encapsulating high-level semantic variables. The κ6 module associates probabilities P (ΦS → v) for

all (ΦS , v) pairs of features ΦS and values v in subgraphs rooted by content in a data set. For example,

P (action→ delete) reflects the proportion of ΦS = action features having the value v = delete in a data set.

In the same way, multivariate probabilities P (Φx → v,Φy → w) are also computed for pairs of co-occurring

feature-value pairs.

For X and Y being the sets of content feature-value pairs in ΨX and ΨY , respectively – the joint mutual

information between these parses is:

(4.9) I(ΨX ; ΨY) = −
X

(Φx→vx)∈X

X
(Φy→vy)∈Y

P (Φx → vx, Φy → vy) lg
P (Φx → vx)P (Φy → vy)

P (Φx → vx, Φy → vy)

where I(ΨX ; ΨY) = I(ΨY ; ΨX) [67]. This metric is useful only during the SPECIFICATION step,

where a shifted sigmoid (with parameter κ
(c)
6) similar to the one used in §4.6, gives:

(4.10) κ5(Ψ) =

8>><>>:
1.0 if calling thread is GENERALIZER,

2

1+e
−κ

(c)
5 I(ΨX ;ΨY)

− 1 for SPECIFIER called for graphs ΨX and ΨY

.

Since I(ΨX ; ΨY) is a measure of how many bits would be needed to encode the combination of ΨX

and ΨY , κ6 therefore promotes parses that maximize information across constituents.

Consequences are discussed in §5.3.

4.8. Multimodal Language Model, κ6

There has not been very much research extending language models to multiple dimensions1. In Clavius,

the κ6 module uses a bigram probability table according to the lexica associated with a given grammar. For

a grammar with M modes (m1,m2, . . . ,mM), where the ith mode has ||mi|| lexical entries, a ‘word’ ~w is

represented by an M -dimensional vector, where the jth component is either one of the lexical entries in mj ,

or λ – the ‘empty’ (null) string. The interpretation of ~w = 〈w1, w2, . . . , wM 〉 is that over a non-zero period

of time, each component wj co-occurs with the others.

For example, Figure 4.5 shows how κ6 breaks down a partial parse for the phrase “paint↘ orange” into

7 2-dimensional ‘word’ segments and Table 4.1 defines these segments.

1See §A.2.4 for more on language modelling.

52

4.9. DIALOGUE MODEL, κ7

Figure 4.5: Example 7-word breakdown of “paint↘ orange”, under κ6 representation.

~w1 ~w2 ~w3 ~w4 ~w5 ~w6 ~w7

〈λ, λ〉 〈paint, λ〉 〈paint,↘〉 〈λ,↘〉 〈λ, λ〉 〈orange, λ〉 〈λ, λ〉

Table 4.1: Two dimensional representation of multimodal segments in Figure 4.5

Given this new segmented representation of the random variables, the task of language modelling in

Clavius becomes trivial. For each instantiation of the interpreter, an N ×N matrix is constructed, where

(4.11) N =

MY
i=1

(||mi||+ 1)

Each row and column of this table represents an M -dimensional vector for a specific permutation of the

symbols in all modes. Cell (i, j) of this matrix is P (~wi| ~wj) – the probability that a multimodal ‘word’ (~wi)

immediately follows another (~wj). Initial training of these probabilities naturally follows standard techniques

of n-gram learning on finite data, although the increased complexity of additional dimensions may limit its

effect if data is scarce. In this case, additional adjustment can be accomplished by discriminative training

methods [96] [61], discussed in §A.2.4.

Therefore, given a partial parse Ψ covering (ordered) word sequence < s > ~w1 ~w2 . . . ~wn < /s > (for

sentence-start and -end tags < s > and < /s >, respectively,

(4.12) κ6(Ψ) = P (~w1| < s >) · P (< /s > | ~wn) ·
nX

i=2

P (~wi| ~wi−1)

This product can be converted to a sum of logarithms to avoid numerical underruns.

4.9. Dialogue Model, κ7

The κ7 scoring module in Clavius is tightly coupled to the grammar and is based on the assumption of

a command-driven dialogue between the human user and their application. The interaction engineer adds the

feature <DIALOGUE TAG> to all sentence-level rules in their grammar, with values indicating the type of

dialogue event they represent, such as those indicated in Table 4.2.

53

4.10. FUNCTIONAL CONSTRAINTS, κ8

Forward Types Example
assertion “I always fly first class”

action-directive “Book me a flight↘here”
info-request “Who lives in↘that castle?”

offer “I can meet you at 3”
commit “I’ll come to your party”

conventional-opening “Hello”
conventional-close “Goodbye”

Backward Types Example
accept “Yes, I can meet you at that time.”

signal-nonunderstanding “What did you say?”
acknowledgement “OK”

answer “Nobody lives there.”

Table 4.2: Subset of dialogue events types, from [45].

The application may respond and participate actively in the dialogue, producing its own dialogue events.

The κ7 module uses this information, and procures it from the application via the COGNITION thread (§4.1.4).

Given that the user’s previous utterance was recognized as being of type τi−2, and that the application’s

previous utterance was of type τi−1, then

(4.13) κ7(Ψ) =

8><>:0.0 if Ψ is not a sentence-level parse,

P (τi|τi−2 τi−1) for Ψ being of dialogue event of type τi

.

This is a state-based metric similar to Hidden Markov methods, where the conditional probability is

trainable via maximum likelihood. This module is, of course, designed for conversational agents, from which

appropriate data would be more readily procured.

4.10. Functional Constraints, κ8

The phrase “pour the glass into the water” has no meaning, nor is the multimodal interpretation “re-

move this↘ triangle” likely if the pointing gesture,↘, indicates a square, say, or empty space. Constraints

that prohibit or inhibit these types of phrases cannot always be expressed declaratively, and depend instead

on dynamic state or common-sense information.

Associating functional constraints with grammar rules has been done in HPSG and other unification

grammar formalisms [118]. Specifically, grammar rule Γi can be associated with set of functions Fi =

{fi,1 fi,2 . . . fi,n} by the interaction engineer, where each function in Fi evaluates to a score on <[0..1], and

are combined by a parenthesized structure of terms (Table 4.3). Each function can take parameters consisting

of nodes in the DAG that implements Γi (Figure 4.7).

Essentially, these functions are instantiations of a λ-calculus whose purpose is to help guide the search

process by evaluating any aspects of the world or dialogue that cannot be declared statically in the grammar.

This evaluation includes the application of hard constraints, common-sense knowledge (§4.10.2.4) and other

semantic comparison (§4.10.2.3). The functions are executed at run-time (“applicative expressions”) by the

κ8 module when scoring the graph Ψ that incorporates them.

54

4.10. FUNCTIONAL CONSTRAINTS, κ8

4.10.1. Instantiation and Definition. The configuration parameters to the κ8 module include the lo-

cation and name of the object code implementing the functions in the grammar (ex. \$CODEBASE/constraints.o).

This object code must be compiled with shared, position-independent and dynamically loadable flags.

Inclusion of the κ8 module necessitates that a ¡CONSTRAINTS¿ arc be present in the grammar for each

rule, and forbids execution if it is not present. If there are no constraint functions associated with Γi, then this

node will be empty. If constraint functions exist, they must be specified in the format provided in Table 4.3.

constraint←− term |∅ fcn←− fname (PARAMS)
term←− (term) term←− fcn
term←− term + term term←− term * term
PARAMS←− ∅| $p | ô | PARAMS , PARAMS

Table 4.3: The description language for constraint functions, including functions (fcn), terms, and parame-
terization (PARAMS).

The two operators, + and ∗ are soft-addition and multiplication respectively. Namely, + returns the

summation of the scores of its operands, or 1.0, if this sum exceeds 1.0, while ∗ returns the product of the

scores of its operands. In this way, the values of all terms are constrained to be on <[0..1], and the operators

become essentially soft logical operators, approximating ∨ and ∧ in Boolean arithmetic. Parentheses have

the normal semantics and execution precedence over the operators. κ8(Ψ), therefore, returns the <[0..1]

evaluation of its highest term upon execution of its functions.

Figure 4.6 provides an example of this in practise.

...

<params>
\$dx <dx> 100 </dx>
\$dy <dy> 42 </dy>

</params>
<constraints>

<![CDATA[
(f_1(\$x_1, \$y_1, \$dx, \$dy) + f_2(\$x_2, \$y_2))

*
f_3(\$x_3, ˆo_1)

]]>
</constraints>

...

Figure 4.6: Example use of functional constraints in the Clavius XML grammar format.

Incorporation of the functional constraints into the DAG implementing the grammar rules is exemplified

in Figure 4.7. Parameters to each function are always re-entrant nodes whose values are defined elsewhere in

the graph structure, hence these nodes may be roots of complex substructures.

55

4.10. FUNCTIONAL CONSTRAINTS, κ8

Figure 4.7: Example of graphical incorporation of the functional constraint OBJECTAT, with parameters
instantiated by re-entrant nodes.

4.10.2. Aspects of Functional Constraints. Technical details of κ8 are discussed in the following

subsections.

4.10.2.1. Delayed Execution. Functional parameters may only become available midway through the

search process. For example, a function f parametrized by the location of a deixis event, but associated with

a grammar rule Γi that has not yet been unified with a deixis parse cannot be executed until those parameters

become instantiated. In these cases a ‘default’ score κ
(λ)
8 can be returned by f until its parameters become

available. This approach is similar to that in Ait-Kaci and Nagr [2].

4.10.2.2. Unique Execution. Once a κ8 function is executed, its return value is encoded as the value

of its rooting node. This is a notable exception to regular DAG semantics (§2.1.1), but is useful in avoiding

repeated calculations and increasing efficiency, since the parameters of an executable function will not change

through unification. That is, if function f has been executed for graph Ψ, and Ψ is later generalized to ΨG,

or specified to ΨS , the new fs in ΨG and ΨS will not be re-evaluated.

4.10.2.3. Temporal Constituent Ordering. Certain linguistic entities must occur in a particular tempo-

ral order in order to be evaluated – such as the arguments of a transitive verb, for instance. Clavius, however,

does not require such temporal ordering. An important function of κ8 is to be able to enforce these sorts of

constraints through temporal constraint functions that compare the times of occurrence of parse constituents.

Table 4.4 shows relations between time intervals, and the functions that implement them, as inspired by

Nilsson [75]. For example, the basic relation

(∀x, y) [T MEETS(x, y) ≡ (T END(x) = T START(y)]

is easily defined. Since the time spanned by each parse is stored in a predefined location, all these

functions can be computed in O(1).

56

4.11. WORDNET ONTOLOGY, κ9

Relation Function, relative to X Function, relative to Y

T MEETS(X, Y) T MET BY(Y, X)

T BEFORE(X, Y) T AFTER(Y, X)

T OVERLAPS(X, Y) T OVERLAPPED BY(Y, X)

T BEGINS(X, Y) T BEGINNED BY(Y, X)

T ENDS(X, Y) T ENDED BY(Y, X)

T DURING(X, Y) T COTAINS(Y, X)

T EQUALS(X, Y) T EQUALS(Y, X)

Table 4.4: Relations between time intervals, and functions returning 1.0 in each case, and 0.0 otherwise.

4.10.2.4. Return values. Constraint functions in κ8 can also be used to modify parameters that are

passed ‘by reference’ within the graph and in this way can incorporate new semantic knowledge into parse

graphs. For example, in Figure 4.7, the ‘return’ value of 1 has been written to the indicated node by the

OBJECTAT function. In this particular case, the OBJECTAT function takes (ordered) parameters 485 and 363

as the (x, y) co-ordinates of a deixis event on a screen. It then queries the WORLD database (via COGNITION)

for the nearest object to those co-ordinates, writes the identification number of this object to the graph, and

returns a score relative to the distance between (x, y) = (485, 363) and the centroid of this object2.

Clavius also supports multiple hypotheses to be returned in this way from a κ8 constraint function.

For instance, if the (x, y) co-ordinates of a deixis falls between n objects, then an OBJECTSAT function

embedded in graph Ψ can force Clavius to replicate Ψ into graphs Ψ1 Ψ2 . . . Ψn, each with a unique object

id ‘returned’ OBJECTSAT, and each with a score reflecting that object’s distance to the deixis.

4.11. Wordnet Ontology, κ9

For more complex grammars, especially those that allow unconstrained conversational agents, lexical

relationships may improve the coverage of the grammar. Instead of specifying a particular lexicography as

being a required word in a grammar, the interaction engineer can specify a synset, or synonymy set of words.

2In practise, this is computed by a bivariate Gaussian centred at the indicated object.

57

4.13. CONSEQUENCES OF THE GS ALGORITHM

For instance, by implementing a grammar rule Γi with a word w replaced by {w} (encased in curly braces),

then any word synonymous with w will be acceptable to unify with Γi.

WORDNET [34] is a free lexical database and reference system relating English words – nouns, verbs,

adjectives and adverbs, in particular – into synonym sets by lexical concept. Moreover, WORDNET encodes

the semantic ‘distance’ between words representing how divergent they are in meaning on a granular scale

1..Di (for word wi). κ9 therefore is the average inverse distance between all words wi in a parse Ψ, and the

‘target’ words w′i in the grammar rules constructing it, scaled on the average scale size D′
i.

Since gestural lexica are generally fairly flat and sparse, these relations have little applicability outside of

the primary mode – speech – and even then will only generally become useful as the grammar size increases to

conversational systems, which has not yet been explored in Clavius. Due to its exclusion in later experiments,

however – this metric remains only partially implemented.

4.12. Prosodic Information, κ10

Prosodic information can be useful in predicting the presence of co-occurring events across modes

referring to the same multimodal phrase (§2.2.2). The tracker discussed in §3.5.5 is used to discover sudden,

sharp shifts in pitch via the F0 contour and produces ‘words’ wi that effectively simply notify the time of

these shifts.

The κ10 module promotes partial parses that have prosodic information, where this acoustic pitch shift

occurs in the proximity of lexical events in at least two different modes. The two nearest words to this

prosodic shift in time are used to compute κ10 if they come from different modes, according to a Gaussian

distance metric:

(4.14)

κ10(Ψ) =

8>>>>>><>>>>>>:

0.0 if there does not exist any prosodic tokens wi in Ψ,

0.0 if a prosodic token wi occurs only in a unimodal parse,

e

−(t1−tp)2

2(κ10(c))2 +e

−(t2−tp)2

2(κ10(c))2

κ10(c)
√

8π
for shift centred at time tp, disparate-mode events centred at times t1 and tp.

.

This module depends on assumptions based on the literature of such shifts indicating correlation of

multimodal events[57], but in a strictly unimodal utterance κ10 will have no effect on the ordering of partial

parses.

4.13. Consequences of the GS Algorithm

Certain consequences of Clavius, including the assumptions lifted (§4.1.1) and constraint methodologies

applied, have unexpected solutions, as described in the following subsections.

58

4.13. CONSEQUENCES OF THE GS ALGORITHM

4.13.1. Infinite recursion. In Clavius, infinite recursion manifests itself as expansions in the gram-

mar where the GENERALIZER selects Ψ such that CAT(Ψ) = A, and a rule ΓA : A → αAβ, for some

possibly null sequences of non terminals α and β. The new graph produced is in turn generalizable by the

same rule, ΓA – and this process recurses infinitely, producing the infinite graph Ψ′ : A
∗→ αΨβ.

This is potentially a serious drawback, since methods usually used to combat this sort of problem – such

as transforming immediate left-recursive grammars into purely right-recursive ones [69], or into terminal-first

Greibach normal form (GNF) [44] have no effect since Clavius makes no distinction between the order of its

constituents 3. In fact, unification grammars for speech recognition have had only mixed success in dealing

with this sort of problem [31], and infinite recursion continues to be a serious problem for some of the most

modern parsers – such as those using the JSpeech Grammar Format (JSGF) [113].

In Clavius this problem is kept under control to some extent by the use of the probabilistic grammar

constraint κ3 (§4.5). For any set of grammar rules G = {ΓA} for A = 1..|G| such that ∀A, 0 < P (ΓA) < 1,

any large arithmetic product will tend to 0. In theory, one would expect the scorer would eventually ‘throw

away’ any Ψ encapsulating a large number of grammar rules, say |G| >. While it is true that more densely

packed parses result from κ3 – it does not necessarily provide a hard constraint against infinite recursion.

Namely, even if κ3(Ψ) goes to 0, the parse is not thrown out. The probabilistic grammar constraint, then,

may be changed to return −∞ for very low probabilities.

4.13.2. Complete Coverage. Any legitimate parsing algorithm must expand every possible gram-

matical construction, given any legal grammar and any legal set of input. This is obvious, but also vital so the

proof of this capacity in GS Algorithm is relevant. That is,

THEOREM 4.13.1. Given an empty search space, and an infinite timeout (T = ∞) on the search

process (the search is never interrupted by COGNITION), the GS Algorithm will produce every possible partial

hypothesis spanning input (tracker) graphs I = {Ψ1,Ψ2, . . . Ψn}, given grammar Γ = {Γ1,Γ2, . . . Γg}.

PROOF. If there are undiscoverable parses in the GS Algorithm, given Γ and I , then there must be

at least one ‘lowest’ undiscoverable parse, Ψx such that each of its constituent partial parses (call this set

C) is either been discoverable by the GS Algorithm, or is in I . Each of the parses in C are subject to

Generalization, since all graphs begin their ‘lifespan’ in its subspace. For each Ψi ∈ C, a generalization

unifying Ψi to the RHS of Ψx’s top-level grammar rule, Γx will be created since Ψi’s top-level grammar

rule Γi must be on the RHS of Γx. As these generalizations accumulate in Ξ[SInactive], a process of |C|

specifications will incrementally unify these generalizaions at the root. The resulting parse consists of Γx as

the top-level rule, with each of C unified to the RHS. This is exactly the parse Ψx. Since Ψx is discoverable

3These approaches also tend to drastically expand the size of the grammar – hindering performance

59

4.13. CONSEQUENCES OF THE GS ALGORITHM

by the GS Algorithm, there is no ‘lowest’ undiscoverable parse, hence no undiscoverable parse given Γ and

I . �

Naturally, a benefit of the GS Algorithm’s best-first strategy is that it can quickly expand its ideal case,

and not consider extraneous parses.

4.13.3. Unique Expansion. Duplicate nodes are search nodes σi and σj in the search space such that

σi 6= σj , but GRAPHOF(σi) = Ψi = Ψj = GRAPHOF(σj). The presense of duplicate nodes would result in

the slowdown of the GS Algorithm due to redundant processing of Ψi and Ψj in the best case, and complete

deadlock in the worst, if the number of duplicate nodes becomes prohibitive.

The condition that ACTIVECONSTITUENTS(Ψi)∩ ACTIVECONSTITUENTS(Ψj) = ∅was put into place

to avoid a vulnerability in the GS Algorithm. Without this condition for specification, a single graph could

be created via duplicate paths, such as:

(i) (a) Given Ψ1 : (NP (DT) (NN house)) and Ψ2 : (NP (DT the) (NN)).

(b) Generalize Ψ1, giving Ψ3 : (S (V P) (NP (DT) (NN house))).

(c) Generalize Ψ2, giving Ψ4 : (S (V P) (NP (DT the) (NN))).

(d) Specify Ψ3 and Ψ4, giving Ψ5 : (S (V P) (NP (DT the) (NN house))).

(ii) (a) Given Ψ1 : (NP (DT) (NN house)) and Ψ2 : (NP (DT the) (NN)).

(b) Specify Ψ1 and Ψ2, giving Ψ3 : (NP (DT the) (NN house)) .

(c) Generalize Ψ3, giving Ψ4 : (S (V P) (NP (DT the) (NN house))).

Both processes 1 and 2 can occur in a single run of the GS Algorithm, giving identical graphs Ψ5 in the

first, and Ψ4 in the second. The condition ACTIVECONSTITUENTS(Ψi)∩ ACTIVECONSTITUENTS(Ψj) = ∅

prohibits step d in process 1 above from occurring, because graphs Ψ3 and Ψ4 have the same active con-

stituent, NP .

This condition does not change the results of complete coverage (§4.13.2).

60

CHAPTER 5

Experiments and Analysis

A suite of experiments has been designed, implemented, and conducted in order to evaluate the Clavius

framework, and to make predictions on future courses of action.

This chapter begins by describing the experimental process in terms of the data collection, training and

testing software, and the methodology employed (§5.1). It then presents the empirical results according to

various criteria (§5.2) and the effects of training before concluding with a discussion of the implied conse-

quences to linguistics and HCI (§5.3).

5.1. Experimental Setup

Over the course of approximately one week, multimodal data was collected through the use of a simple

instantiated deployment of the Clavius architecture in order to develop an empirical and qualitative analysis

of the system, and of multimodal language. The following subsections describe the collection process.

5.1.1. Task Description. A graphical software interface called REPLICATOR, shown in Figure 5.1,

was developed and served as the portal through which multimodal data was collected. Once some minimal

user information is recorded (1), the user is shown two panes: the Target pane (on the left (5)) and the Current

pane (on the right (6)) where both panes are populated by a collection of randomly positioned coloured shapes.

The user’s task is to use spoken commands and mouse gestures in the Current pane in order to replicate the

arrangement of shapes in the Target pane (see §3.1 for a similar interaction schema).

Table 5.1 summarizes the actions available to the user in REPLICATOR, with the associated effects. User

utterances only affect the Current pane – the Target pane does not change during the performance of a task.

The language is further described in §5.1.3.

Objects come in three shapes: square, circle and triangle, and six colours: red, orange, yellow, green,

blue, and violet.

5.1. EXPERIMENTAL SETUP

Figure 5.1: Example state of REPLICATOR tool showing 1) user particulars, 2) instructions, 3) system status,
4) the control panel, 5) the target pane, and 6) the current pane.

Action Effect Parameters Example phrase

Move relocates one or more objects OBJ, LOC “put↘ this↘ there”

Colour changes the colour of one or more objects OBJ, COL “colour these↘↘↘ squares red”

Transform changes the shape of one or more objects OBJ, SHAPE “turn the circles into triangles”

Delete removes one or more objects OBJ “delete all objects”

Create places a new object at a specified target LOC, COL+SHAPE (optional) “put a green circle here↘”

Table 5.1: Action types available in REPLICATOR.

There is no software mechanism that determines when the configuration in both panes are satisfactorily

identical and the task, therefore, complete. Rather, the user decides when to move on to the next task by

clicking the NEXT button on the control panel (4), at which point both panes are filled with new random

configurations of objects. This allows for more meaningful data to be collected – as the purpose of the tool is

not to measure the users’ competence in this application domain.

The REPLICATOR data collection tool was implemented in Java 1.5.

5.1.2. Trackers and Artificial Noise. In order to keep the data from being corrupted by potential

problems in video tracking (§3.5.6), a probabilistic mouse-based approximator was used to imitate a more

62

5.1. EXPERIMENTAL SETUP

ideal video-based arm tracker. The mouse tracker of §3.5.8 was therefore modified to produce ‘pepper’-noise

in addition to its regular feedback. Specifically:

• upon a mouse click, graphs Ψi : i = 1...n are produced for n selected uniform randomly on

1 ≤ n ≤ 4. All Ψi are given the timestamp of the mouse click. Ψ1
−→
x and Ψ1

−→
y are instan-

tiated according to the precise (x, y) co-ordinates of the mouse click and is hence the ‘correct’

hypothesis for the user’s activity. For Ψ2 . . .Ψn, these variables are instantiated according to

an un-correlated (bivariate) Gaussian distribution centred at the mouse click (x, y). Hypotheses

Ψ2 . . .Ψn simulate possible errant hypotheses of an imperfect tracker.

• at random intervals, item 1 is executed regardless of user activity, except the current (x, y) co-

ordinates are used to instantiate the variables, and n is only selected randomly on 1 ≤ n ≤ 3.

This is done to simulate false positives in video tracking, and the value of n is arbitrary.

In this way ‘errors’ in precision (1) and robustness (2) in tracking could be simulated while ensuring

that recall is 100% (all actual clicks are correctly encoded). Mouse clicks are represented by the grammar

type DEIXIS, and a delimited area drawn with the mouse by the type AREA, as discussed in §3.5.8, and

shown in Appendix B. The latter type of user action is not augmented with artificial noise.

5.1.3. Language and Configuration. The mouse and speech trackers were integrated directly into

REPLICATOR, but communicated with Clavius on different threads. The speech tracker was a modified

CMU Sphinx Engine with the Wall Street Journal-trained acoustic model (512 FFT points, 16K sample rate,

frequency range 130-6800Hz, with 40 Mel filters).

The language in REPLICATOR involves five types of utterances, for each of the command types in Table

5.1. Each of these differ chiefly from each other in terms of the verb structure used. Important phrases in the

grammar are the OBJECT REFERENCE and LOCATION non-terminals that include unimodal and multimodal

references to groups of objects and areas, respectively. Appendix B presents the important rules of the

grammar used in these experiments.

Memory Management was deactivated for these experiments, and the minimum score necessary to add

graphs to the search space was set very low (0.05).

5.1.4. Recording Mechanism and Data Transcription. All mouse tracker activity was recorded to

specially formatted log files, specified by time, location, and status of the mouse. All speech activity was

recorded to 44.1 kHz wave files by the Sphinx engine from a head-mounted microphone worn by the partici-

pants. During the data collection process, Sphinx was used to both record these files, and perform real-time

recognition. Since it frequently made utterance-level segmentation errors, all wave files had to be concate-

nated and re-segmented “by ear” using WaveSurfer [107]. This process is akin to sentence-demarcation in

63

5.1. EXPERIMENTAL SETUP

the construction of text corpora and was done here so that utterances could be treated atomically in order to

measure the sentence-level accuracy of the system.

A directory was created for each user, in which their wave files and log files were recorded, contributing

to data set ∆ . A data index/transcription file was then created such that each datum ∆i is listed by the ID of

the user, a reference to a *wav file (∆i . Λ), indices of gesture events tied to the multimodal utterance and a

transcription of the speech. Wavesurfer was also used to segment wave files into a series of time-demarcated

words (∆i . τ), and to transcribe them into their correct interpretations.

5.1.5. Test Platform. All software was run on an AMD Sempron 3000+ laptop at 1.8 GHz with 768

MB RAM, 128 MB of which is shared with an ATI Radeon XPRESS 200M video card with 2D and 3D video

acceleration. The operating system used was SUSE Linux 10.0 with the 2.6.13 kernel. The ALSA 1 driver

was version 1.0.9b for microphone input, and the video driver was the standard Xorg ‘radeon’ driver that

ships with the 6.8.2 version of X11. The indicated ALSA drivers required an abnormal configuration in order

to accept input on the indicated platform.

5.1.6. Participants. Ten human subjects were recruited for the purposes of data collection. Of these,

3 were female, and 8 were between the ages of 21 and 28 (the remaining 2 were in their mid-50s). All users

use computers daily as part of their work or studies and were therefore familiar with normal WIMP interfaces.

Each user was paid $4CDN for 15 minutes of their time, although some volunteered more data.

Each user was provided with a preparatory form to read before commencing that described the physical

setup of the environment. It was emphasized that that there was no “desirable” behaviour on their part in their

interaction with the system, nor were example phrases suggested – in order to elicit more spontaneous phrase

types.

5.1.7. Analysis Methodology. The primary source of empirical analysis derives from observing

changes in accuracy rates as each scoring module κi is reparametrized individually, as well as through the

joint weighting of all ωi together. Recall that a particular set ωi → < mappings for each ωi associated with a

module is represented by the vector
−→
Ω .

Four scoring modules were not included in basic system analysis. Specifically, κ6 (multimodal language

model) and κ9 (wordnet ontology) were omitted because to really take advantage of either of these modules

would require much more complex vocabularies on the order of several thousand entries. κ7 (dialogue mod-

elling) was also omitted because a) the interaction schema is strictly unidirectional command-driven and b)

there is no justification to assume that any command is a function of the previous n commands, since the tasks

described in 5.1.1 are essentially uniform random. Finally, κ10 (prosody) is not part of these experiments,

due to discrepancies in the autocorrelation method on which it depends.

1Advanced Linux Sound Architecture

64

5.1. EXPERIMENTAL SETUP

The methodology used operates under the assumption that the effects of each scoring module are inde-

pendent of all others used, therefore the parameters of each can be trained in isolation. The overall process is

decomposed according to the three steps described in the following three subsections.

5.1.7.1. 1st joint reparametrization of weights. Initially, parameters κ
(ρ)
i are hand-tuned for each

scoring module. Hand-tuned parameters in this context can be considered pseudo-random, since they were

not derived from any theoretical or data-driven motivation. Five initial distributions of scoring weights
−→
Ω i are

also determined in this way, as shown in Table 5.2. Although in all cases ω2 = 0.0, κ2 (ancestry constraint)

is still active, providing a ‘hard constraint’, as discussed previously. Measures of accuracy and performance

(see §A.2.5) are recorded using each of these
−→
Ω i.

Config ω1 ω
(∗)
2 ω3 ω4 ω5 ω8−→

Ω 1 0.4 0.0 0.3 0.1 0.1 0.1
−→
Ω 2 0.2 0.0 0.1 0.3 0.2 0.2
−→
Ω 3 0.1 0.0 0.3 0.3 0.15 0.15
−→
Ω 4 0.2 0.0 0.2 0.2 0.1 0.3
−→
Ω 5 0.1 0.0 0.1 0.1 0.3 0.4

Table 5.2: Five weight configurations for ωi in the scoring function.

The first phase of training involves the joint reparametrization of
−→
Ω i for i = 1..5 using a simple single-

layer feed-forward neural network as shown in Figure 5.2. The weights in this network are initialized to
−→
Ω i

and are adjusted according to standard error backpropagation (§A.1.2). For each datum ∆i in the training

set, the wave file and gesture events are played to the speech and mouse trackers via ‘control’ scripts, and the

resulting interpretation Ψ produced by Clavius is compared against the human transcription. If the interpre-

tation is correct, the desired output of the training network is 1.0, otherwise it is 0.0, with inputs set to the

values of κi(Ψ).

Figure 5.2: Two-layer neural network used in reparameterization of scoring weights.

Accuracy and performance are again recorded at the end of this process, given
−→
Ω ′

i. In all cases, analysis

was performed on a random selection of 230 test samples, with the remaining 2074 being used for training.

65

5.2. EMPIRICAL ANALYSIS

Training occurs in stages where each element of the training data set is presented to the network. Training

is halted when 5 subsequent stages have not improved the training set accuracy by at least 1% absolutely.

Overfitting was not taken into account.

5.1.7.2. Individual training of each module, κi. Once
−→
Ω has been optimized for the pseudo-random

module parameters κ
(ρ)
i , these are then individually tuned according to appropriate techniques, discussed in

detail where appropriate in §5.2.2.

5.1.7.3. 2nd joint reparameterization of weights. The second round of weight reparametrization es-

sentially repeats §5.1.7.1, except individual module parameters have been adjusted according to §5.1.7.2, and

the weights between them,
−→
Ω remain unchanged since their optimization in §5.1.7.1.

5.2. Empirical Analysis

In total, the 2.5 hours of recorded speech and gesture data was partitioned into 2304 multimodal utter-

ances. This averages to only 3.91 seconds per utterance, which is partially explained by the simplicity of the

phrases used as discussed in §5.3.2. Table 5.3 shows a breakdown of all utterances (training and test sets) by

the type of action. A small number of utterances conjoined action types, as discussed in §5.3.4. These pro-

portions are more indicative of the general strategy used with REPLICATOR than generally applicable, as they

indicate only that within the test application users tended to delete objects and create new ones, rather than

transforming those that already were present in the ‘current’ canvas. This phenomena is partially discussed

in §5.3.2.

action total occurrences test set occurrences
Move 493 (21.4%) 53 (23%)
Colour 458 (19.9%) 51 (22.2%)

Transform 82 (3.6%) 9 (3.9%)
Delete 674 (29.3%) 66 (28.7%)
Create 529 (23.0%) 53 (23.0%)

Move + Colour 45 (2.0%) n/a
Create + Colour 23 (1.0%) n/a

Table 5.3: Partition of utterances by action type, where conjunctions combined different action types 3% of
the time (these were included separately in the test set).

Table 5.4 shows a breakdown of how multimodality was used, and in what proportion, according to

grammar rule. Certain actions necessitate certain grammar types to be used (movement requires an OB-

JECT REFERENCE, for instance), but many utterances made reference to several objects, for example. Most

unimodal phrases were speech-only, although some were mouse-only (ex. “↘↘” recognized as a move).

Clearly, references to location are almost invariably multimodal, although references to objects were

unimodal roughly 17.9% of the time. This may indicate that users find vocalizing object properties easier than

66

5.2. EMPIRICAL ANALYSIS

grammar type multimodal expression occurrences (% within group/% total)

OBJECT REFERENCE

unimodal (ex. “the red square”) 343 (17.9% /11.3%)
speech+click (ex. “↘this square”) 1474 (76.8% /48.6%)

speech+multiclicks (ex. “these↘↘↘”) 102 (5.3% /3.4%)

LOCATION
unimodal (ex. “↘”) 18 (1.6% /0.6%)

speech+click (ex. “here↘”) 1093 (98.4% /36.1%)

Table 5.4: Usage of multimodality, according to grammar rule.

specifying precise location. This is contrasted with other work that suggests that users interact multimodally

with object references only 50% of the time [102]. The preponderance of multimodal rather than unimodal

reference to location in the data is a confirmation that humans make frequent use of gestures to complement

physical descriptions in space, as introduced in Chapter 1.

5.2.1. First Round Reparameterization. The initial accuracy of randomly initialized configurations

of Clavius are compared against a ‘baseline’ performance of an unoptimized Sphinx system (using a unimodal

grammar projection) in Figure 5.3. In all cases, accuracy rate is the proportion of sentences whose semantics

are correctly interpreted. Although this is not a word-based measurement (word insertions and deletions are

not counted, for example), it turns out that determiners are the only words whose presense or absense are

irrelevant to the semantic interpretation of a sentence.

Ignoring function words such as determiners does not affect the semantic meaning of the utterances in

these experiments.

Phrases that conjoined action types A and B for A 6= B were counted twice.

Figure 5.3: Initial accuracy rates for unimodal Sphinx versus random initial weight configurations, parti-
tioned by action type.

67

5.2. EMPIRICAL ANALYSIS

The overall accuracy rate of unimodal Sphinx was 71%, which was 22% better absolutely than the

worst initial Clavius configuration (
−→
Ω 1) and just 6% worse absolutely than the best (

−→
Ω 3). The best rec-

ognized action type was delete with an average recognition rate of 74%, and create the worst at 60%, on

average. These results are summarized in Table 5.5. Actions invoking colour and shape fared worst, with

over 65% of their errors being replacement errors 2 on the colour adjective.

On the training set during weight updates,
−→
Ω 1 converged to

−→
Ω ′

1 in 12 iterations (+20%),
−→
Ω 2 to

−→
Ω ′

2

in 10 iterations (+17%),
−→
Ω 3 to

−→
Ω ′

3 in 9 iterations (+13%),
−→
Ω 4 to

−→
Ω ′

4 in 11 iterations (+16%), and
−→
Ω 5 to

−→
Ω ′

5 in 12 iterations (+19%), as shown in Figure 5.4. After reparametrization, each of the 5 new weight sets

were presented with test data. On this set,
−→
Ω ′

1 improved on
−→
Ω 1 by 7.8% RER (§A.2.5),

−→
Ω ′

2 improved on
−→
Ω 2 by 11.4% RER,

−→
Ω ′

4 improved on
−→
Ω 4 by 14.6% RER, and

−→
Ω ′

5 improved on
−→
Ω 5 by 15.6% RER, but

−→
Ω ′

3

performed worse than the initial estimate by -4.3% RER.

Figure 5.4: Motion of accuracy on training data, for each set of weights, over iterations of the training data
set ∆.

These results show that, in general, training results in more accurate recognition rates on both the train-

ing and test sets, although training convergence appears slightly shallow and quick, and relative error reduc-

tion is lower than expected, given the low initial recognition rates.

5.2.2. Accuracy Maximization on κ1, κ3,κ4 and κ5. Of the trainable scoring modules used, tem-

poral alignment (κ1), input coverage (κ4) and entropy (κ5) are specified by parameters κ
(c)
i controlling their

2See ‘Precision’ in §A.2.5.

68

5.2. EMPIRICAL ANALYSIS

behaviour. Each of these is updated sequentially and in isolation from the others according to an iterative

steepest-ascent (hill-climbing) metric of the overall accuracy rate on the training data, as a function of the

κ
(c)
i in question.

Specifically, when updating κ
(c)
i , all values of κ

(c)
j for j 6= i are kept constant. The accuracy rate with

κ
(c)
i is compared against accuracy rates for κ

(c)
i + ε and κ

(c)
i − ε for some small ε. If the accuracy of either of

these neighbours is higher than that of κ
(c)
i , then κ

(c)
i is set to its best performing neighbour and the process

is repeated. If κ
(c)
i results in a better accuracy than its neighbours, then ε ← ε

2 . This process is repeated as

long as ε > 0.01, which is a constant threshold across all modules.

Naturally, this process leads to local maxima, which may be prevalent in the accuracy rate functions

under consideration. Final parametrizations were found to be κ
(c)
1 = 2.17, κ

(c)
4 = 0.32, and κ

(c)
5 = 0.8. Note

that κ
(c)
4 = 0.32 appears to favour discrimination between somewhat longer sentences, falling between the

two lower curves of Figure 4.4. The Gaussians resultant from training temporal alignment were also much

wider than expected (κ(c)
1 acts as a multiplier on standard deviation).

5.2.2.1. Maximum Likelihood on Grammar Rules (κ3). The probabilistic grammar constraint (κ3)

is parametrized by the probabilities of each rule in a given grammar. Specifically, to estimate P (Γi,j) for

grammar rule Γi,j : N (j) ← ζ(i), one counts the number of occurrences of Γi,j in the training data, and

divide by the number of occurrences of N (j). This can be accomplished in a single step and is numerically

stable with regards to the data.

Within the context of Clavius, κ3 promotes the processing of new input words and shallower parse trees.

Effects of these reparametrizations on the overall accuracy are summarized in Figure 5.5.

5.2.3. Second Round Reparametrization. Overall accuracy increased again after a second round

of parametrizations on individually trained modules, as expected. A summary of the accuracy rates for each
−→
Ω i set over the four stages of training is provided in Table 5.5, along with a comparison of the best and worst

relative error reductions according to each task type as measured against performance of the baseline Sphinx

system. Weighted average refers to the total performance of the indicated configuration and not the arithmetic

mean of the 5 task scores.

Table 5.6 shows the final weight configurations for each ωi in the scoring function after the second

reparametrization. These weights did not change as drastically as one might expect and they certainly did not

converge towards an apparent stable point. A possible explanation for this behaviour is put forward in §5.3.

The change in relative error reduction provides insight into the effects of learning on Clavius, where

error reduction is always measured relative to a single baseline, the performance of Sphinx. Figure 5.5 shows

this change, and emphasizes that the primary source of error reduction appears to come from reparametrizing

weights
−→
Ω i, rather than from individual training of modules. In fact, error levels for the five sets increased

69

5.3. INVESTIGATIVE ANALYSIS

System Move Colour Transform Delete Create Weighted Average
Sphinx 0.85 0.61 0.67 0.83 0.72 0.76

Initial

−→
Ω 1 0.64 0.55 0.56 0.61 0.40 0.56
−→
Ω 2 0.72 0.57 0.67 0.67 0.53 0.63
−→
Ω 3 0.89 0.84 0.78 0.92 0.79 0.87
−→
Ω 4 0.72 0.67 0.56 0.74 0.55 0.67
−→
Ω 5 0.58 0.59 0.56 0.68 0.62 0.63

Best RER 0.25 0.60 0.33 0.55 0.27 n/a
Worst RER -1.75 -0.15 -0.33 -1.36 -1.13 n/a

First Reparametrization

−→
Ω ′

1 0.70 0.61 0.56 0.68 0.42 0.61
−→
Ω ′

2 0.79 0.65 0.67 0.71 0.57 0.69
−→
Ω ′

3 0.89 0.82 0.78 0.80 0.89 0.85
−→
Ω ′

4 0.77 0.71 0.67 0.82 0.62 0.74
−→
Ω ′

5 0.64 0.69 0.67 0.74 0.70 0.70
Best RER 0.25 0.55 0.33 -0.09 0.6 n/a

Worst RER -1.38 0.00 -0.33 -0.91 -1.07 n/a

Tuned κ

−→
Ω ′

1 0.68 0.61 0.67 0.68 0.43 0.61
−→
Ω ′

2 0.77 0.63 0.67 0.71 0.53 0.67
−→
Ω ′

3 0.89 0.84 0.78 0.80 0.81 0.84
−→
Ω ′

4 0.75 0.71 0.67 0.77 0.64 0.73
−→
Ω ′

5 0.68 0.67 0.67 0.73 0.66 0.69
Best RER 0.25 0.6 0.33 -0.18 0.33 n/a

Worst RER -1.13 0.0 0.0 -0.91 -1.0 n/a

Second Reparametrization

−→
Ω ′′

1 0.70 0.65 0.67 0.70 0.47 0.64
−→
Ω ′′

2 0.79 0.69 0.67 0.76 0.60 0.72
−→
Ω ′′

3 0.87 0.84 0.78 0.83 0.89 0.86
−→
Ω ′′

4 0.79 0.75 0.67 0.82 0.62 0.75
−→
Ω ′′

5 0.66 0.71 0.67 0.74 0.68 0.70
Best RER 0.13 0.6 0.33 0.00 0.60 n/a

Worst RER -1.25 0.1 0.00 -0.82 -0.87 n/a

Table 5.5: Accuracy rates for Sphinx and Clavius across the four stages of training of the latter, according to
various parametrizations, partitioned according to task.

during individual training, although this may also be an issue of local maxima on non-smooth accuracy rate

functions. This might imply that scoring modules are more co-dependent than initially theorized.

5.3. Investigative Analysis

The degree to which the joint reparametrization of scoring weights appears to be preferable to individual

training of scoring modules (§5.2.3) as a means of improving performance is surprising, and highlights a

possibly problematic phenomenon in Clavius, namely, correlation phenomena between scoring modules κi.

These modules are not necessarily independent, due to common conditioning variables in the parses they

co-evaluate.

70

5.3. INVESTIGATIVE ANALYSIS

Config ω1 ω
(∗)
2 ω3 ω4 ω5 ω8−→

Ω ′′
1 0.31 0.0 0.27 0.16 0.20 0.06
−→
Ω ′′

2 0.19 0.0 0.16 0.27 0.17 0.21
−→
Ω ′′

3 0.10 0.0 0.30 0.30 0.18 0.12
−→
Ω ′′

4 0.21 0.0 0.17 0.22 0.14 0.26
−→
Ω ′′

5 0.16 0.0 0.11 0.12 0.26 0.35

Table 5.6: Five final weight configurations for ωi after reparametrizations.

Figure 5.5: Change in Relative Error Reduction for the configurations

For example, the probabilistic grammar criterion (κ3) prefers parses that minimize the number of gram-

mar rules applied, since each additional rule multiplicatively decreases the score. Contrariwise, the coverage

criterion (κ4) prefers parses that maximize the number of input words used. This particular dichotomy is the

result of partial qualification, but is indicative of larger issues related to the computation of scores. Likewise,

the informativeness criterion (κ5) is theoretically opposed to temporal proximity (κ1) since it promotes the

combination of disparate rather than shared information. This is partially played out in the data, as Figure 5.6

demonstrates an apparent correlation between accuracy and (max(ω3,ω4)−min(ω3,ω4))+((max(ω1,ω5)−min(ω1,ω5))
2

which is the average difference between weights of these theoretically ‘competing’ modules, although this

behaviour might also be the result of other factors.

The sections that follow discuss other aspects uncovered during data analysis.

71

5.3. INVESTIGATIVE ANALYSIS

Figure 5.6: Relationship between accuracy and the average difference between weights of ‘competing’ mod-
ules (ω3, ω4), and (ω1, ω5).

5.3.1. Work Expenditure. To test whether the best-first approach compensates for Clavius’ looser

constraints (§4.1.1), the bottom-up chart parser of Algorithm 4 (§2.2.3) was constructed and the average

number of edges (partial parses) it produces on sentences of varying length in the whole data set ∆ was

measured. This value approximates the expected work expenditure in GEMINI [32], SmartKom [116] and

Johnston [49].

Measures on the chart parser were compared against two measures of Clavius. First, the average number

of edges Clavius produces (across all parametrizations of §5.2.3) before the parse it eventually returns is found

is recorded for each sentence length. This represents a near-optimal bound on performance of Clavius, as it

would ideally make its decision as soon as possible. However, more parses are added to the search space

before Clavius returns its decision, so this value is also recorded as a practical indicator of average work

expenditure.

Figure 5.7 summarizes these results. In particular, although Clavius generally finds its accepted parse

relatively quickly (‘Clavius - found’), the cognition module will delay its acceptance (‘Clavius - accepted’).

The length of this overhead grows with sentence length, from near 0 for sentences of length 2 to over twice

the number of edges needed to find the parse.

The main factor in the proportional increase of overhead with sentence length appears to be more empty

constituent edges appearing as a result of necessarily more complex grammar constructions. In order to

reduce the amount of work actually performed by Clavius, either tighter restrictions on the allowance of

72

5.3. INVESTIGATIVE ANALYSIS

Figure 5.7: Average number of edges expanded, given sentence length.

null constituents need to be enforced, or the cognition module needs to be modified to make its decisions

more quickly. Although in practise Clavius does more work than an all-paths bottom-up multidimensional

chart parser for longer sentences, it appears comparably efficient for sentences up to length 8, and a more

appropriate sentence-acceptance mechanism in the cognition module may improve performance.

This measurement is an important indicator of Clavius’ performance relative to state-of-the-art tech-

niques, specifically those mentioned above. In particular, it demonstrates that the best-first process narrows

the search space and finds its solution relatively quickly, expanding only about 39% of the number of edges

the chart parse model creates for the longest observed sentences.

5.3.2. Questions of Grammatical Usability. The majority of sentences spontaneously uttered by

most users were simplistic (see §5.3.4), as was expected. In fact, the grammar of Appendix B was built

based on this assumption and covers 2248 (97.6%) of the utterances collected. It is not presently clear

whether sentences were simple because of the imperative command structure all users assumed, or because

of multimodality itself. Use of pronouns, definite NPs and tense are typical aspects of language speakers

employ to simplify expressions through context, but only pronominal references to objects were seen during

this study. Unimodal and conversational multimodal data would help categorize these effects.

Experiment participants were able to express themselves in more complex, compound phrases (ex.

“move this ↘ triangle here ↘ and make it a blue square”) but typically decided to split their commands

into two separate phrases. Participants also often opted to delete existing objects and create new ones rather

than use the move command coupled with the transform command (ex. “delete this↘ triangle” and a “put

73

5.3. INVESTIGATIVE ANALYSIS

a blue sphere here ↘”), which may explain the relative proportions of commands, in Table 5.3. Similarly,

although participants were able to use the AREA gesture to select multiple objects simultaneously (§3.5.8),

only 1 user discovered it, using it only twice.

Finally, there were 877 (38.1%) instances where dysfluencies (other than artificial noise) occurred. Of

these, 814 (92.8%) were not part of the sentences accepted by Clavius. Of those 63 that were accepted, 48

constituted simple insertion errors, and the remaining 15 were incorrectly combined with adjacent words by

the Sphinx tracker, resulting in substitution errors. The ability to ignore dysfluencies in Clavius is a notable

boon to seamless interaction, and appears to be a result of the partial qualifications discussed in §4.1.1.3,

which is especially relevant in noisy environments.

5.3.3. Co-occurrence statistics. From the literature, one expects a close correlation in time between

the occurrence of deictic gestures with the pronominals or nouns with which they co-refer semantically (κ1

is based on this assumption). In fact, literature suggests that the relative order of spoken and gestured ex-

pressions are dependent on modality, namely that deictic gestures precede associated keywords in pen-based

systems [81], while overlapping or following them 97% of the time in large-screened environments with arm

gestures [101].

Figure 5.8 compares onset time between speech and gesture between Holzapfel et al. [43] and Clavius

using the domain (bins covering periods of time of 0.24 seconds) and range (percentage of occurrences3)

of the former. Holzapfel et al. suggest that arm gestures often occur anywhere between 0.5 seconds before

speech to 0.7 seconds after it, with an apparent preference for precedence. This is notably contrasted with

REPLICATOR/Clavius, where gestural mouse activity follows the beginning of a spoken co-referring word

(ex. “this”, etc.) 90.9% of the time in a near-Gaussian distribution centred between 0.72 and 0.96 seconds

after the onset of speech.

Figure 5.8: Comparison of onset times of arm gesture (from Holzapfel et al.[43], left) and of mouse gesture
(right) following associated speech keywords.

3This metric is inferred from [43], as they do not label their y-axis properly.

74

5.3. INVESTIGATIVE ANALYSIS

These results almost indicate the reverse of what one expects, since the literature suggests that speech is

generally followed by arm gestures, and preceded by hand-held device input.

In Clavius, over 74% of mouse events in multimodal commands occurred after the end of the co-referring

speech part, indicating an apparent sequential approach of users to multimodality. This may be partially

explained by the familiarity of all users to standard WIMP interfaces that generally ‘expect’ sequential modes

of interaction. However, for ‘2-word’ phrases, such as “red↘” or “delete↘”, gestures on average occurred

during the spoken word, or preceded its onset 91% of the time. Therefore, it appears that temporal proximity

is dependent both on device and on phrase type.

5.3.4. Sentence structure. In §2.3.3, references in the literature were discussed that suggest that

an important dichotomy between multimodal and unimodal spoken language is the use of locative con-

stituents, especially in prepositional phrases. Namely, locatives are often moved to a sentence-initial position

in pen/voice input – changing S-V-O-LOC word order to a LOC-S-V-O one.

Unfortunately, the data collected for Clavius did not really include any subject arguments of verbs,

since all sentences were effectively verb-initial imperative command driven sentences. This sentence type

also effectively prohibits locatives from occurring before the verb. However, one can still measure whether

the participants altered their expressive grammar with regards to the position of locatives relative to the object

reference, between unimodal and multimodal cases.

All move and create commands used locatives, with 2 occurring with deletion. Table 5.7 summarizes

the behaviour of locatives within the context of REPLICATOR. Note the interesting presence of phrase type

O-LOC, where the absent leading verb can be inferred from its two arguments. In addition, the vast majority

of delete commands, and 64 create commands, did not use any locatives whatsoever.

Action Unimodal Locative Bimodal Locative
Example Number Example Number

V-LOC-O create “put↘ square” 5 “put here↘ a square” 1

V-O-LOC
move “put this↘↘” 1 “put this↘ there↘” 516
create “put a red square↘” 8 “put a red cube here↘ ” 474
delete N/A 0 “delete all objects in↘ this area↙” 1

V-LOC delete “delete↘↙ ” 1 N/A 0
O-LOC move “↘↘” 3 “this↘ there↘” 18

Table 5.7: Use of locatives in various sentence structures, according to the arity of the locative.

5.3.4.1. Conjunctions and Fragments. Conjunctive sentences of the form “S and S” occurred 120

times, 68 of which combined disparate action types (ex. “move this↘ here↘ and colour it green”). Of these,

40 were interactions on a single object that employed anaphoric pronouns (“it”), suggesting preference for

cognition of objects rather than actions. In all but three cases these involved one conjunction, but in three cases

75

5.3. INVESTIGATIVE ANALYSIS

it involved two conjunctions of the form (S S and (S S and S)). The relative rarity of conjunctive phrases

is to be expected, and emphasises that participants favour simplistic, short phrases in this environment.

Sentence fragments occur frequently in natural speech, for instance a verb phrase lacking a direct object.

Since Clavius supports ‘partially complete’ representations at the sentence level, these types of sentences

should be decipherable, or at least the application could counter appropriately with a request to parametrize

the verb (ex. “I’m sorry, which object should I delete?”). Selectional constraints might even be used to

approximate the meaning of an unknown word. In this regard, more data would be required to draw any

deeper conclusions, as well as a standard analysis method for classifying locative phrases across multimodal

and unimodal contexts.

76

CHAPTER 6

Concluding Discussion and Remarks

This thesis describes a software architecture built to interpret multiple modes of input generically, as described

in Chapter 3. The mechanism used in this interpretation is a new multi-threaded and bidirectional parsing

algorithm on graph-based unification grammars that follows a best-first approach according to a combination

of scoring metrics, described in Chapter 4.

Results from experiments reveal several features of Clavius, discussed further in §6.1 and its subsections,

that indicate both a satisfiable general level of applicability, but also several important limiting practical

factors. For instance, while certain configurations of Clavius achieve better accuracy than a baseline system,

others consistently fare worse, even after training. The complexity of the system leads to several apparent

‘hidden’ variables (see §5.3) related to dependencies beyond the layers of the XML grammar and scoring

modules.

The design of grammars for Clavius is also non-trivial as unexpected consequences can easily result

from casual grammars. For example, rules Γi and Γj having a high degree of RHS overlap can easily create

a glut in the search space if care is not taken to necessitate the presence of distinguishing (usually head)

words. For example, the determiner ‘the’ might be present in both object_reference and location

rules, and if in some utterance it is part of one, parses assuming it is part of the other should be limited.

Otherwise, the search space can very quickly be dominated by irrelevant parses, from which Clavius might

pull an incorrect sentence decision.

The painstaking construction of grammars in this fashion may also indicate that generalizing the process

arbitrarily to new applications is also non-trivial. At this point there remains no single or best generalization to

the problem, however multi-component architectures, like Clavius , have recently been gaining in popularity.

The GS Algorithm has performed reasonably admirably, given the novelty of the parsing algorithm. The

overview of its key features in §6.1 is followed by a summary of interesting avenues open to exploration in

§6.2.

6.1. FEATURES OF THE GS ALGORITHM

6.1. Features of the GS Algorithm

Multiple distinguishing behavioural features characterize the GS Algorithm. These are consequences of

decisions described in §4.1.1 and are summarized below.

6.1.1. Asynchronous collaboration. The bidirectional nature of the GS Algorithm differs from those

of Satta [97] and Rocio [91], for example, except that its asynchronous and distributed nature reduces several

processing bottlenecks. Namely, allowing these processes to be performed simultaneously has resulted in

quick discovery of accepted parses, for instance, and avoids thread starvation. The modular nature of its

scoring functions allows Clavius to incorporate quite disparate approaches and knowledge sources in the

field, from acoustic prosody to statistical linguistic information.

A few scoring modules κi have different behaviours depending on whether they were invoked by the

generalizer or the specifier. This has not yet been detrimental to the process, but since the resultant graphs

are always put into the generalizer’s search space first, correct internal ordering would be preferable in the

long-term.

6.1.2. Unordered constituents. Ignoring ordering of constituents γi in the RHS of rule Γi is perhaps

the most controversial decision in Clavius, since fundamental and often essential syntactic constraints are

inherent in the traditional arrangement. While these syntactic constraints can easily be replaced by the use of

constraint functions, this might appear to be an unnecessary step.

This aspect of the GS Algorithm still serves as an integral part of the system that effectively handles

permutation of multimodal word order and the admittance of unexpected phrase types. Early unquantified

observation during development suggests that another resultant phenomenon is that parses incorporating lead

words, such as head nouns, command verbs and pointing gestures in particular, are emphasized and form

sentence-level parses early, and are later ‘filled in’ with function words.

6.1.3. Unspecified edges. The process of generalization produces parses that instantiate top-level

grammar rules where only one constituent is non-null. This, in combination with a best-first strategy based

on several scoring criteria and unordered constituents approximates a dynamic programming approach to

multimodal interpretation. This is confirmed in Chapter 5 by the speed with which Clavius discovers its

accepted sentences, relative to current approaches in chart parsing.

6.1.4. Constraint Functions. The implementation of κ8 in Clavius provides a unique graph-theoretic

implementation of constraint functions in the λ calculus. To be effective, when values returned from one

function parametrize others, it is necessary to evaluate the master term recursively until no fully parametrized

functions remain unevaluated.

78

6.2. POSSIBLE FUTURE EXPLORATIONS

Secondly, it is important that κ8 evaluates the entire disjunction of all constraint function terms present

in a given parse. If this were not the case, constraints that were applied during evaluation would always

be lost. This can be accomplished by applying the multiplication operator on each of the constituent and

top-most terms.

6.2. Possible Future Explorations

There are several avenues open to Clavius for future exploratory endeavours that extend beyond the

goals of this thesis. These are broadly classified into computational, linguistic and interactive subjects.

Computational Aspects. Currently, once a partial parse Ψ is given a score that remains fixed through-

out the life cycle of that graph, until it is removed from the search space. To truly take advantage of the

real-time recognition capability of Clavius, allowing scores to change dynamically as new information is pre-

sented to the system would, in particular, push out semantically incongruous parses by lowering their scores

to 0, or thereabouts. Doing so, however, would either incur a substantial computational cost or necessitate

specialized semantically indexed data structures whose behaviours are left to future consideration.

Furthermore, as described in §3.9, Clavius transparently lends itself to complex multi-processor archi-

tectures, but this aspect has not yet been especially explored. A different computational model of the score

(§4.2) might also address issues of codependency observed during experimentation. One possible such candi-

date is to use a hidden layer in the joint reparametrization of
−→
Ω i (§5.1.7.1), which is the standard approach to

allaying non-linearly separable classes in neural networks. A more measured approach to individual module

parametrization (§5.2.2) would also be advised.

Linguistic and Interactivity Aspects. Certain linguistic questions lie beyond the scope of this thesis,

primarily those related to context. All language in Clavius is constricted to simple verb-initial imperative

command phrases, whereas the GS Algorithm is designed to inhabit the same class as general text parsers.

In order to evaluate its potential in this space, more complex linguistic phenomena need to be analyzed. In

particular, long-distance dependencies and proper anaphora resolution co-referring entities and concepts are

open areas. Currently, concatenating multiple sentences together can be used to force unification on two

semantic entities deterministically, but more applicable approaches exist to this problem. New grammars

need to expand to cover more general phrases, such as those popularized in the Wall Street Journal corpus,

and be applied to more general application contexts such as conversational agents.

Other areas of linguistic interest include the use of the subsumption architecture between scoring mod-

ules κi, such that κi can selectively apply<[0..1] multipliers on some set {κj‖j 6= i}, effectively de-activating

certain modules under particular conditions. If grammatical selectional constraints, for example, override lan-

guage modelling, the former can nullify the effect of the latter with a 0 multiplier. This has a direct effect on

79

6.2. POSSIBLE FUTURE EXPLORATIONS

the interpretation of the language. Elements of compositional and generative semantics also play a role, for

instance in cases where discourse entities cannot be immediately instantiated in the world.

Finally, further investigation into alternate methods of sentence acceptance in the augmentation of the

COGNITION module would take advantage of Clavius’ speed in this regard, and may more effectively utilize

inherent benefits of cross-modal information in increasing current accuracy rates.

80

APPENDIX A

Essential Background

Certain aspects of this thesis assume a certain level of understanding of fundamental mathematical and lin-

guistics concepts. Some of these are assembled here for the elucidation of the curious reader.

A.1. Mathematic Essentials

In this section we briefly review two key areas of graphical models and probability theory as they relate

to fundamental concepts in CLAVIUS.

A.1.1. Graphical Models. Graphs pervade much of computer science and engineering and are used

extensively in CLAVIUS by virtue of their use in representing all user activity. The structure of the type of

rooted graphs used in CLAVIUS were provided in §2.1. Most of the usage of these graphs involve traversal

down from their roots to extract particular information, although certain classic graph algorithms, such as

Dijkstra’s shortest-path algorithm [26] play roles in its implementation. Some relevant aspects are discussed

in the following subsections.

A.1.1.1. Size Bounds on CLAVIUS DAGs.

THEOREM A.1.1. For directed, and acyclic graph Ψa with a set of nodes N , |N |(|N |−1)
2 ≥ |Ψa| ≥

|N | − 1

PROOF. Proof of this comes in two steps:

• |Ψa| ≥ |N | − 1 proved by induction. If |N | = 1 (Ψa is atomic), then it has 0 ≥ |N | − 1

edges. Then, we assume that we have some subgraph Ψ′a with |N | − 1 ≥ 0 nodes such that

|Ψ′a| ≥ |N | − 2. If we add a new node to Ψ′a, forming Ψa, then that node must be connected to at

least one other node by an arc, thus |Ψa| ≥ |Ψ′a|+ 1 ≥ |N | − 2 + 1 = |N | − 1.

• |N |(|N |−1)
2 ≥ |Ψa| by a mechanism similar to that used in the Pidgeonhole Principle [92]. Namely,

given a set of |N | nodes, we attempt to add as many arcs as possible. Initially, with 0 arcs, we

A.1. MATHEMATIC ESSENTIALS

can pick any node and draw it’s maximum number its outgoing arcs - namely directed arcs to the

|N | − 1 other nodes. Assuming that after drawing the maximum allowable number of outgoing

arcs for the first n nodes, then the maximum number of arcs we can add for the (n − 1)th node

x is |N | − n − 1 - because the first n nodes all already point to x - and we cannot allow cycles

or reflexive loops (no arc from x to x is allowed). In this way, we get a maximum max |Ψa| =
|N−1|∑
n=1

n =
|N |(|N | − 1)

2
[99].

� �

A.1.2. Optimization. Experiments in CLAVIUS included the use of simple single-layer feedforward

neural networks without explanation of how they are trained (§5.1.7.1), due to the somewhat tangential nature

of their details.

This network was trained using a simple linear step and binary decision rule as output, o. Specifically,

given weights ωj ∈ <[0..1] and activations aj ∈ <[0..1] (the latter are determined from the appropriate κj

functions), then

(A.1)

0 if

∑
j

ωjaj < θ,

1 otherwise.

The parameter θ = 0.8 for the given experiments. For a set of data ∆, if instance ∆i is recognized

correctly then ωj is left unchanged for all j. If, however, the proposed sentence recognized by CLAVIUS does

not provide the correct lexography, then the update rule ωj ← ωj + αaj adjusts the network weights, given

some learning rate parameter α 1. More introductory information can be found in [95].

A.1.3. Derivation of Kullback Leibler. The symmetric Kullback-Leibler divergence is utilized in

one of CLAVIUS’ scoring modules (κ1, §4.3). Its partial derivation is provided here. Remembering that

(i) 1
σ
√

2π

∫
e−

(x−µ)2

2σ2 dx = 1

(ii) if X is a continuous random variable, and f(x) is the value of its probability density at x, then

the expected value of g(x) is E [g(X)] =
∫

g(x)f(x)dx [35]

(iii) σ2 = E
[
X2

]
− E [X] = E

[
X − E [X]2

]
= E

[
(X − µ)2

]
substituting the Gaussians, gives

1There is no derivative of an activation function, since the threshold function is non-differentiable

82

A.1. MATHEMATIC ESSENTIALS

KL (N1‖N2) =
1

σ1

√
2π

∫
e
− (x−µ1)2

2σ2
1 log

σ2

σ1
e

„
(x−µ2)2

2σ2
2

− (x−µ1)2

2σ2
1

«
dx

=
1

σ1

√
2π

∫
e
− (x−µ1)2

2σ2
1

[
log

σ2

σ1
+

(x− µ2)
2

2σ2
2

− (x− µ1)
2

2σ2
1

]
dx

= log
σ2

σ1
+

1
σ1

√
2π

∫
e
− (x−µ1)2

2σ2
1

[
(x− µ2)

2

2σ2
2

− (x− µ1)
2

2σ2
1

]
dx

= log
σ2

σ1
−

∫
(x− µ1)

2

2σ2
1

N1 (x, µ1, σ1) dx +
1

σ1

√
2π

∫
e
− (x−µ1)2

2σ2
1

(x− µ2)
2

2σ2
2

dx

= log
σ2

σ1
− E

[
(x− µ1)

2

2σ2
1

]
+

1
σ1

√
2π

∫
e
− (x−µ1)2

2σ2
1

(x− µ2)
2

2σ2
2

dx

= log
σ2

σ1
−

E
[
(x− µ1)

2
]

2σ2
1

+
1

σ1

√
2π

∫
e
− (x−µ1)2

2σ2
1

(x− µ2)
2

2σ2
2

dx

= log
σ2

σ1
− σ2

1

2σ2
1

+
1

σ1

√
2π

∫
e
− (x−µ1)2

2σ2
1

(x− µ2)
2

2σ2
2

dx

In order to break down our last indefinite integral, a redundant µ1 is introduced into the second term

such that

(x− µ2)
2 = (x− µ1 + µ1 − µ2)

2

= [(x− µ1) + (µ1 − µ2)]
2

= (x− µ1)
2 + 2 (x− µ1) (µ1 − µ2) + (µ1 − µ2)

2

so

1
σ1

√
2π

∫
e
− (x−µ1)2

2σ2
1

(x− µ2)
2

2σ2
2

dx =
1

σ1

√
2π

∫
(x− µ1)2

2σ2
2

e
− (x−µ1)2

2σ2
1 dx +

2
σ1

√
2π

∫
(x− µ1)(µ1 − µ2

2σ2
2

e
− (x−µ1)2

2σ2
1 dx

+
1

σ1

√
2π

∫
(µ1 − µ2)2

2σ2
2

e
− (x−µ1)2

2σ2
1 dx

=
E

[
(x− µ1)2

]
2σ2

2

+ 2(µ1 − µ2)
E [(x− µ1)]

2σ2
2

+ (µ1 − µ2)2
E [1]
2σ2

2

=
σ2

1

2σ2
2

+ 0 +
(µ1 − µ2)2

2σ2
2

Substituting this result back into our derivation of the KL distance gives

83

A.2. LINGUISTIC ESSENTIALS

KL (N1‖N2) = log
σ2

σ1
− σ2

1

2σ2
1

+
1

σ1

√
2π

∫
e
− (x−µ1)2

2σ2
1

(x− µ2)
2

2σ2
2

dx

= log
σ2

σ1
− 1

2
+

σ2
1

2σ2
2

+
(µ1 − µ2)2

2σ2
2

(A.2)

From this point on the derivation follows that in Johnson [47].

A.2. Linguistic Essentials

Certain linguistic concepts are required for discussion of this work. The following subsections cover

some basic topics of computational linguistics within the specific context of multimodal language.

A.2.1. Lexography and Morphology. Words can be broadly classified into parts-of-speech (POS)

or lexographies, and differ from one another via numerous morphologies on common roots. For example,

adding the trailing -s to the word noun is a morphology from the singular noun class to the plural noun

class. Table A.1 provides a subset of the part-of-speech tags in the Penn Treebank [104], one of many such

classification schemes. Eric Brill’s transformational tagger is a popular tool to automatically associate POS

tags with words in a corpus [52], with an expected accuracy (proportion of potentially polysemous words

uniquely tagged with the correct POS) of 95%. This, however, would lead to an average of 1 error per 20-

word sentence, having potentially negative consequences in parsing, in general. These complications, among

others, are the reason why CLAVIUS does not perform this step explicitly. Note that Table A.1 also includes

POS tags for POINT and AREA ‘words’. In general, CLAVIUStreats lexical entries from all modalities the

same, so deictic gestures are treated with the same mechanisms as written or spoken words.

tag type example

CC coordinating conjunction this and that

CD cardinal number 18

DT determiner the confectionery

IN preposition or subordinating conjunction in the vestibule

JJ adjective the happy camper

JJR adjective, comparative the happier camper

JJS adjective, superlative the happiest camper

NN noun, singular or mass that monkey

NNS noun, plural these boxes

PP personal pronoun I am Torgo

tag type example

PP$ possessive pronoun my lodge

RB adverb the threads work concurrently

RBR adverb, comparative I have more credibility

RBS adverb, superlative the most chicken feed

UH interjection or dysfluency fool me once, shame on uh... you

VB verb, base form waiting for it to happen

VBD verb, past tense it happened

VBG verb, gerund or present participle it is happening

POINT point deixis ↘(x,y)

AREA area deixis ↘(x,y,height,width)↙

Table A.1: Selection of common parts of speech and their tags, from a subset of the Penn Treebank, plus
additional tags POINT and AREA for deictic gestures.

84

A.2. LINGUISTIC ESSENTIALS

A.2.2. Phrase Structure. Context-free grammar rules are expressions of the type A← B where B

is any sequence of terminals or non-terminals - usually ordered. For example, the rule Γi : NP← DTJJNN

claims that a noun phrase (NP) can be composed of a determiner, adjective, and singular noun in that order.

The noun phrase is a non-terminal of the English grammar, and can be composed in a number of different

ways.

A partial parse is a specific application of particular grammar rules to part or all of input terminals.

For example, if a system is given text “read the fine manual”, then the application of the rule Γi (above)

to the subset “the fine manual” constitutes a partial parse of the sentence. This is typically expressed using

bracketed terminology prefixed with non terminals, as in

(NP (DT the)(JJfine)(NNmanual))

Some semantic information can be inferred from such syntactic structure, but some info cannot so

easily be extracted. For instance, the phrase “delete↘ this box” cannot in practice be understood with 100%

certainty, if the deixis↘ falls between two objects. Information from the world is often required to complete

interpretation.

A.2.3. Ambiguity and Uncertainty. Ambiguity and uncertainty can exist at all levels of the recog-

nition process. Errors in tracking, or noise on the transmission line can distort the signal from tracked input

such as speech or video. Segmentation between word boundaries is also often stochastic, and multiple POS

tags can exist for a particular word (“book” can be a NN or a VB, for instance).

Structural ambiguity occurs when a single sequence of words can be covered by more than one pos-

sible combination of grammar rules, as exemplified in Figure A.1. Ambiguities related to attachment and

coordination are frequent, and choosing between multiple possible syntactic interpretations is the subject of

ongoing research.

A.2.4. Language Models. Statistical language models are often used in ASR to estimate word strings

from acoustic data by means of maximum likelihood a posteriori decision rules to determine the optimal word

sequence WC for a given speech signal X:

(A.3) WC = arg max
W

P (W |X) = arg max
W

P (W)P (X|W)
P (X)

where P (X|W) is the optimal acoustic model and P (W) is the optimal language model [61]. Since

W is an ordered sequence of words wi (W = {w1 w2 ...wn}), the word sequence probability, from the

multiplication rule, is:

85

A.2. LINGUISTIC ESSENTIALS

S
PPPP

����
NP

PP

I

VP
PPPPP

�����
V

shot

NP
PPPP

����
NP
Q
Q

�
�

DT

an

NN

elephant

PreP
H
HH

�
��

IN

in

NP
Q
Q

�
�

PP$

my

NNS

pyjamas

S
XXXXX

�����
NP

PP

I

VP̀
`````,,

      
V

shot

NP
Q
Q

�
�

DT

an

NN

elephant

PreP
H
HH

�
��

IN

in

NP
Q
Q

�
�

PP$

my

NNS

pyjamas

Figure A.1: Two interpretations of the phrase “I shot an elephant in my pyjamas”, from Groucho Marx. The
left parse suggests that the shot elephant was in the interlocutor’s pyjamas, whereas the right parse indicates
that the shooter was wearing their pyjamas at the time of the shooting.

P (W ) = P (w1 w2 ...wn)

= P (w1)P (w2|w1)P (w3|w1 w2) · · ·P (wn|w1 w2 . . . wn−1)
(A.4)

where P (wi|w1 . . . wi−1) is the probability that word wi follows the ordered words w1 . . . wi−1. How-

ever, for sentences of any reasonable length, the dimensionality of this probability space becomes unwieldy,

even for moderate-sized vocabularies - so a typical solution is to approximate conditional probabilities with

only a single conditioning variable as in P (wx|wy), giving

(A.5) P (W ) = P (w1| < s >)P (w2|w1)P (w3|w2)P (w4|w3) · · ·P (wn|wn−1)

where < s > is the start symbol indicating that P (w1| < s >) is the probability that w1 begins a sen-

tence. Employing conditional probabilities in this way is called the bigram model, and naturally incorporates

ordering in language. Language models are sometimes preferred to parsing models in deciding between com-

peting parses in terms of their ‘naturalness’ [67], although the absense of explicit structural representation

keeps them from being a drop-in replacement for PCFGs.

A.2.5. Measures of Accuracy. Accuracy in general NLP is not limited to simple ratios of correct vs.

incorrect interpretations. For instance,

Recall =
# of correct hypotheses given by a system
total # of possible interpretations in a text

86



A.2. LINGUISTIC ESSENTIALS

indicates how much of a text a given interpreter can ‘cover’, if it is allowed to not provide interpretations

of sentences. Precision is more closely related to the standard definition of accuracy, and in the context of

this thesis is synonymous with it:

Precision =
# of correct hypotheses given by a system
total # of hypotheses given by a system

Errors in system hypotheses are often individually scrutinized subjectively, or classified into insertion,

deletion or replacement types if they differ from a desired interpretation by the adding of extra words,

removal of expected words, or misinterpretation of words, respectively.

Relative Error Reduction (RER) is used to compare improvements gained in precision non-commutatively

by moving from system A to system B, where systems A and B may simply be reparameterizations of each

other. Specifically,

RER(A,B) =
error rate in A− error rate in B

error rate in A

87



APPENDIX B

Example Grammar

The following XML grammar exemplifies a subset of the one used in the experiments described in Chapter

5.

Grammar rules are elements one level below the <CLAV GRAMMAR> tag. The name of one of these

elements is the name of LHS constituent, and element names below the <RHS> tag are the RHS constituents

of the rule. Otherwise, in general element names are used as feature names Φ in the graphs implementing the

respective rules.

Reentrant nodes are specified by the ‘$’ symbol. For example, in clav UTT← colour command below,

the content of utterance is linked to the content of the colour command by the ‘$1’ variable (characters

following the ‘$’ define variable names for graph nodes). The ‘’̂ symbol is used to indicate return values from

constraint functions, and also refer to reentrant nodes.

<CLAV_grammar>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- CLAV_UTT -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- this defines the rule: clav_UTT <-- clav_UTT ’and’ clav_UTT -->
<clav_UTT>

<p_gamma>0.1</p_gamma>
<time > </time>
<score> </score>
<content> ˆ3 </content>
<rhs>

<clav_UTT> $1<content> </content> </clav_UTT>
<and></and>
<clav_UTT> $2<content> </content> </clav_UTT>

</rhs>
<params> </params>
<constraints>
<![CDATA[ add_Commands( $1, $2, ˆ3) ]]>

</constraints>
</clav_UTT>

<clav_UTT>
<p_gamma>0.2</p_gamma>
<time > </time>
<score> </score>
<content> $1 </content>
<rhs>



APPENDIX B. EXAMPLE GRAMMAR

<colour_command> $1<content> </content>
$cons <constraints></constraints>

</colour_command>
</rhs>
<params> </params>
<constraints> </constraints>

</clav_UTT>

<clav_UTT>
<p_gamma>0.2</p_gamma>
<time > </time>
<score> </score>
<content> $1 </content>
<rhs>

<delete_command> $1<content> </content>
$cons <constraints></constraints>

</delete_command>
</rhs>
<params> </params>
<constraints></constraints>

</clav_UTT>

<clav_UTT>
<p_gamma>0.2</p_gamma>
<time > </time>
<score> </score>
<content> $1 </content>
<rhs>

<create_command> $1<content> </content>
$cons <constraints></constraints>

</create_command>
</rhs>
<params> </params>
<constraints></constraints>

</clav_UTT>

<clav_UTT>
<p_gamma>0.2</p_gamma>
<time > </time>
<score> </score>
<content> $1 </content>
<rhs>

<transform_command> $1<content> </content>
$cons <constraints></constraints>

</transform_command>
</rhs>
<params> </params>
<constraints></constraints>

</clav_UTT>

<clav_UTT>
<p_gamma>0.2</p_gamma>
<time > </time>
<score> </score>
<content> $1 </content>
<rhs>

<move_command> $1<content> </content>
$cons <constraints></constraints>

</move_command>
</rhs>
<params> </params>
<constraints></constraints>

</clav_UTT>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- COLOUR_COMMAND -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- colours (an) object(s) the specified colour examples: -->
<!-- "colour this (click) red" -->
<!-- "blue (click)" -->
<colour_command>

<p_gamma>0.5</p_gamma>
<time > </time>
<score> </score>
<content>
<action> colour </action>

89



APPENDIX B. EXAMPLE GRAMMAR

<colour> $c </colour>
<objects> $o1 </objects>

</content>
<rhs>
<colour>

<content> $c <colour> </colour> </content>
</colour>
<object_reference>

<content> $o1 <objects> </objects> </content>
</object_reference>

</rhs>
<params> </params>
<constraints></constraints>

</colour_command>

<colour_command>
<p_gamma>0.5</p_gamma>
<time > </time>
<score> </score>
<content>
<action> colour </action>
<colour> $c </colour>
<objects> $o1 </objects>

</content>
<rhs>
<VB>

$t_vb <time> </time>
<word> colour </word>

</VB>
<object_reference>

$t_objref <time> </time>
<content> $o1 <objects> </objects> </content>

</object_reference>
<colour>

$t_col <time> </time>
<content> $c <colour> </colour> </content>

</colour>
</rhs>
<params>

$td <td> 5 </td>
</params>
<constraints>
<![CDATA[

t_follows($t_col,$t_vb,$td) * t_follows($t_objref,$t_vb,$td) ]]>
</constraints>

</colour_command>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- DELETE_COMMAND -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- deletes (an) object(s) examples: -->
<!-- "delete these (click) (click) (click)" -->
<!-- "remove all blue cubes" -->
<delete_command>

<p_gamma>1.0</p_gamma>
<time > </time>
<score> </score>
<content>
<action> delete </action>
<objects> $o1 </objects>

</content>
<rhs>
<delete>

$t_vb <time> </time>
</delete>
<object_reference>

$t_objref <time></time>
<content> $o1 <objects> </objects> </content>

</object_reference>
</rhs>
<params> </params>
<constraints>
<![CDATA[

depends_on($t_objref, $t_vb) ]]>
</constraints>

</delete_command>

90



APPENDIX B. EXAMPLE GRAMMAR

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- CREATE_COMMAND -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- creates (an) object(s) in the specified location examples: -->
<create_command>

<p_gamma>0.0</p_gamma>
<time > </time>
<score> </score>
<content>
<action> create </action>
<number> $n </number>
<colour> $c </colour>
<shape> $s </shape>
<x> $x </x>
<y> $y </y>
<height> $h </height>
<width> $w </width>

</content>
<rhs>
<create> </create>
<CD>

$t_num <time> </time>
$n <number> </number>

</CD>
<colour>

$t_col <time> </time>
<content> $c <colour> </colour> </content>

</colour>
<obj_type>

$t_shape <time> </time>
<content> $s <shape> </shape> <num> p </num> </content>

</obj_type>
<location>

<content>
$x <x> </x>
$y <y> </y>
$h <height> </height>
$w <width> </width>

</content>
</location>

</rhs>
<params>

$td <td> 5 </td>
</params>
<constraints>
<![CDATA[

t_follows($t_shape,$t_col,$td) * t_follows($t_shape, $t_num, $td) * t_follows($t_col,$t_num,$td) ]]>
</constraints>

</create_command>

<create_command>
<p_gamma>0.5</p_gamma>
<time > </time>
<score> </score>
<content>
<action> create </action>
<number> 1 </number>
<colour> $c </colour>
<shape> $s </shape>
<x> $x </x>
<y> $y </y>
<height> $h </height>
<width> $w </width>

</content>
<rhs>
<create> $t_create <time> </time> </create>
<a> $t_a <time> </time> </a>
<colour>

$t_col <time> </time>
<content> $c <colour> </colour> </content>

</colour>
<obj_type>

$t_shape <time> </time>
<content> $s <shape> </shape> <num> s </num></content>

</obj_type>

91



APPENDIX B. EXAMPLE GRAMMAR

<location>
<content>

$x <x> </x>
$y <y> </y>
$h <height> </height>
$w <width> </width>

</content>
</location>

</rhs>
<params>

$td <td> 5 </td>
</params>
<constraints>
<![CDATA[

t_follows($t_shape,$t_col,$td) * t_follows($t_shape, $t_a, $td) * t_follows($t_shape,$t_create,$td)

*t_follows($t_col, $t_a, $td) * t_follows($t_col,$t_create,$td) * t_follows($t_a,$t_create,$td) ]]>
</constraints>

</create_command>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- TRANSFORM_COMMAND -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<transform_command>

<p_gamma>0.5</p_gamma>
<time > </time>
<score> </score>
<content>

<action> transform </action>
<objects> $o1 </objects>
<colour> $colour </colour>
<shape> $s </shape>

</content>
<rhs>

<colour> $t_jj <time> </time>
<content> $colour <colour> </colour>
</content>

</colour>
<obj_type>

$t_objtype <time> </time>
<content> $s <shape> </shape> <num> s </num></content>

</obj_type>
<object_reference>

<time> </time>
<content> $o1 <objects> </objects> </content>

</object_reference>
</rhs>
<params> $td <td> 5 </td> </params>
<constraints> <![CDATA[ t_follows($t_objtype,$t_jj,$td)*depends_on($t_jj, $t_objtype) ]]></constraints>

</transform_command>

<!-- turn OBJECT into COLOUR OBJECT_TYPE -->
<transform_command>

<p_gamma>0.5</p_gamma>
<time > </time>
<score> </score>
<content>

<objects> $o1 </objects>
<colour> $colour </colour>
<shape> $s </shape>

</content>
<rhs>
<transform> $t_transform<time></time> </transform>
<object_reference>

$t_objref <time> </time>
<content> $o1 <objects> </objects> </content>

</object_reference>
<IN> $t_in <time></time> <word> into </word> </IN>
<!-- the colour of an object -->

<colour> $t_jj <time> </time>
<content> $colour <colour> </colour>
</content>

</colour>
<obj_type>

$t_objtype <time> </time>
<content> $s <shape> </shape> <num> s </num></content>

</obj_type>

92



APPENDIX B. EXAMPLE GRAMMAR

</rhs>
<params>

$td <td> 5 </td>
</params>
<constraints>
<![CDATA[

t_follows($t_objtype,$t_jj,$td) * t_follows($t_jj, $t_in, $td) * t_follows($t_in,$t_objref,$td)

*t_follows($t_objref, $t_transform, $td) *depends_on($t_jj, $t_objtype) ]]>
</constraints>

</transform_command>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- MOVE_COMMAND -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<move_command>

<p_gamma>0.5</p_gamma>
<time > </time>
<score> </score>
<content>

<action> move </action>
<objects> $o1 </objects>
<x> $x </x>
<y> $y</y>
<height> $h</height>
<width> $w </width>

</content>
<rhs>
<move> $tmov <time></time> </move>
<object_reference>

$tref <time> </time>
<content> $o1 <objects> </objects> </content>

</object_reference>
<location>

$tloc <time> </time>
<content> $x <x> </x>

$y <y> </y>
$h <height> </height>
$w <width> </width>

</content>
</location>

</rhs>
<params> $dxy <dxy> 100 </dxy>

$td <td> 5 </td>
</params>
<constraints>
<![CDATA[ t_follows($tloc,$tref,$td) * t_follows($tref, $tmov, $td) ]]>

</constraints>
</move_command>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- OBJECT_REFERENCE -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- this non terminal refers to one or more objects in the scene examples: -->
<!-- {that|this} (click) {{red|blue...} cube|...} : a single object, at the specified location -->
<!-- these (area) : all objects within the specified area -->
<!-- these (click)+ : each object clicked -->
<!-- these cubes (area) : all cubes within the specified area -->
<!-- these cubes (click)+ : each cube clicked -->
<!-- all {green|blue...} objects|cubes|... : all objects with the specified attributes-->
<!-- all cubes to the left of this sphere (click) : all cubes whose x coordinate is less than the indicated sphere -->
<!-- all red spheres (from|in) this area (area) : all red spheres within the specified area -->

<!-- single object -->
<object_reference>

<p_gamma>0.25</p_gamma>
<time > </time>
<score > </score>
<content>

$o1 <objects> ˆo1</objects>
</content>
<rhs>

<!-- a single determiner -->
<DT>

$t_dt <time> </time>
<num> s </num>

</DT>

93



APPENDIX B. EXAMPLE GRAMMAR

<!-- a click -->
<DEIXIS>

$tclick <time > </time>
<score > </score>

$x <x> </x>
$y <y> </y>

<left> down </left>
<middle> </middle>
<right> </right>

</DEIXIS>
<!-- the colour of an object -->

<colour> $t_jj <time> </time>
<content> $colour <colour> </colour>
</content>

</colour>
<!-- the type of object -->
<obj_type>

$t_nn <time> </time>
<content> $obj_type <shape> </shape> <num> s </num></content>

</obj_type>
</rhs>
<params>

$dxy <dxy> 100 </dxy>
$td <td> 5 </td>

</params>
<constraints>

<![CDATA[
objectsAt ( $x, $y, $dxy, $dxy, ˆo1 ) * objectsType($o1, $obj_type ) *objectsColour( $o1, $colour ) * t_follows($t_jj,$t_dt,$td) * t_follows($t_nn, $t_jj, $td) *depends_on($t_jj, $t_nn) ]]>

</constraints>
</object_reference>

<object_reference>
<p_gamma>0.25</p_gamma>
<time > </time>
<score > </score>
<content>

$o1 <objects> ˆo1</objects>
</content>
<rhs>

<!-- a single determiner -->
<DT>

$t_dt <time> </time>
<num> s </num>

</DT>
<!-- a click -->

<DEIXIS>
$tclick <time > </time>
<score > </score>

$x <x> </x>
$y <y> </y>

<left> down </left>
<middle> </middle>
<right> </right>

</DEIXIS>
</rhs>
<params>

$dxy <dxy> 100 </dxy>
$td <td> 5 </td>

</params>
<constraints>

<![CDATA[
objectsAt ( $x, $y, $dxy, $dxy, ˆo1 ) ]]>

</constraints>
</object_reference>

<object_reference>
<p_gamma>0.25</p_gamma>
<time > </time>
<score > </score>
<content>

$o1 <objects> ˆo1</objects>
</content>
<rhs>

<DEIXIS>
$tclick <time > </time>
<score > </score>

94



APPENDIX B. EXAMPLE GRAMMAR

$x <x> </x>
$y <y> </y>

<left> down </left>
<middle> </middle>
<right> </right>

</DEIXIS>
</rhs>
<params>

$dxy <dxy> 100 </dxy>
$td <td> 5 </td>

</params>
<constraints>

<![CDATA[
objectsAt ( $x, $y, $dxy, $dxy, ˆo1 ) ]]>

</constraints>
</object_reference>

<!-- many objects - selection -->
<!-- area -->
<object_reference>

<p_gamma>0.25</p_gamma>
<time > </time>
<score > </score>
<content>

$o1 <objects> ˆo1</objects>
</content>
<rhs>

<!-- a plural determiner -->
<DT>

$t_dt <time> </time>
<num> p </num>

</DT>
<!-- an area -->

<AREA>
$t_area <time > </time>
<score > </score>

$x <x> </x>
$y <y> </y>

$width <width> </width>
$height <height> </height>

</AREA>
<!-- the colour of an object -->

<colour> $t_jj <time> </time>
<content> $colour <colour> </colour>
</content>

</colour>
<!-- the type of object -->
<obj_type> $t_nn <time> </time>

<content> $obj_type <shape> </shape> <num> p </num></content>
</obj_type>

</rhs>
<params>

$dxy <dxy> 100 </dxy>
$td <td> 5 </td>

</params>
<constraints>

<![CDATA[
objectsIn ( $x, $y, $width, $height, ˆo1 ) * objectsType($o1, $obj_type ) *objectsColour( $o1, $colour ) * t_follows($t_jj,$t_dt,$td) * t_follows($t_nn, $t_jj, $td) *depends_on($t_jj, $t_nn)]]>

</constraints>
</object_reference>

<!-- multiclicks -->
<object_reference>

<p_gamma>0.25</p_gamma>
<time > </time>
<score > </score>
<content>

<objects> $o1</objects>
</content>
<rhs>

<!-- a plural determiner -->
<DT>

$t_dt <time> </time>
<num> p </num>

</DT>
<!-- multiple clicks -->

95



APPENDIX B. EXAMPLE GRAMMAR

<multi_clicks>
$t_clicks <time > </time>

$o1 <objects> </objects>
</multi_clicks>
<!-- the colour of an object -->

<colour> $t_jj <time> </time>
<content> $colour <colour> </colour>
</content>

</colour>
<!-- the type of object -->
<obj_type> $t_nn <time> </time>

<content> $obj_type <shape> </shape> <num> p </num></content>
</obj_type>

</rhs>
<params>

$dxy <dxy> 100 </dxy>
$td <td> 5 </td>

</params>
<constraints>

<![CDATA[
objectsType($o1, $obj_type ) *objectsColour( $o1, $colour ) * t_follows($t_jj,$t_dt,$td) * t_follows($t_nn, $t_jj, $td) *depends_on($t_jj, $t_nn)]]>

</constraints>
</object_reference>

<!-- many objects - referential -->
<object_reference>

<p_gamma>0.25</p_gamma>
<time > </time>
<score > </score>
<content>

<objects> ˆo1</objects>
</content>
<rhs>

<!-- a plural determiner -->
<DT>

$t_dt <time> </time>
<word> all </word>

</DT>
<!-- the colour of an object -->

<colour> $t_jj <time> </time>
<content> $colour <colour> </colour>
</content>

</colour>
<!-- the type of object -->
<obj_type> $t_nn <time> </time>

<content> $obj_type <shape> </shape> <num> p </num></content>
</obj_type>

</rhs>
<params>

$dxy <dxy> 100 </dxy>
$td <td> 5 </td>

</params>
<constraints>

<![CDATA[
objectsMatching( $colour, $obj_type, ˆo1 ) * t_follows($t_jj,$t_dt,$td) * t_follows($t_nn, $t_jj, $td) *depends_on($t_jj, $t_nn)]]>

</constraints>
</object_reference>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- LOCATION -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- PP phrases and things like "here" ex: -->
<!-- (there|here) (click) -->
<!-- to the right of this box -->
<!-- in this area (area) -->
<location>

<p_gamma>0.5</p_gamma>
<content>

<x> $x </x>
<y> $y </y>
<height> 0 </height>
<width> 0 </width>

</content>
<rhs>

<DEIXIS>
$x <x> </x>

96



APPENDIX B. EXAMPLE GRAMMAR

$y <y> </y>
<left> down </left>
<middle> </middle>
<right> </right>

</DEIXIS>
</rhs>
<params> </params>
<constraints></constraints>

</location>

<location>
<p_gamma>0.5</p_gamma>
<content>

<x> $x </x>
<y> $y </y>
<height> $height </height>
<width> $width </width>

</content>
<rhs>

<AREA>
$t_area <time > </time>
<score > </score>

$x <x> </x>
$y <y> </y>

$width <width> </width>
$height <height> </height>

</AREA>
</rhs>
<params> </params>
<constraints></constraints>

</location>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- MULTI_CLICKS -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<multi_clicks>
<p_gamma>1.0</p_gamma>
$t_clicks <time > </time>

<objects> ˆo1 </objects>
<rhs>

<DEIXIS>
$x <x> </x>
$y <y> </y>

<left> down </left>
<middle> </middle>
<right> </right>

</DEIXIS>
<multi_clicks>

$o2 <objects> </objects>
</multi_clicks>

</rhs>
<params>

$dxy <dxy> 100 </dxy>
$td <td> 5 </td>

</params>
<constraints>

<![CDATA[ objectsAt ( $x, $y, $dxy, $dxy, ˆo3 )*concat( $o2, ˆo3,ˆo1 )]]>
</constraints>

</multi_clicks>

<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- SEMANTIC WORD GROUPS -->
<!-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -->
<!-- AND -->
<and> <p_gamma>1.0</p_gamma> <rhs><CC> <word> and </word></CC></rhs></and>

<!-- CREATE (synonyms) -->
<create> <p_gamma>0.25</p_gamma> <rhs><VB> <word> create </word> </VB></rhs></create>
<create> <p_gamma>0.25</p_gamma> <rhs><VB> <word> make </word> </VB></rhs></create>
<create> <p_gamma>0.25</p_gamma> <rhs><VB> <word> draw </word> </VB></rhs></create>
<create> <p_gamma>0.25</p_gamma> <rhs><VB> <word> put </word> </VB></rhs></create>

<!-- TRANSFORM (synonyms) -->
<transform> <p_gamma>0.4</p_gamma> <rhs><VB> <word> transform </word> </VB></rhs></transform>
<transform> <p_gamma>0.3</p_gamma> <rhs><VB> <word> turn </word> </VB></rhs></transform>
<transform> <p_gamma>0.3</p_gamma> <rhs><VB> <word> make </word> </VB></rhs></transform>

97



APPENDIX B. EXAMPLE GRAMMAR

<!-- MOVE (synonyms) -->
<move> <p_gamma>0.5</p_gamma> <rhs><VB> <word> move </word> </VB></rhs></move>
<move> <p_gamma>0.5</p_gamma> <rhs><VB> <word> put </word> </VB></rhs></move>

<!-- DELETE (synonyms) -->
<delete> <p_gamma>0.4</p_gamma> <rhs><VB> <word> delete </word> </VB></rhs></delete>
<delete> <p_gamma>0.3</p_gamma> <rhs><VB> <word> remove </word> </VB></rhs></delete>
<delete> <p_gamma>0.3</p_gamma> <rhs><VB> <word> erase </word> </VB></rhs></delete>

<!-- a (article) -->
<a> <p_gamma>0.5</p_gamma><rhs><DT> <word> a </word></DT></rhs></a>
<a> <p_gamma>0.5</p_gamma><rhs><DT> <word> an</word></DT></rhs></a>

<!-- here_there -->
<here_there> <p_gamma>0.5</p_gamma><rhs><RB> <word> here </word></RB></rhs></here_there>
<here_there> <p_gamma>0.5</p_gamma><rhs><RB> <word> there </word></RB></rhs></here_there>

<!-- COLOURS -->
<colour> <p_gamma>0.2</p_gamma>
<content><colour>red</colour></content><rhs> <JJ> <word>red</word></JJ> </rhs>

</colour>
<colour> <p_gamma>0.1</p_gamma>
<content><colour>orange</colour></content><rhs> <JJ> <word>orange</word></JJ> </rhs>

</colour>
<colour> <p_gamma>0.1</p_gamma>
<content><colour>yellow</colour></content><rhs> <JJ> <word>yellow</word></JJ> </rhs>

</colour>
<colour> <p_gamma>0.2</p_gamma>
<content><colour>green</colour></content><rhs> <JJ> <word>green</word></JJ> </rhs>

</colour>
<colour> <p_gamma>0.2</p_gamma>
<content><colour>blue</colour></content><rhs> <JJ> <word>blue</word></JJ> </rhs>

</colour>
<colour> <p_gamma>0.1</p_gamma>
<content><colour>violet</colour></content><rhs> <JJ> <word>violet</word></JJ> </rhs>

</colour>
<colour> <p_gamma>0.1</p_gamma>
<content><colour>violet</colour></content><rhs> <JJ> <word>purple</word></JJ> </rhs>

</colour>

<!-- SHAPES -->
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> cube </shape> <num> s </num> </content>
<rhs> <NN> <word> cube</word></NN> </rhs>

</obj_type>
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> cube </shape> <num> s </num> </content>
<rhs> <NN> <word> box</word></NN> </rhs>

</obj_type>
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> sphere </shape> <num> s </num> </content>
<rhs> <NN> <word> sphere</word></NN> </rhs>

</obj_type>
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> sphere </shape> <num> s </num> </content>
<rhs> <NN> <word> ball</word></NN> </rhs>

</obj_type>
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> pyramid </shape> <num> s </num> </content>
<rhs> <NN> <word> pyramid</word></NN> </rhs>

</obj_type>
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> cube </shape> <num> p </num> </content>
<rhs> <NNS> <word> cubes</word></NNS> </rhs>

</obj_type>
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> cube </shape> <num> p </num> </content>
<rhs> <NNS> <word> boxes</word></NNS> </rhs>

</obj_type>
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> sphere </shape> <num> p </num> </content>
<rhs> <NNS> <word> spheres</word></NNS> </rhs>

</obj_type>
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> sphere </shape> <num> p </num> </content>

98



APPENDIX B. EXAMPLE GRAMMAR

<rhs> <NNS> <word> balls</word></NNS> </rhs>
</obj_type>
<obj_type> <time> </time> <p_gamma>0.1</p_gamma>

<content> <shape> pyramid </shape> <num> p </num> </content>
<rhs> <NNS> <word> pyramids</word></NNS> </rhs>

</obj_type>

</CLAV_grammar>

99



REFERENCES

[1] A. Ageno and H. Rodriguez, Extending bidirectional chart parsing with a stochastic model.

[2] Hassan Ait-kaci and Roger Nasr, Integrating logic and functional programming, Lisp and Symbolic

Computation 2 (1989), no. 1, 51–89.

[3] Jan Alexandersson and Tilman Becker, Overlay as the basic operation for discourse processing in a

multimodal dialogue system, Proceedings of the 2nd IJCAI Workshop on Knowledge and Reasoning

in Practical Dialogue Systems (Seattle, Washington), August 2001.

[4] Kikuo Asai, Noritaka Osawa, Yuji Y. Sugimoto, and Yoshiaki Tanaka, Viewpoint motion control by

body position in immersive projection display, SAC ’02: Proceedings of the 2002 ACM symposium

on Applied computing (New York, NY, USA), ACM Press, 2002, pp. 1074–1079.

[5] Speech at Carnegie Mellon University group, Jsgfgrammar,

http://cmusphinx.sourceforge.net/sphinx4/javadoc/edu/cmu/sphinx/jsapi/JSGFGrammar.html,

www-url, 2004.

[6] , Dragon dictation products, http://www.speech.cs.cmu.edu/comp.speech/section6/ recogni-

tion/dragon.dictation.html, www-url, March 2006.

[7] Micha Baum, Gregor Erbach, Markus Kommenda, Georg Niklfeld, and Estela Puig-Waldmller,

Speech and multimodal dialogue systems for telephony applications based on a speech database of

austrian german, OGAI Journal, 2001.

[8] Christian Beno&#238;t and Bertrand Le Goff, Audio-visual speech synthesis from french text: eight

years of models, designs and evaluation at the icp, Speech Commun. 26 (1998), no. 1-2, 117–129.

[9] Adam L. Berger, Stephen Della Pietra, and Vincent J. Della Pietra, A maximum entropy approach to

natural language processing, Computational Linguistics 22 (1996), no. 1, 39–71.

[10] Sabine Bergler, Rene Witte, Michelle Khalife, Zuo Li, and Frank Rudzicz, Using knowledge-poor

coreference resolution for text summarization, proceedings of HLT-NAACL 2003 Text Summariza-

tion Workshop (DUC 03) (Edmonton AB, Canada), 2003.



REFERENCES

[11] Niels Ole Bernsen and Laila Dybkjær, Evaluation of spoken multimodal conversation, ICMI ’04:

Proceedings of the 6th international conference on Multimodal interfaces (New York, NY, USA),

ACM Press, 2004, pp. 38–45.

[12] Guy E. Blelloch and Margaret Reid-Miller, Fast set operations using treaps, SPAA ’98: Proceedings

of the tenth annual ACM symposium on Parallel algorithms and architectures (New York, NY, USA),

ACM Press, 1998, pp. 16–26.

[13] Paul Boersma, Accurate short-term analysis of the fundamental frequency and the harmonics-to-

noise ratio of a sampled sound, Proceedings of the Institute of Phonetic Sciences of the University

of Amsterdam 17, 1993, pp. 97–110.

[14] Richard A. Bolt, “put-that-there”: Voice and gesture at the graphics interface, SIGGRAPH 80:

Proceedings of the 7th annual conference on Computer graphics and interactive techniques (New

York, NY, USA), ACM Press, 1980, pp. 262–270.

[15] Yves Boussemart, François Rioux, Frank Rudzicz, Mike Wozniewski, and Jeremy Cooperstock,

A framework for 3d visualisation and manipulation in an immersive space using an untethered

bimanual gestural interface, Proceedings of the ACM Symposium on Virtual Reality Software and

Technology, 2004.

[16] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal, Pattern-

oriented software architecture: a system of patterns, John Wiley & Sons, Inc., New York, NY, USA,

1996.

[17] William Byrne, P. Beyerlein, J.M. Huerta, Sanjiv Khudanpur, B. Marthi, J. Morgan, N. Peterek,

Joseph Picone, D. Vergyri, and W. Wang, Towards language independent acoustic modeling, ASRU,

1999.

[18] Noelle Carbonell, Multimodal interfaces a generic design approach, pp. 209–223, Springer, 2005.

[19] J. Cassell and S. Prevost, Distribution of semantic features across speech & gesture by humans and

machines, 1996.

[20] Adam Cheyer and Luc Julia, Multimodal maps: An agent-based approach, Multimodal Human-

Computer Communication, Systems, Techniques, and Experiments (London, UK), Springer-Verlag,

1998, pp. 111–121.

[21] P. R. Cohen, M. Dalrymple, D. B. Moran, F. C. Pereira, and J. W. Sullivan, Synergistic use of direct

manipulation and natural language, SIGCHI Bull. 20, no. SI, 227–233.

101



REFERENCES

[22] Philip R. Cohen, Michael Johnston, David McGee, Sharon Oviatt, Jay Pittman, Ira Smith, Liang

Chen, and Josh Clow, Quickset: multimodal interaction for distributed applications, MULTIME-

DIA ’97: Proceedings of the fifth ACM international conference on Multimedia (New York, NY,

USA), ACM Press, 1997, pp. 31–40.

[23] Françoise D. Néel and Wolfgang M. Minker, Computational models of speech pattern processing,

NATO Asi Series. Series F, Computer and Systems Sciences, vol. 169, ed. Keith Ponting, pp. 404–

430, Springer, 1999.

[24] Alain Colmerauer, Les grammaires de métamorphose GIA, Internal publication, Groupe Intelligence

artificielle, Faculté des Sciences de Luminy, Université Aix-Marseille II, France, Nov 1975. Eng-

lish version, Metamorphosis grammars. In L. Bolc, (Ed.), Natural Language Communication with

Computers, Lecture Notes in Computer Science 63, Springer Verlag, Berlin, 1978, pp. 133–189,

1975.

[25] W3C World Wide Web Consortium, Multimodal interaction activity, http://www.w3.org/2002/mmi/,

www-url, December 2005.

[26] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to algorithms, MIT

Press/McGraw-Hill, 1990.

[27] A. Corradini and P. Cohen, Multimodal speech-gesture interface for hands-free painting on virtual

paper using partial recurrent neural networks for gesture recognition, 2002.

[28] , On the relationships among speech, gestures, and object manipulation in virtual environ-

ments: Initial evidence, Proc. of Int’l CLASS Work. on Natural, Intell. and Effective Interaction in

Multimodal Dialogue Systems, 2002.

[29] Rodrigo de Luis-Garc&#237;a, Carlos Alberola-L&#243;pez, Otman Aghzout, and Juan Ruiz-

Alzola, Biometric identification systems, Signal Process. 83 (2003), no. 12, 2539–2557.

[30] Harsha Srivatsa (IBM developerWorks), Multimodal applications:another step in computer/human

interaction, http://www-128.ibm.com/developerworks/wireless/library/wi-multimodal/, world wide

web, June 2002.

[31] John Dowding, Beth ann Hockey, Jean Mark Gawron, and Christopher Culy, Practical issues in

compiling typed unification grammars for speech recognition, Meeting of the ACL, 2001, pp. 164–

171.

[32] John Dowding, Jean Mark Gawron, Douglas E. Appelt, John Bear, Lynn Cherny, Robert Moore,

and Douglas B. Moran, GEMINI: A natural language system for spoken-language understanding,

Meeting of the Association for Computational Linguistics, 1993, pp. 54–61.

102



REFERENCES

[33] Jacob Eisenstein and C. Mario Christoudias, A salience-based approach to gesture-speech align-

ment, in proceedings of HLT-NAACL 2004 (Boston, MA), 2004, pp. 25–32.

[34] Christiane Fellbaum (ed.), WordNet: An electronic lexical database, MIT Press, 1998.

[35] John E. Freund, Mathematical statistics, 5 ed., Prentice Hall, 1992.

[36] Cassandra Gilliam, Design of advanced multimodal interfaces for mobile, collaborative and infor-

mal learning, http://fas.sfu.ca/events/event.2005-04-07.3459738687, world wide web, April 2005.

[37] Herv Glotin, Dimitra Vergyri, Chalapathy Neti, Gerasimos Potamianos, and Juergen Luettin,

Weighting schemes for audio-visual fusion in speech recognition, Int. Conf. Acoust. Speech Sig-

nal Process., 2001.

[38] A. G. Hauptmann, Speech and gestures for graphic image manipulation, Proc. ACM CHI’89 Con-

ference on Human Factors in Computing Systems, 1989, pp. 241–245.

[39] Gerd Herzog, Alassane Ndiaye, Stefan Merten, Heinz Kirchmann, Tilman Becker, and Peter Poller,

Large-scale software integration for spoken language and multimodal dialog systems, Nat. Lang.

Eng. 10 (2004), no. 3-4, 283–305.

[40] Wolfgang Hess, Pitch determination of speech signals: Algorithms and devices, Springer, Berlin,

Germany, 1983.

[41] H.-G. Hirsch and D. Pearce, The AURORA experimental framework for the performance evaluation

of speech recognition under noisy conditions, Proceedings of the ISCA ITRW ASR, 2000.

[42] Graeme Hirst, Discourse-oriented anaphora resolution in natural language understanding: a re-

view, Comput. Linguist. 7 (1981), no. 2, 85–98.

[43] Hartwig Holzapfel, Kai Nickel, and Rainer Stiefelhagen, Implementation and evaluation of a

constraint-based multimodal fusion system for speech and 3d pointing gestures, ICMI ’04: Pro-

ceedings of the 6th international conference on Multimodal interfaces (New York, NY, USA), ACM

Press, 2004, pp. 175–182.

[44] JE Hopcroft and JD Ullman, Introduction to automata theory, languages, and computation,

Addison-Wesley, Reading, Massachussetts, 1979.

[45] Xuedong Huang, Alex Acero, and Hsiao-Wuen Hon, Spoken language processing: A guide to the-

ory, algorithm, and system development, Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001,

Foreword By-Raj Reddy.

[46] Juan M. Huerta, Speech recognition in mobile environments, Ph.D. thesis, Carnegie Mellon Univer-

sity. Department of Electrical and Computer Engineering, 2000.

103



REFERENCES

[47] Don Johnson and Sinan Sinanovic, Symmetrizing the kullbackleibler distance.

[48] Mark Johnson, Learning and parsing stochastic unification-based grammars., COLT, 2003,

pp. 671–683.

[49] Michael Johnston, Unification-based multimodal parsing, Proceedings of the 36th annual meeting

on Association for Computational Linguistics (Morristown, NJ, USA), Association for Computa-

tional Linguistics, 1998, pp. 624–630.

[50] Michael Johnston and Srinivas Bangalore, Finite-state multimodal parsing and understanding, Pro-

ceedings of the 18th conference on Computational linguistics (Morristown, NJ, USA), Association

for Computational Linguistics, 2000, pp. 369–375.

[51] , Finite-state methods for multimodal parsing and integration, ESSLLI Workshop on Finite-

state Methods, ESSLLI, 2001.

[52] Daniel Jurafsky and James H. Martin, Speech and language processing: An introduction to natural

language processing, computational linguistics, and speech recognition, Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2000.

[53] Martin Kay, Functional grammar, Proceedings of the 5th Annual Meeting of the Berkeley Linguis-

tics Society (C. Chiarello et al., ed.), 1979, pp. 142–158.

[54] P. Kay and C. Fillmore, Grammatical constructions and linguistic generalizations: the what’s x

doing y, 1999.

[55] Adam Kendon, Gesture and speech: Two aspects of the process of utterance, Nonverbal Communi-

cation and Language, pp. 207–227, 1980.

[56] Sanshzar Kettebekov and Rajeev Sharma, Toward natural gesture/speech control of a large dis-

play, EHCI ’01: Proceedings of the 8th IFIP International Conference on Engineering for Human-

Computer Interaction (London, UK), Springer-Verlag, 2001, pp. 221–234.

[57] Sanshzar Kettebekov, Mohammed Yeasin, Nils Krahnstoever, and Rajeev Sharma, Prosody based

co-analysis of deictic gestures and speech in weather narration broadcast, Workshop on Multimodal

Resources and Multimodal System Evaluation. (LREC 2002), 2002, pp. 57–62.

[58] Donald E. Knuth, Sorting and searching, The Art of Computer Programming, vol. 3, Addison-

Wesley, 1973.

[59] S. Kopp, P. Tepper, K. Ferriman, and J. Cassell, Trading spaces: How humans and humanoids use

speech and gesture to give directions, Spatial Cognition and Computation (in press) (2006).

[60] Robert M. Krauss, Why do we gesture when we speak?, Current Directions in Psychological Science

7 (1998), 54–59.

104



REFERENCES

[61] Hong-Kwang Jeff Kuo, Eric Fosler-Lussier, Hui Jiang, and Chin-Hui Lee, Discriminative training

of language models for speech recognition, Proc. of International Conference on Acoustics, Speech

and Signal Processing (Orlando, Florida), 2002.

[62] Paul Lamere, Philip Kwok, Evandro Gouvea, Bhiksha Raj, Rita Singh, William Walker, M. War-

muth, and Peter Wolf, The cmu sphinx-4 speech recognition system, IEEE Intl. Conf. on Acoustics,

Speech and Signal Processing (ICASSP 2003) (Hong Kong), Apr 2003.

[63] Paul Lamere, Philip Kwok, William Walker, Evandro Gouvea, Rita Singh, Bhiksha Raj, and Pe-

ter Wolf, Design of the cmu sphinx-4 decoder, Proceedings of the 8th European Conf. on Speech

Communication and Technology (EUROSPEECH 2003), 2003.

[64] Susan J. Lederman, Roberta L. Klatzky, T. Morgan, and C. Hamilton, Integrating multimodal in-

formation about surface texture via a probe: Relative contributions of haptic and touch-produced

sound sources., Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems,

2002, pp. 97–104.

[65] Kai-Fu Lee, Automatic speech recognition: the development of the sphinx system, Kluwer Aca-

demic, Boston, MA, 1989.

[66] Juergen Luettin, Neil A. Thacker, and Steve W. Beet, Active shape models for visual speech feature

extraction, Speechreading by Humans and Machines (D. G. Storck and M. E. Hennecke (editors),

eds.), NATO ASI Series, Series F: Computer and Systems Sciences, vol. 150, Springer Verlag,

Berlin, 1996, pp. 383–390.

[67] Christopher D. Manning and Hinrich Schü tze, Foundations of statistical natural language process-

ing, MIT Press, Cambridge, MA, USA, 2002.

[68] David McNeill, Hand and mind: What gestures reveal about thought, University of Chicago Press

and CSLI Publications, Chicago, Illinois, 1992.

[69] Robert C. Moore, Removing left recursion from context-free grammars, Proceedings of 1st Annual

Conference of the North American Chapter of the ACL, 2000.

[70] Ezequiel Morsella and Robert M. Krauss, The role of gestures in spatial working memory and

speech, American Journal of Psychology 117 (2004), 411–424.

[71] Petr Motlcek, Luks Burget, and Jan Cernock, Visual features for multimodal speech recognition,

Proceedings of Radioelektronika 2005, Fakulta elektrotechniky a komunikacnch technologi VUT,

2005.

[72] P. Muller, Modular specification and verification of object-oriented programs, Ph.D. thesis, Fer-

nUniversitat Hagen, 2001.

105



REFERENCES

[73] J. G. Neal and S. C. Shapiro, Intelligent multimedia interface technology, Intelligent User Interfaces

(J. W. Sullivan and S. W. Tyler, eds.), Frontier Series, ACM Press, New York, 1991.

[74] C. Neti, G.Iyengar, G. Potamianos, A. Senior, and B. Maison, Perceptual interfaces for information

interaction: Joint processing of audio and visual information for human-computer interaction, Proc.

of the International Conference on Spoken Language Processing (ICSLP’2000) (Beijing, China),

2000, pp. 11–14.

[75] Nils J. Nilsson, Artificial intelligence: a new synthesis, Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 1998.

[76] Douglas O’Shaughnessy, Modelling fundamental frequency, and its relationship to syntax, seman-

tics, and phonetics, Ph.D. thesis, Massachusetts Institute of Technology. Dept. of Electrical Engi-

neering and Computer Science, 1976.

[77] , Speech communications - human and machine, IEEE Press, New York, NY, USA, 2000.

[78] Sharon Oviatt, Multimodal interfaces, pp. 286–304, Lawrence Erlbaum Associates, Inc., Mahwah,

NJ, USA, 2003.

[79] Sharon Oviatt, Antonella DeAngeli, and Karen Kuhn, Integration and synchronization of input

modes during multimodal human-computer interaction, CHI ’97: Proceedings of the SIGCHI con-

ference on Human factors in computing systems (New York, NY, USA), ACM Press, 1997, pp. 415–

422.

[80] Sharon Oviatt and Karen Kuhn, Referential features and linguistic indirection, Multimodal Lan-

guage, 1998.

[81] Sharon Oviatt and Robert vanGent, Error resolution during multimodal human-computer interac-

tion, Proceedings of the International Conference on Spoken Language Processing, 1996.

[82] V. I. Pavlovic, G. A. Berry, and T. S. Huang, Integration of audio/visual information for use in

human-computer intelligent interaction, ICIP ’97: Proceedings of the 1997 International Conference

on Image Processing (ICIP ’97) 3-Volume Set-Volume 1 (Washington, DC, USA), IEEE Computer

Society, 1997, p. 121.

[83] Vladimir Pavlovic, Rajeev Sharma, and Thomas S. Huang, Visual interpretation of hand gestures

for human-computer interaction: A review, IEEE Transactions on Pattern Analysis and Machine

Intelligence 19 (1997), no. 7, 677–695.

[84] Vladimir I. Pavlovic and Thomas S. Huang, Multimodal prediction and classification on audio-

visual features, Workshop on Representations for Multi-modal Human Computer Interaction (Menlo

Park, CA), 1998, pp. 55–59.

106



REFERENCES

[85] P. Peer and F. Solina, An automatic human face detection method, Proceedings of Computer Vision

Winter Workshop (Rastenfeld, Austria) (N. Brandle, ed.), 1999, pp. 122–130.

[86] Carl Pollard and Ivan A. Sag, Head-driven phrase structure grammar, University of Chicago Press

and CSLI Publications, Chicago, Illinois, 1994.

[87] The NTP Project, Ntp: The network time protocol, http://www.ntp.org/, www-url, February 2005.

[88] Derek Proudian and Carl Pollard, Parsing head-driven phrase structure grammar, Proceedings of

the 23rd annual meeting on Association for Computational Linguistics (Morristown, NJ, USA),

Association for Computational Linguistics, 1985, pp. 167–171.

[89] Adwait Ratnaparkhi, Maximum entropy models for natural language ambiguity resolution, Ph.D.

thesis, University of Pennsylvania, 1998.

[90] Thomas Richardson, A polynomial-time algorithm for deciding markov equivalence of directed

cyclic graphical models, Proceedings of the 12th Annual Conference on Uncertainty in Artificial

Intelligence (UAI-96) (San Francisco, CA), Morgan Kaufmann Publishers, 1996, pp. 462–469.

[91] Vitor Rocio and José Gabriel Lopes, Partial parsing, deduction and tabling., TAPD, 1998, pp. 52–

61.

[92] Kenneth H. Rosen, Discrete mathematics and its applications (2nd ed.), McGraw-Hill, Inc., New

York, NY, USA, 1991.

[93] P. Rubin, E. Vatikiotis-Bateson, and C. Benoit, Audio-visual speech processing [special issue],

Speech Communication 26 (1998).

[94] Frank Rudzicz, Put a grammar here: Bi-directional parsing in multimodal interaction, Proceedings

of the CHI 2006 Extended Abstracts, 2006.

[95] Stuart J. Russell and Peter Norvig, Artificial intelligence: A modern approach, Pearson Education,

2003.

[96] Eric D. Sandness, Discriminative training of acoustic models in a segment-based speech recognizer,

Master’s thesis, Massachussetts Institute of Technology. Department of EECS, 2000.

[97] Giorgio Satta and Oliviero Stock, Bidirectional context-free grammar parsing for natural language

processing, Artif. Intell. 69 (1994), no. 1-2, 123–164.

[98] Raimund Seidel and Cecilia R. Aragon, Randomized search trees, Algorithmica 16 (1996), no. 4/5,

464–497.

[99] Clifford A. Shaffer, A practical introduction to data structures and algorithm analysis, Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1997.

107



REFERENCES

[100] R. Sharma, M. Yeasin, N. Krahnstoever, I. Rauschert, G. Cai, A. MacEachren, K. Sengupta, and

I. Brewer, Speech-gesture driven multimodal interfaces for crisis management, Proceedings of IEEE

special issue on Multimodal Human-Computer Interface, 2003.

[101] Rajeev Sharma, Jiongyu Cai, Srivat Chakravarthy, Indrajit Poddar, and Yogesh Sethi, Exploiting

speech/gesture co-occurrence for improving continuous gesture recognition in weather narration,

FG ’00: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture

Recognition 2000 (Washington, DC, USA), IEEE Computer Society, 2000, p. 422.

[102] G. Skantze, Coordination of referring expressions in multimodal human-computer dialogue, 2002.

[103] Kay Stanney, Shatha Samman, Leah Reeves, Kelly Hale, Wendi Buff, Clint Bowers, Brian Goldiez,

Denise Nicholson, and Stephanie Lackey, Functional optical brain imaging using near-infrared

during cognitive tasks, International Journal of Human-Computer Interaction 17 (2004).

[104] IMS Stuttgart, The penn treebank tag set, http://www.ims.uni-

stuttgart.de/projekte/corpusworkbench/cqp-htmldemo/penntreebankts.html, www-url, 1998.

[105] Satoshi Tamura, Koji Iwano, and Sadaoki Furui, A robust multi-modal speech recognition method

using optical-flow analysis, IDS-2002, 2002.

[106] , Multi-modal speech recognition using optical-flow analysis for lip images, J. VLSI Signal

Process. Syst. 36 (2004), no. 2-3, 117–124.

[107] Music TMH, Speech and Hearing, Wavesurfer, http://http://www.speech.kth.se/wavesurfer/, www-

url, February 2006.

[108] Masaru Tomita, An efficient context-free parsing algorithm for natural languages and its applica-

tions, Ph.D. thesis, 1985.

[109] M. Turk and M. Kolsch, Perceptual interfaces, 2004.

[110] Carnegie Mellon University, Sphinx-4 a speech recognizer written entirely in the javatm program-

ming language (http://cmusphinx.sourceforge.net/sphinx4/), www-url, September 2005.

[111] Dimitra Vergyri, Stavros Tsakalidis, and William Byrne, Minimum risk acoustic clustering for mul-

tilingual acoustic model combination, Proc. ICSLP, vol. 3, 2000, pp. 873–876.

[112] Minh Tue Vo, A framework and toolkit for the construction of multimodal learning interfaces, Ph.D.

thesis, 1998, Chair-Alex Waibel.

[113] W3C.

[114] Ipke Wachsmuth, Communicative rhythm in gesture and speech, Lecture Notes in Computer Science

1739 (1999), 277–N/A.

108



REFERENCES

[115] Wolfgang Wahlster, Planning multimodal discourse, Proceedings of the 31st annual meeting on

Association for Computational Linguistics (Morristown, NJ, USA), Association for Computational

Linguistics, 1993, pp. 95–96.

[116] , Smartkom: Symmetric multimodality in an adaptive and reusable dialogue shell, Proceed-

ings of the Human Computer Interaction Status Conference 2003, 2003, pp. 47–62.

[117] Kenneth Wauchope, Two multimodal interfaces to military simulations, Proceedings of the fifth

conference on Applied natural language processing (San Francisco, CA, USA), Morgan Kaufmann

Publishers Inc., 1997, pp. 21–22.

[118] Kent Wittenburg, F-patr: functional constraints for unification-based grammars, Proceedings of

the 31st annual meeting on Association for Computational Linguistics (Morristown, NJ, USA),

Association for Computational Linguistics, 1993, pp. 216–223.

[119] Wai Yu and Stephen A. Brewster, Comparing two haptic interfaces for multimodal graph rendering.,

Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2002, pp. 3–9.

[120] Shlomo Zilberstein, Using anytime algorithms in intelligent systems, AI Magazine 17 (1996), no. 3,

73–83.

[121] G. K. Zipf, Human behavior and the principle of least-effort, Addison-Wesley, Cambridge, MA,

1949.

109



Document Log:

Manuscript Version 0

Typeset by AMS-LATEX — 28 September 2006

FRANK RUDZICZ

CENTRE FOR INTELLIGENT MACHINES, MCGILL UNIVERSITY, 3480 UNIVERSITY ST., MONTRÉAL (QUÉBEC) H3A 2A7,

CANADA, Tel. : (514) 398-8200

E-mail address: frudzi@cim.mcgill.ca

Typeset by AMS-LATEX


