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ABSTRACT

In an attempt to overcome problems associated with articulatory
limitations and generative models, this work considers the use of
phonological features in discriminative models for disabled speech.
Specifically, we train feed-forward and recurrent neural networks,
and radial basis and sequence-kernel support vector machines to ab-
stractions of the vocal tract, and apply these models to phone recog-
nition on dysarthric speech. The results show relative error reduc-
tion of between 1.5% and 10.9% with this approach against standard
hidden Markov modeling, and increases in accuracy with speaker in-
telligibility across all classifiers. This work may be applied within
components of assistive software for speakers with dysarthria.

Index Terms— dysarthria, neural networks, kernel methods

1. INTRODUCTION

Dysarthria comprises a group of neuromuscular disorders that can
drastically limit speech intelligibility in congenital cases such as
cerebral palsy or traumatic ones such as stroke. These disorders
typically limit motor function generally, making other physical in-
teraction (e.g., keyboard) slower, and less desirable than spoken ex-
pression [1]. Unfortunately, automatic speech recognition is cur-
rently ill-suited to dysarthric speech, rendering such software inac-
cessible to those who might most benefit from it. We have found
that traditional generative approaches such as hidden Markov models
(HMMs) trained for speaker independence may achieve word-level
accuracy of less than 4.5% on severely dysarthric speech against
84.8% on non-disabled speech on short sentences [2].

Disabled speech is typically characterized by a limited range
of motion in the speech articulators, which results in smaller vowel
spaces and more inconsistent consonants, especially in clusters [3].
As these phones assimilate with one another, generative models as-
sign more probability to overlapped spaces, hurting performance.
In this paper we consider two discriminative families for stochastic
classification, neural networks (NNs) and support vector machines
(SVMs), on the task of differentiating phones at the frame level for
disabled speech. Since this speech is characterized by differences in
physical production, our goal is to determine whether abstract repre-
sentations of dysarthric articulation are easily discriminable in dis-
ordered speech, and whether these are useful in speech recognition
for this population generally.

1.1. Phonological features

Phonological features (PFs)! are quantized abstractions of speech
production along particular vocal tract configurations. For example,

IPFs are often called articulatory features.

the Front/Back feature specifies the sagittal position of the tongue
during vowels, and Static specifies the rate of acoustic change (e.g.,
diphthongs are dynamic). Because PFs can change asynchronously
across phonetic boundaries and are more fine-grained than phone-
mic representations, their use has been shown to partially account
for coarticulation effects and speaker variability [4], which are par-
ticularly exacerbated in dysarthric speech. Other useful properties of
PFs include noise-robustness, language-independence, and reliable
recovery from acoustics among regular speakers [5]. The features
used here are based on those of Wester [6], and listed in Table 1.

Feature Values (with Cardinality)

Manner approximant, fricative, nasal, retroflex, si-
lence, stop, vowel (7)

Place alveolar, bilabial, dental, labiodental, si-
lence, velar, nil (7)

High/Low high, mid, low, silence, nil (4)

Voice voiced, unvoiced (2)

Front/Back  front, central, back, nil (4)

Round round, non-round, nil (3)

Static static, dynamic (2)

Table 1. Phonological features and their possible values.

2. PHONOLOGICAL-ACOUSTIC MODELS

In this paper, acoustic observation vectors are frames of speech op-
tionally surrounded by a window of varying length. Each PF is mod-
eled by two NNs and two SVMs for each speaker, as described be-
low. Additionally, for each of these four discriminative techniques,
we construct three triphone classifiers. The first identifies triphones
solely by acoustics, the second based solely on output from the 7 PF
classifiers, and the third based on a combination of these. Nonexis-
tent triphones in the training data are modeled by their monophonic
progenitors, of which there are 61.

2.1. Neural Networks

Multilayer neural networks have rarely been applied to classification
within dysarthric speech, despite their popularity in general. One
study, however, showed that multilayer feed-forward NNs supplied
with either Fourier spectral coefficients or formant frequencies could
achieve a relative error reduction (RER) of up to 40% over a com-
mercial HMM-based system for a cerebrally palsied speaker [7].
The two types of neural network we consider here are the feed-
forward multi-layer perceptron (MLP) and the recurrent Elman net-
work (ELM), which are primarily distinguished by the latter’s time-
delayed replication of the hidden layer as additional contextual in-



put. The output of each NN consists of #n nodes, where n is the
cardinality of the PF being modeled, and the i’ node is uniquely ac-
tive when training the #* value of that PF. The input to each of these
NN are 42-dimensional acoustic frame vectors (see §3.1), plus op-
tional bounding context windows of 2 or 4 frames. Three additional
networks perform triphone classification given either acoustic frame
vectors, the output of the 7 PF classifiers, or both as input. All net-
works are fully connected between layers and select the class having
the highest posterior probability.

Activation functions in hidden layer units are tan-sigmoid (i.e.,
[2/ (14 >)] — 1), and linear in the output layer, given weighted
sums of activations x. The size of the hidden layer in each network
varies with the size of the PF being classified, and is based empiri-
cally on ratios for similar tasks in related work [8, 5], as shown in
Table 2. All NN triphone classifiers contain 500 hidden units.

Mann. Place Hi/Low Voi. Fr/Back Ro. Stat.
300 200 100 100 200 100 100

Table 2. Number of hidden units per NN, given target feature.

A problematic consequence of using tan-sigmoid activations, es-
pecially given large input vectors, is that the gradient can have very
small magnitude, which can slow training. Instead, all NN training is
performed by resilient back-propagation, which adjusts update val-
ues according to sign changes in partial derivatives. Here, the degree
of updates is reduced if weights oscillate over several iterations and
is increased when weights continually change in the same direction.
This approach is faster than standard steepest gradient descent on
our data, while only requiring a modest increase in memory.

2.2. Support Vector Machines

Support vector machines are general maximum margin classifiers
that are of increasing interest in speech recognition due to their ro-
bustness to both sparse data [9] and rapid transient changes in acous-
tic sequences [10]. SVMs explicitly minimize the empirical classi-
fication error by orienting a hyperplanar decision boundary between
classes such that its orthogonal vector represents a maximized mar-
gin between the nearest data. In these experiments we use a soft-
margin SVM, and extend the process to k-class discrimination by
training k(k — 1) /2 binary classifiers, each delineating two class re-
gions [11].

We consider two SVM kernels that differ in the form of their
input. The first is a radial basis function (RBF), that generalizes to
non-linear decision boundaries using the following kernel:
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given vectors x and y, and width parameter ©.

The second kernel, Kprw , is a sequence kernel proposed by Wan
and Carmichael [9] that explicitly operates on time-series, and can be
generalized to arbitrary sequences u and v having non-equal lengths,
although sequence lengths are forced to be equal here. This kernel
exploits the notion of distance between sequences inherent in dy-
namic time warping (DTW), and converts it to a form amenable for
use in SVMs. The approach is to convert local Euclidean distances
between frame vectors to angles by projecting these d-dimensional
vectors onto a unit hypersphere H centered & units from their origin
in the (d + 1)!" dimension. Namely, every vector u; is converted to
the unit vector i; sharing an origin with H by
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Given two unit vectors, #; and v; that define points on the surface

of H, the angle between them is by definition
ds(lii,v'}‘) = eﬁi";/ = aI‘CCOS(Ii,',lfj). (3)

Now, given these local distances, we apply the symmetric DTW
on whole sequences u and v and get the minimum global distance
from the non-linear aligned Viterbi path I" with
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This distance is then converted to the kernel

Kprw (H,V) = COSDglobal (ll,V), 5)

which is symmetric if the symmetric version of DTW is used, which
is a requirement for use in SVM classification. The kernel must
also either satisfy Mercer’s condition or be shown to be a valid dot
product. While the cosine over an aggregate of sequences is not
strictly a dot-product, it has been shown to be empirically useful in
speech classification nonetheless [9].

2.3. Hidden Markov Model

The baseline triphone classifier consists of standard tri-state left-
right hidden Markov models (HMMs) with continuous 16-Gaussian
mixture output densities decoded with the Viterbi algorithm and con-
ditioned on the triphone label. Each model is speaker-dependent and
trained with the iterative Baum-Welch algorithm [2].

3. EXPERIMENTS

The following subsections describe the materials, procedures, and
results of experiments related to the performance of discriminative
models on dysarthric speech.

3.1. Material

The Nemours database [12] provides phonetically annotated speech
from 11 dysarthric male speakers with either cerebral palsy or trau-
matic brain injury, and a non-dysarthric male control. Each speaker
produces 74 nonsensical sentences consisting of words randomly
selected without replacement from closed sets. All speech is sam-
pled at 16 kHz where half-overlapping 16 ms Hamming windows
are converted to 42-dimensional MFCC feature vectors consisting of
0 to 12'"-order cepstral coefficients, log energy, and all § and 68
variants. Target phonetic features are derived from TIMIT-phoneset
annotations. Additionally, Nemours provides intelligibility assess-
ments of each speaker as determined by the standardized Frenchay
Dysarthria Assessment [13]. This assessment is administered by
speech pathologists and measures the motor function of the articula-
tors (e.g., tongue, lips) and speech intelligibility along a normalized
0 (no function) to 8 (normal) scale.

Since dysarthric speakers are both relatively rare and susceptible
to fatigue, collecting data from this population can be particularly
challenging. Most studies will typically include no more than 3 or
4 dysarthric speakers [14], often producing only about 25 utterances
each [7]. Although Nemours is a relatively large database given its
type, we apply K-fold cross-validation to 10 random permutations of



90% training and 10% test data for each speaker to partially account
for sparsity. Each training set consists of ~ 93K frames, on average,
which is within the range used in studies of phonological features
for regular speakers [8].

3.2. Results and Discussion

Frame-level accuracies for each PF averaged over all dysarthric
speakers is summarized in Table 3 for each classifier. Interestingly,
while the NN methods predictably become more accurate as PF car-
dinality decreases, the SVM methods are exceptionally proficient at
classifying Manner and Place, which are highly related, and poor at
classifying the Round PF despite its low cardinality. This suggests
that there is some other aspect of those PFs that affects discriminabil-
ity, at least for SVMs. The nil class is the most poorly recognized in
three of the four PFs having it.

In general, SVM methods outperform NN on average by 4.9%
to 9.3% absolutely and provide a 19.8% relative error reduction
on dysarthric speech. On our control subject, PF models achieved
74.3% accuracy for MLP, and 77.6% for RBF, on average. Other
research on speaker-independent recurrent neural networks for PF
recognition on regular speech report frame-level accuracies between
77.2% and 89.1% given ~2.2 million frames of the OGI Numbers
database [15].

Accuracy (%)

Feature MLP ELM RBF DTW | Avg. Card.
Manner 22.1 302 66.8 654 | 46.1 7
Place 355 419 583 565 | 48.1 7
Hi/Low 530 587 557 559 | 558 4
Voice 787 813 768 781 | 78.7 2
Front/Back 482 521 551  55.7 | 52.8 4
Round 689 697 553 540 | 62.0 3
Static 642 665 673 69.2 | 66.8 2

Table 3. Classifier accuracy on PFs averaged over all speakers (best
of row in bold), with overall accuracy and cardinality.

Figure 1 shows the overall accuracy of each classification tech-
nique according to speaker intelligibility as determined by the Fren-
chay Dysarthria Assessment (§3.1). These results show a general
preference for SVM methods across all speakers, especially the less
intelligible ones, and a global increase in accuracy with intelligibil-
ity. Two speakers perturb this trend, however, with noticeable drops
in accuracy as indicated for speakers ‘RK’ and ‘BB’ in the figure.
These two individuals share exceptionally poor tongue elevation and
lateral movement relative to the rest of the group, according to their
assessments, which seems to account for an especially low accuracy
with High/Low and Front/Back PFs for these speakers. Within these
PFs, follow-up analysis revealed linear correlation coefficients up
to 0.94 between increased formant deviation and decreased tongue
function. While overall intelligibility may be useful in predicting
general trends in Figure 1, it is an aggregate measure of the functions
of component articulators [13], and may be superseded for speakers
having more localized disabilities.

Finally, we consider whether PFs are useful in identifying
phones. For each of our four modeling techniques, we construct
three triphone classifiers as described in §2. These are then applied
over whole utterances, and the selected triphones are converted into
their monophonic representations. All hidden Markov models are
connected to all others by means of transition probabilities learned
from maximum-likelihood bigrams. Table 4 shows that merely re-
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Fig. 1. Average classifier accuracy against assessed intelligibility
level.

placing an HMM with an SVM model on acoustic data reduces
frame error relatively by 6.9% to 8.8%, while including PFs gives
between 1.5% and 10.9% relative error reduction over all methods,
on average. However, since the seven PFs are rarely unanimously
correct, they alone cannot be used to infer the respective phone in
practice. Further research should investigate whether it would be
useful to restrict analysis to some subset of the seven PFs used in
this study.

Accuracy (%)

Input MLP ELM RBF DTW HMM
MFCC 319 367 384 396 33.8
PF 5.8 11.7 162 179 -
MFCCUPF 348 402 387 41.0 -

Table 4. Average phone classification accuracy.

3.3. Ongoing Work

The target PFs in this work are derived from phonetic annotations,
as is generally the case in the literature [5], which in some sense
does not take advantage of the suprasegmental and asynchronous
properties of articulation. We are currently assembling a database
of dysarthric speech focused on cerebral palsy. This data will con-
sist of more dysarthric speakers, each producing more speech than
is currently publicly available. The stimuli for this database includes
meaningful phrases, and more syntactic variability in order to ex-
plore other types of constraints on the classification process. These
constraints may include hybrid word or sentence models [16, 17] that
use language modeling, parsing, and other features of the vocal tract,
but the eventual goal is to move away from quantized models such
as PFs. Also, since hybrid NN/HMM models have improved word
recognition rates on acoustic-only regular speech [16, 17], ongoing
work involves embedding the phonologically informed methods here
into hybrid HMM models for disabled speech, and to examine the
effects of disablement on those systems.
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