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Abstract
Articulatory goals can be highly indicative of lexical intentions,
but are rarely used in speech classification tasks. In this pa-
per we show that principal differential analysis can be used to
learn the behaviours of articulatory motions associated with cer-
tain high-level articulatory goals. This method accurately learns
the parameters of second-order differential systems applied to
data derived by electromagnetic articulography. On average,
this approach is between 4.4% and 21.3% more accurate than
an HMM and a neural network baseline.
Index terms: principal differential analysis; articulation; task-
dynamics

1. Introduction
Explicit use of articulatory knowledge is still rare in automatic
speech recognition (ASR) despite evidence that it is far more
speaker-invariant and less ambiguous than the resulting acous-
tics [1]. For example, the nasal sonorants /m/, /n/, and /ng/ are
acoustically similar but uniquely and consistently involve ei-
ther bilabial closure, tongue-tip elevation, or tongue-dorsum el-
evation, respectively. The identification of linguistic intention
would, in some cases, become almost trivial given access to the
articulatory goals of the speaker.

There have been several attempts to build articulatory
knowledge into ASR systems. For example, appending di-
rect measurements of the vocal tract to acoustic observations
has been shown to reduce phone-error rates relatively by up to
17% in a standard HMM system [2]. Similarly, systems in-
corporating discrete articulatory features derived by neural net-
works from acoustics into HMM-based ASR has shown some
improvement over the acoustic-only baselines, although not all
results have been statistically significant [3; 4]. More recently,
dynamic Bayes networks have been used to model the rela-
tionships between acoustic and articulatory observations and
have shown 9% word-error rate reductions when compared to
acoustic-only baseline systems [5; 6]

In this paper we discuss the classification of discrete fea-
tures of speech by learning second-order differential equations
applied to articulatory data using a technique called principal
differential analysis. We compare this method against tradi-
tional baselines using both acoustic and articulatory data.

1.1. Articulatory knowledge

Articulatory knowledge can be built into speech classification
tasks in a number of ways. One approach is to discretize
theoretical knowledge of speech production into articulatory
features (AFs) that quantize abstract, instantaneous represen-
tations of the vocal tract across several simultaneous dimen-
sions. Modern study of AFs dates back at least to Chom-

sky and Halle [7], who represented speech across several bi-
nary features (e.g., bilabial/non-bilabial, voiced/voiceless). Re-
cently, more complex AFs representing features with higher
cardinality, such as manner and place of articulation, have
been used to partially account for coarticulation effects and
speaker variability [8]. In particular, high-level, non-binary rep-
resentations of tongue position can be highly representative of
the uttered vowel [9]. Of these representations, we are inter-
ested in Front/Back and High/Low AFs, the values of which
are derived directly from phonemic annotations as described
in previous work [10; 11], and as shown in Table 1. Further-
more, we are interested in the binary features Voiced/Unvoiced
and Bilabial/Non-bilabial. The former distinguishes all voiced
sounds (i.e., vowels and sonorant consonants) from non-voiced
sounds. The Bilabial/Non-bilabial AF has the value bilabial
during phonemes /m/, /em/ (i.e., an /m/ preceded by a vowel
mora), /p/, and /b/, and the value non-bilabial otherwise.

Front/Back Front Central Back
/ae, aw, ay,
eh, ey, ix, iy,
ih/

/ax, ah/ /ao, ow, oy,
uh, uw, aa,
ux/

High/Low High Mid Low
/ix, iy, uh,
uw, ih, ux/

/ax, eh, ey,
ow, ah/

/ae, ao, aw,
ay, oy, aa/

Table 1: Annotated phonemes used to derive specific AF
classes, after Wester [10].

Electromagnetic articulography (EMA) is a method to mea-
sure the vocal tract during speech. Here, the speaker is posi-
tioned within an electromagnetic field produced within a cube
of a known geometry, as shown in figure 1. The positions and
velocities of tiny sensors within this field can be inferred to
within 1 mm of error. [12].

Although direct measurements are not typical during
speech recognition, the vocal tract can be reliably estimated
from acoustics alone, see for example [13; 14]. Evidence that
such inversion takes place during speech perception in humans
suggests that the discriminability of speech sounds depends
powerfully on their production [15], but that is beyond the scope
of this paper.

Articulatory and acoustic data in this study are derived from
the public MOCHA database from the University of Edinburgh
[16]. This database consists of two speakers, each of whom
repeats 460 English sentences derived from TIMIT [17], with
each utterance consisting of aligned acoustic and EMA data
(along with other available modalities, such as laryngographic
data, which are not considered here). We use eight of the
male speaker’s articulatory parameters, namely the upper lip,
lower lip, upper incisor, lower incisor, tongue tip, tongue blade,



Figure 1: Electromagnetic articulography (EMA) example
setup.

tongue dorsum, and velum. Each parameter is measured in the
two dimensions of the midsaggital plane.

All articulatory data are aligned with their associated acous-
tic data, which are transformed to Mel-frequency cepstral coef-
ficients (MFCCs). Phoneme boundaries are determined auto-
matically in the MOCHA database by forced alignment.

1.2. Task-dynamics

Task-dynamics is a combined model of skilled articulator mo-
tion and the planning of vocal tract configurations [18]. Here,
the dynamic patterns of speech are the result of overlapping
gestures, which are high-level abstractions of reconfigurations
of the vocal tract. An instance of a gesture is any articula-
tory movement towards the completion of some speech-relevant
goal, such as bilabial closure, or velar opening. This theory
states that the implicit spatiotemporal behaviour underlying all
speech is the result of the interaction between gestures and
between the physical articulators [19]. Each gesture in task-
dynamic theory occurs within one of the following tract vari-
ables (TVs): lip aperture (LA), lip protrusion (LP), tongue tip
constriction location (TTCL) and degree (TTCD), tongue dor-
sum constriction location (TDCL) and degree (TDCD), velum
(VEL), glottis (GLO), and lower tooth height (LTH). For in-
stance, a gesture to close the lips would occur within the LA
variable and would set that variable close to zero.

The dynamic influence of each gesture in time on the
relevant tract variable is modeled by the following non-
homogenous second-order linear differential equation [19]:

Mz′′+Bz′+K(z− z∗) = 0, (1)

where z is a 9-dimensional vector of the instantaneous positions
of each tract variable, and z′ and z′′ are its first and second dif-
ferentials. Here, M, B, and K are diagonal matrices representing
mass, damping, and stiffness coefficients, respectively, and z∗ is
the 9-dimensional vector of target (equilibrium) positions. This
model is built on the assumption that the tract variables are in-
dependent and do not interact dynamically, although these ma-
trices could be adjusted to reflect dependencies. If the targets z∗

of this equation are known, the identification of linguistic intent
becomes possible. For example, given that a bilabial closure oc-
curs simultaneously with a velar opening and glottal vibration,
we can identify the intended phone as /m/. This represents a
dimensionality reduction for classification of an instantaneous

frame of speech from 14 (typical of Mel-frequency cepstral co-
efficients) to 9.

2. Principal differential analysis
The term principal differential analysis (PDA) immediately
brings to mind principal components analysis (PCA), with
which most readers will be familiar [20]. PCA can also be
applied to functional data, by treating each corresponding set
of frames across the training sequences as measurements of an
independent random variable. This is called functional PCA
(FPCA), as explained by Ramsay [20].

Articulators are mechanical systems and, as such, are con-
strained in ways not captured by FPCA but expressible in terms
of differential equations. Principal differential analysis (PDA)
[20] is similar to FPCA, but aimed at optimizing the parameters
of a linear differential operator that hypothetically constrains a
function from which multiple noisy samples are available. Let
L be a second order differential operator defined as

Lxi(t) = β0(t)xi(t)+β1(t)x′i(t)+ x′′i (t) = fi(t), (2)

where xi(t) is the functional observation from the ith sample at
time t, x′i(t) and x′′i (t) are its first and second derivatives, β j are
the coefficients to be estimated, and fi(t) is the forcing function
of the ith sample at time t. If no forcing function has been ob-
served then we make a simplifying assumption that all fi(t) are
0, giving us a linear homogeneous differential equation. In this
case, PDA finds values of the coefficients β0(t) and β1(t) that
minimize the residual Lxi(t), which can be obtained by Gaus-
sian elimination. On this basis we can build a classifier for func-
tional data by looking at the residuals that result from applying
the learned coefficients of a given class to a new sequence.

3. PDA Classifier
A general approach to classification by PDA is described in the
previous section. The details of our classifier are presented here.
We assume that we have functional observations on an arbitrary
number of independent tracts, and that we wish to classify an
unseen sequence as having an articulatory value or class c from
the set of possibilities C for one articulatory feature.

The training procedure begins by normalizing the length of
training sequences within each class, which is necessary in or-
der to use PDA. We experimented with several normalization
methods, and settled on finding the maximal sequence length
within the class (according to the annotation), then shifting the
end frame of all other training sequences so as to extend them
to that length with no distortion. This preserves all of the use-
ful information from every sequence, at the cost of introducing
some noise in later frames. Next, all tracts of all sequences are
smoothed using a set of b-spline basis functions optimized to fit
the data with minimal fourth derivatives. Finally, for each c ∈C
we run PDA on the aggregated training sequences for c. For
each tract, this gives us two coefficient vectors, β0 and β1.

In order to classify a new sequence, we compute its first and
second derivatives on all tracts by the method of central finite
differences. Then for each c ∈ C we find a residual vector on
each tract t using the differential operator learned on t. Now we
can calculate coefficients of determination R2

t as

R2
t =

SSYt −SSEt

SSYt
, (3)

where SSYt is the sum of squared second derivatives on tract t
and SSEt is the sum of squared residuals. The resulting value is



less than or equal to 1, with 1 indicating a perfect fit. Finally,
we generate a score for c by averaging the coefficients of deter-
mination across all tracts t. The sequence is classified as having
the articulatory value that assigns it the highest score.

3.1. Frame Weighting (FW)

One side-effect of the method that we chose to normalize se-
quence lengths is that the performance of PDA degrades in later
frames of the training sequences, in the sense that the residuals
it yields grow larger. This is due to some examples that were an-
notated as ending earlier having moved into irrelevant or possi-
bly contradictory territory. To counteract this effect, we weight
each frame according to the inverse of the squared residual that
PDA yields on training data for that frame. During classifica-
tion, we can multiply the residuals of the unknown sequence
by the frame weights for the class in question, which generally
places more emphasis on earlier frames.

4. Experiments and Results

EMA data from MOCHA are first transformed to an approxi-
mation of the tract variable space through principal component
analysis on the former, followed by sigmoid normalization on
[0,1] with the exception of the glottis (GLO), described below.
Tongue tip constriction location and degree (TTCL and TTCD,
respectively) are inferred from the 1st and 2nd principal compo-
nents of tongue tip (TT) EMA data, with TBCL and TBCD in-
ferred similarly from tongue body (TB) data. The glottis (GLO)
is inferred by voicing detection on acoustic energy below 150
Hz [21]; lip aperture (LA) is the normalized Euclidean distance
between the lips. The result is a low-dimensional set of continu-
ous curves describing goal-relevant articulatory variables. Fig-
ure 2, for example, shows the degree of the lip aperture (LA)
over time for all instances of the /b/ phoneme in the MOCHA
database. The relevant articulatory goal of lip closure is clear.
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Figure 2: Lip aperture (LA) over time for all instances of
phoneme /b/ in MOCHA.

Our dataset consisted of 15,243 phoneme instances with
acoustic and articulatory measurements. The data were ran-
domly segregated into a training set and a held-out evaluation
set. For each articulatory feature we limited our data to a sub-
set of the available tracts. For the bilabial AF we used only
the lip aperture tract, LA. For the high-low and front-back AFs,
we used all of the tongue tip tracts - TTCL, TTCD, TBCL, and
TBCD. For the voice AF we used only the glottis tract, GLO.

HMM PDA PDA+FW
Bilabial 94.5 87.8 96.7

Non-bilabial 74.6 94.6 93.3
All 76.1 93.8 93.8

High 53.2 47.6 44.9
Mid 28.7 43.1 100.0
Low 85.9 71.7 67.7
All 45.2 50.1 84.7

Voiced 98.1 98.0 99.8
Unvoiced 99.8 74.0 86.8

All 99.0 90.9 95.9
Front 22.4 46.1 39.3

Central 47.3 48.0 100.0
Back 62.6 43.8 65.0
All 43.5 46.6 74.9

Average 66.0 70.4 87.3

Table 2: Accuracy (%) of articulatory-domain classifiers across
various articulatory features.

4.1. Articulatory domain

Our first set of experiments compares classifiers using only ar-
ticulatory data. The baseline is a 5-state left-to-right HMM
with observation likelihoods at each state computed over mix-
tures of 8 Gaussians. Training is performed with Baum-
Welch expectation-maximization, and evaluation is performed
by Viterbi decoding [22]. Each HMM is trained on observa-
tion sequences of a particular AF value (e.g., non-bilabial) and
each Gaussian mixture in these HMMs is initialized by k-means
clustering with full covariance over all data of the associated AF
value. Table 2 shows the results of these experiments. We also
compared these with a baseline classifier in which the most fre-
quent class is blindly chosen for each test sequence, which av-
eraged 67% accuracy. Specifically, this naı̈ve classifier obtained
respective accuracies of 87.2%, 62.8%, 70.2%, and 47.6% on
the bilabial, high-low, voicing, and front-back AFs. On average,
PDA significantly outperforms HMMs.

4.2. Acoustic domain

We also compare the proposed PDA method given articulatory
data against HMM and neural network (NN) baselines given
acoustic data, which is a more common scenario, on the task
of AF classification. In these experiments we use the full range
of articulatory values for each articulatory feature. Specifically,
the high-low feature has 5 classes (adding nil and silence), and
the front-back feature has 4 classes (adding nil).

Here, the HMM baseline consists of tristate ergodic HMMs
with 16 Gaussians per state. The HMM takes observations
which are 42-dimensional MFCCs that include δ and δδ coef-
ficients, and all models are initialized using k-means clustering
on acoustic data. The NN baseline is based on similar work by
Kirchhoff [4] and Frankel et al. [9]. Each NN has three layers
with full feed-forward connections, and is trained by resilient
backpropagation. Input layers consist of 42 units, and output
layers consist of one unit per class. The size of the hidden lay-
ers are dependent on the AF being recognized. The NNs that
recognize the high-low and voicing features have 100 hidden
units each, while the front-back feature has 200 units, as deter-
mined empirically in the literature [9].

Table 3 shows the results of the acoustic-domain experi-
ments. Once again PDA is a clear winner.



Acoustic HMM NN PDA+FW
High-low 48.6 64.8 67.4

Voice 71.6 83.3 95.9
Front-back 49.0 66.1 68.9
Average 56.4 71.4 77.4

Table 3: Average accuracies (%) of AF-recognition for HMM
and NN classifiers as compared with the PDA approach given
acoustic information only.

4.3. Running time

We found that our PDA classifier trains very quickly compared
to the baselines. A training run of the articulatory HMM took
approximately 60 hours, whereas our PDA classifier can be
trained in 120 seconds on the same platform. This is an im-
provement by a factor of more than 103. Testing times were
also significantly better with PDA, by a factor of around 102.

5. Concluding remarks
This paper describes an attempt to identify high-level artic-
ulatory goals by categorizing continuous articulatory motion.
These high-level goals are derived from work in articula-
tory features [9; 10] and correspond directly to goals in task-
dynamics theory [19]. Identifying articulatory goals would al-
low for almost unambiguous classification of the phoneme be-
ing uttered. AF classification from acoustics alone given tradi-
tional models (i.e., HMMs) has not been satisfactory, however.

The PDA classifier presented here offers a substantial im-
provement over the baselines. We claim that this is because dis-
crimination of speech sounds is highly dependent on how they
are produced. Speech production can be modelled as a mechan-
ical process, and the resulting models can be used to constrain
our interpretations of articulatory motion in a very natural way.
In the acoustic domain, on the other hand, it is very difficult to
account for mechanical constraints. In summary, working in the
articulatory domain gives us access to more information - not
just more measurements, an advantage that must be discounted
since articulatory data are seldom available in practical applica-
tions, but more prior information, which these results suggest
is very useful for speech understanding. It remains to be seen
whether or not the utility is sufficient to offset the accuracy loss
inherent in acoustic-articulatory inversion.

5.1. Future work

In order to prove the utility of PDA in speech recognition we
will proceed toward a complete ASR system based on the meth-
ods described in this paper. A fundamental step in this process
will be to replace articulatory data with estimated articulatory
positions derived from acoustics. A number of methods exist
for acoustic-articulatory inversion, where the latter space can
usually be derived with less than 2 mm of error, on average [13;
14; 23]. The method used in this paper can then be extended
to the task of AF classification given estimates of tract variable
motion derived from acoustic data, instead of given articulatory
motion directly. We also intend to apply this work to the classifi-
cation of phonemes and, thereafter, whole words and sentences.
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