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ABSTRACT
Dysarthria is a motor speech disorder resulting from neuro-
logical damage to the part of the brain that controls the physi-
cal production of speech and is, in part, characterized by pro-
nunciation errors that include deletions, substitutions, inser-
tions, and distortions of phonemes. These errors follow con-
sistent intra-speaker patterns that we exploit through acous-
tic and lexical model adaptation to improve automatic speech
recognition (ASR) on dysarthric speech. We show that acous-
tic model adaptation yields an average relative word error
rate (WER) reduction of 36.99% and that pronunciation lex-
icon adaptation (PLA) further reduces the WER by an av-
erage of 8.29% relative on a large vocabulary task of over
1500 words for 6 speakers with severe to moderate dysarthria.
PLA also shows an average relative WER reduction of 7.11%
on speaker-dependent models evaluated using 5-fold cross-
validation.

Index Terms— dysarthria, dysarthric speech, pronuncia-
tion lexicon adaptation, speech recognition

1. INTRODUCTION

Dysarthria encapsulates all neuro-motor articulatory disor-
ders that result in acoustically unintelligible speech. It is
often accompanied by other physical handicaps that limit the
ability of individuals to interact with computers and the en-
vironment. Therefore, persons with dysarthria would benefit
greatly from automatic speech recognition (ASR) applica-
tions. However, speaker-independent (SI) speech recognition
systems remain ill-suited to this population because of the
considerable deviation of dysarthric speech from the assumed
norm in these systems.

Several existing attempts to apply ASR to dysarthric in-
dividuals involved small-vocabulary recognition tasks where
the word error rate (WER) for dysarthric speech was shown
to be significantly higher than for normal speech. For in-
stance, in [1] it was reported that for 10 adults with dysarthria
and 13 control subjects, the dysarthric subjects had signif-
icantly fewer stimuli recognized by the computer than the
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non-dysarthric speakers. Experiments with commercial ASR
systems have shown promising performance for speakers with
moderate to mild dysarthria on limited vocabulary tasks, but
not for severely dysarthric speakers [2, 3]. For example, in a
mixed read-speech and novel dictation context, commercial
systems from Microsoft, Dragon, and VoicePad recognized
approximately 85% of words uttered by a non-dysarthric
speaker on average, but only between 51.87% and 64.68%
of words spoken by a person with mild dysarthria [4]. For
individuals with severe dysarthria, the vocabulary size of
ASR systems tends to be extremely restricted. The STAR-
DUST project [5], for instance, developed speech-controlled
interfaces with a limited vocabulary of 10 isolated command
words. In this paper, we aim to build a relatively large vo-
cabulary ASR system, consisting of over 1500 words for
speakers with severe to moderate dysarthria.

Although dysarthric speech deviates considerably from
normal speech in many ways, it is nonetheless characterized
by highly consistent articulatory errors [6]. These tend to
result in relatively predictable errors of phoneme omission,
substitution, addition, and distortion. Our motivation is there-
fore to exploit the intra-speaker consistency of these errors to
improve recognition performance of a large vocabulary ASR
system for dysarthric individuals. We use a 3-level cascaded
adaptation procedure. First, we use maximum likelihood lin-
ear regression (MLLR) adaptation followed by maximum a
posteriori (MAP) estimation to adapt a SI model to the vocal
characteristics of a dysarthric speaker. We then analyze the
pronunciation deviations of each dysarthric subject from the
canonical form and build an associated speaker-specific pro-
nunciation lexicon that incorporates the erroneous pronuncia-
tions of the speaker.

2. DESCRIPTION OF DATA

The TORGO database of dysarthric speech consists of aligned
acoustic and articulatory recordings. At present, the database
consists of 15 subjects of which eight (5 males, 3 females) are
dysarthric, and seven (4 males, 3 females) are control subjects
[7]. We are currently negotiating with the Linguistic Data
Consortium to make all of the data described here available
in early 2011.



All dysarthric participants have been diagnosed by a
speech-language pathologist according to the Frenchay Dysar-
thria Assessment [8], which evaluates the overall clinical
intelligibility and the motor functions of the articulators. Ac-
cording to this assessment, four subjects (i.e., F01, M01,
M02, and M04) are severely dysarthric. One subject (M05)
is moderate-to-severely dysarthric, and one female subject
(F03) is moderately dysarthric. The remaining two subjects
have very mild dysarthria and are not considered as dysarthric
speakers in this paper as their measured intelligibility ranks
among the non-dysarthric speakers in this database.

Three hours of speech is recorded from each subject in
multiple sessions, in which an average of 415 utterances are
recorded from each dysarthric speaker and 800 from each
control subject. The single word stimuli in the database in-
clude repetitions of English digits, the international radio al-
phabets, the 20 most frequent words in the British National
Corpus (BNC), and a set of words selected by Kent et al.
to demonstrate relevant phonetic contrasts [9]. The sentence
stimuli are derived from the Yorkston-Beukelman assessment
of intelligibility [10] and the TIMIT database [11]. In addi-
tion, each participant is asked to describe the contents of a few
photographs that are selected from standardized tests of lin-
guistic ability in his/her own words so as to include dictation-
style speech into the database.

3. ACOUSTIC CHARACTERISTICS OF
DYSARTHRIC SPEECH

We have empirically observed that the articulatory and pro-
nunciation errors in dysarthric speech appear to be repeatable
within individual speakers, which confirms existing clinical
work [6]. It should therefore be possible to construct lexicons
specific to individual dysarthric speakers, given their particu-
lar erroneous pronunciation patterns.

We listened to 25% of speech data from each dysarthric
subject (this partition is later used as an adaptation-set) and
we carefully analyzed the pronunciation deviations of each
subject from the norm. Specifically, the desired phoneme
sequence as determined by the CMU pronunciation dictio-
nary1 was compared against the actual phoneme sequences
observed, and the deviations were recorded. These deviant
pronunciations were then encoded into the generic pronun-
ciation lexicon as alternatives to create a speaker-dependent
lexicon. The observed deviations in the utterances of the six
dysarthric subjects are grouped into the following classes:

• Final consonant deletion: Omission of word-final con-
sonants that require more articulatory control (i.e.,
stops and fricatives). Examples include:
feed→ [f iy], read→ [r iy], beat→ [b iy],
sheet→ [sh iy], thread→ [th r eh], urged→ [er jh]
clings→ [ k l ih ng], tried→ [t r ay], etc.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

This is mainly observed in the utterances of F01, M01,
and M04.

• Consonant cluster reduction: Omission of a more diffi-
cult consonant in a consonant cluster is observed in the
speech of F01, M04 and M05. Examples include:
bright→ [b ay t], explore→ [ih p l ao r],
grow→ [g ow], play→ [p ay], slip→ [s ih p], etc.

• Initial /s/ deletion: When /s/ is followed by a stop in a
word initial syllable, F01, M01, and M04 often omit it.
Examples include:
spark→ [p ae r k], storm→ [t ao r m],
spit→ [p ih t], snow→ [n ow], etc.

• Initial /h/ deletion: The voiceless glottal fricative sound
/h/ is generally deleted when it occurs at the beginning
of the target word in the utterances of M01. E.g.:
hair→ [eh r], hitting→ [ih t ih ng], hate→ [ey t],
hat→ [ae t], house→ [aw z], etc.

• Devoicing: The voiceless counterpart of a voiced target
is produced in the utterances of F03 and M02. E.g.:
league→ [l iy k], bag→ [b ae k],
deer→ [t ih r], ride→ [r ay t], etc.

• Prevocalic voicing: Voicing of voiceless target conso-
nants is observed in F01, M01, and M04. E.g.:
toe→ [d ow], feet→ [v iy t], peer→ [b ih r],
kitten→ [g ih d ah n], pile→ [b ay l], etc.

• Fronting: Consonants that are normally produced at the
back of the alveolar ridge are substituted by consonants
that are produced at or in front of the alveolar ridge.
This is observed in F01, F03, M01, M04, and M05.
E.g.:
ship→ [s ih p], shoot→ [s uw t],
share→ [s eh r], ring→ [r iy n], etc.

• Backing: In some cases, M02 substitutes /s/ which is
produced further forward on the palate by /sh/ which is
produced at the back of the palate. E.g.:
spark→ [sh p ae r k], swarm→ [sh w ao r m],
sip→ [sh ih p], suit→ [sh uw t], etc.

• Vocalization: Liquids (/l/ and /r/) are sometimes pro-
duced as vowels when they occur in word-final posi-
tions. This is predominantly observed in the speech of
subjects F01, M02, and M04. E.g.:
table→ [t ey b ow], double→ [d ah b ow],
trouble→ [t r ah b ow], better→ [b eh r ah] , etc.

• Stopping: Substitution of a stop consonant for a frica-
tive is observed in the utterances of subjects F01, F03,
M01, and M04. E.g.:
farm→ [p aa r m], single→ [t ih ng g ah],
thorn→ [t ao r n], though→ [d ow], etc.



• Insertion of a short vowel in consonant clusters is also
observed in the speech of subjects M01 and M02. E.g.:
slip→ [s ih l ih p], floor→ [f ih l ao r],
blow→ [b ih l ao w], bright→ [b ih r ay t], etc.

In many cases a combination of two or more of the above
patterns are observed. Other articulatory errors include poor
articulation of vowels and substitution of ejectives for some
consonants (e.g. p’ for p and k’ for k).

4. EXPERIMENTS AND RESULTS

The acoustic features consist of 12 Mel-frequency cepstral
coefficients (MFCCs), 1 energy term, and the corresponding
delta (∆) and acceleration (∆∆) coefficients generated ev-
ery 15ms for severely dysarthric speech and every 10ms for
moderately dysarthric speech. The use of 15ms frame rate
for severely dysarthric speech has shown significant improve-
ment in word recognition rates (by an average of 7.32% abso-
lute). This may in part be due to the relatively slow speaking
rates of severely dysarthric speakers. Cepstral mean subtrac-
tion (CMS) is also applied to account for a mismatch in chan-
nel conditions.

The baseline SI model consists of 40 left-to-right, three-
state monophone hidden Markov models and one single-state
short pause (sp) model with 16 Gaussian mixture components
per state. We use a back-off bigram language model and the
pronunciation lexicon is based on the CMU pronunciation
dictionary. All the experiments in this paper are performed
using the Hidden Markov Model Toolkit (HTK).

A subset of the TORGO database, described in Sec-
tion 2, consisting of over 8400 utterances recorded from six
dysarthric speakers, two subjects with mild dysarthria, and
seven control (non-dysarthric) subjects is used in the fol-
lowing experiments. We considered three different training
setups to train the SI models. First, we trained an SI model
using data from the control speakers only, which resulted
in a rather poor average word recognition rate of 30.41%
on dysarthric speech. Second, we trained SI models using
only dysarthric data from all the other dysarthric speakers
except the test subject, which gave even worse word recogni-
tion rate (an average of 24.85%). The reason for the further
degradation of performance in the latter setup is partly be-
cause the articulatory errors across dysarthric speakers vary
widely although they tend to be consistent within a speaker.
Finally, we used the merger of data from dysarthric and con-
trol speakers, excluding the test speaker, to train SI models.
This resulted in a relatively better baseline word recognition
rate (an average of 43.41%) and hence is used in the rest of
the experiments. Word-internal triphone models show little
improvement over the baseline monophone models for the
dysarthric data. Therefore, monophone models are used as
our baseline in the rest of the experiments. The evaluation-
set consists of 75% of the utterances from the test dysarthric

speaker (an average of 311 utterances) and the remaining 25%
(an average of 104 utterances) is held as an adaptation-set.

Speaker-dependent (SD) models are also trained and
evaluated using a 5-fold cross-validation procedure. For
the dysarthric speakers, an average word recognition rate of
51.84% (ranging from an average of 12.1% to 82.7%) is ob-
tained. The large performance discrepancy of the SD models
is mainly due to the difference in the amount of training data
we have for each dysarthric subject.

4.1. Acoustic Model Adaptation

Maximum Likelihood Linear Regression (MLLR) estimates
linear transformations of model parameters to maximize the
likelihood of the adaptation data. The transformations modify
the component means and covariances in the initial model so
as to reduce the mismatch between the model and the adapta-
tion data.

Using the held-out 25% of data from each speaker as
adaptation-set, we perform a two-pass MLLR adaptation.
First a global adaptation is performed, which is then used
as an input transformation to compute more specific trans-
forms using a regression class tree with 42 terminals. MLLR,
where both means and diagonal covariances are transformed,
gave an average of 16.24% absolute (29.24% relative) WER
reduction.

We then carried out two consecutive runs of Maximum
a Posteriori (MAP) adaptation using the MLLR transformed
models as the priors and maximizing the posterior probability
using prior knowledge about the model parameter distribu-
tion. This further reduced the WER by an average of 3.9%
absolute (10.75% relative).

4.2. Pronunciation Lexicon Adaptation (PLA)

The speaker-specific pronunciation lexicons consist of multi-
ple pronunciations for some words that reflect the erroneous
production of each dysarthric subject. The alternative pro-
nunciations are added to all words that follow similar patterns
as discussed in Section 3. For instance, for a speaker who
omits initial /s/, the rule would be: for every word whose ini-
tial phoneme is /s/ and is followed by a stop consonant, add
an alternative pronunciation where the initial /s/ is omitted.

Using speaker-dependent pronunciation lexicons during
recognition reduces the WER further by an average of 2.73%
absolute (8.29% relative) for the speaker-adapted (SA) mod-
els and by an average of 3% absolute (7.11% relative) for SD
acoustic models. Significance tests are performed across all
iterations of 5-fold cross validation, with pairing occurring
between evaluations that are identical in every respect except
for the type of lexicon used; i.e, generic or SD lexicon. In
each case, the results are statistically significant at the 99%
level of confidence according to the paired t-test.

Despite consistent improvements using PLA in both SD
and SA models, errors remain. This can partially be explained



by the increased number of homophones in the speaker-
dependent lexicons as a result of adapting the dictionary to
pronunciation errors. For example, if a dysarthric speaker
omits the voiceless glottal fricative /h/, pronunciations of the
words hate and hair resemble that of ate and air, respectively,
which are already words in the lexicon. This makes single-
word recognition more difficult. In fact, 83% of the errors,
on average, are single-word utterances. If homophones are
considered equivalent, the relative gain due to PLA would
be 11.72% (cf. 8.29%). Besides, of all the words correctly
recognized due to PLA, 72.5% are in long utterances. This
shows that PLA is more effective in relatively long utterances
where context is available than in single-word utterances.

Figure 1 shows the word recognition accuracy of the base-
line SI monophone models, the models after acoustic adap-
tation, the adapted models using SD lexicons, baseline SD
acoustic models, and SD acoustic models using SD lexicons.

Fig. 1. Acoustic and Lexical Model Adaptation to Dysarthric
Speech.

It can be seen in Figure 1 that PLA improves performance
consistently for both SA and SD models. In most cases, SA
models outperform SD models where the amount of data from
a particular subject is relatively small and when the intra-
speaker variation is too wide to be modeled by the available
training data (e.g., subject M04).

5. CONCLUDING REMARKS

In this paper, we described the use of acoustic and lexical
adaptation techniques to compensate for the articulatory er-
rors made by speakers with dysarthria. We have shown that
the consistent articulatory deviations in dysarthric speech
can be exploited through speaker and pronunciation lexicon

adaptation which resulted in an average of 22.87% absolute
(42.11% relative) WER reduction, which is significant for the
relatively large vocabulary size used in these experiments.
PLA has shown statistically significant improvement on SA
and SD models. While the results obtained are encourag-
ing, phonetic articulatory errors are only part of the problem
in dysarthric speech. In addition to the articulatory errors
discussed in this paper, severely dysarthric speech consists
of involuntary breathing, irregular articulatory breakdowns,
prosodic disruptions, stuttering, and accidental pauses which
make the task more complex. We are currently investigating
approaches to deal with these challenges.
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