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ABSTRACT

We present a method for acoustic-articulatory inversion whose tar-
gets are the abstract tract variables from task dynamic theory. To-
wards this end we construct a non-linear Hammerstein system whose
parameters are updated with adaptive kernel canonical correlation
analysis. This approach is notably semi-analytical and applicable to
large sets of data. Training behaviour is compared across four kernel
functions and prediction of tract variables is shown to be signifi-
cantly more accurate than state-of-the-art mixture density networks.
Index terms: acoustic-articulatory inversion, kernel canonical cor-
relation analysis, task dynamics.

1. INTRODUCTION

Differences between speakers are the result of purely endogenous
phenomena distinguished by their mechanics of articulation. Such
distinctions cannot be codified into automatic speech recognition
(ASR) systems that are agnostic of speech production, however. It is
therefore desirable to find an accurate method of projecting acoustic
speech data onto a lower-dimensional space which is more indica-
tive of the linguistic intentions of the speaker, namely, to the space
of physical properties of vocal tract motion.

Although acoustic-to-articulatory inversion is a one-to-many re-
lationship [1], such protestation has not limited research in this area.
For example, Richmond et al. [2] estimated the 2-dimensional mid-
sagittal positions of 7 articulators given kinematic data using both
a multi-layer perceptron and discriminatively trained Gaussian mix-
ture models to within 0.41mm and 2.73mm. Toda et al. [3] achieved
almost identical results on the same data by applying expectation-
maximization using both minimum mean-squared error and maxi-
mum likelihood estimation to a Gaussian mixture mapping function
with low-pass filtering. Simpler approaches achieved similar results
(errors less than 2mm, typically around 1mm) using simple vector
quantization with an appropriate number of vectors [4].

One commonality in existing work is that the target dimensions
consist of the absolute physical positions of points in the vocal tract.
Typical points include the upper and lower lips (UL, LL), the upper
and lower incisors (UI, LI), the tongue tip, body, and dorsum (TT,
TB, TD), and the velum (V). Despite the popularity of this approach,
neither its generalizability among speakers nor its representation of
linguistic intent has been justified. Why would the physical position
of the upper lip be as explicative of intent or of acoustic consequence
as a measure of the distance between the lips, for example?

In this paper we estimate features of the vocal tract from acous-
tics using adaptive kernel canonical correlation analysis (KCCA).
We choose features of the vocal tract derived from the theory of task
dynamics, as described below.

1.1. Tract variables and task dynamics

Task dynamics constitute a combined model of skilled articulator
motion and the planning of vocal tract configurations [5]. This the-
ory introduces the notion that the dynamic patterns that occur in
speech are the result of overlapping gestures, which are high-level
abstractions of goal-oriented reconfigurations of the vocal tract. An
instance of a gesture in this theory is any articulatory movement
towards the completion of a particular speech-relevant goal, such
as bilabial closure, or velar opening. The progenitors of this the-
ory claim that all the implicit spatiotemporal behaviour underlying
speech is the result of the interaction between the abstract interges-
tural dimension (between tasks) and the geometric interarticulator
dimension (between physical actuators) [5].

Each gesture in this theory occurs within one of the follow-
ing tract variables (TVs): lip aperture and protrusion (LA, LP),
tongue tip constriction location and degree (TTCL, TTCD), tongue
body constriction location and degree (TBCL, TBCD), velar open-
ing (VEL), glottal vibration (GLO), and lower tooth height (LTH).
A gesture to close the lips, for example, would occur within the LA
variable, and would set that variable close to zero.

Articulatory data consists of spoken utterances and their aligned
articulator positions as described in section 3. In order to convert the
articulator space to tract variable space, we transform the midsagittal
articulatory data using a combination of principal component analy-
sis and sigmoid activation functions. For example, we describe VEL
by calculating the first principal component of velum motion in the
midsagittal plane, finding the minimum and maximum deviations
from the mean in this transformed space, and applying a sigmoid to
that unidimensional space to retrieve a real function on [0..1]. Sim-
ilarly, the first and second principal components of the distance be-
tween UL and LL are used for the determination of lip aperture and
protrusion, respectively, the first and second principal components of
TT are used for the determination of TTCL and TTCD, respectively,
and the first and second principal components of TB are used for the
determination of TBCL and TBCD, respectively. Voicing detection
on energy below 150Hz is used to estimate the GLO tract variable.

2. ADAPTIVE KCCA

Canonical correlation analysis (CCA) is a popular technique in sta-
tistical analysis used in a variety of contexts, including communica-
tion theory and statistical signal processing, to measure linear rela-
tionships between sets of variables. Given vector variables x ∈ Rmx

and y ∈Rmy , CCA finds a pair of directions ωx ∈Rmx and ωy ∈Rmy

such that the correlation ρ(x,y) is maximized between the two pro-
jections ωT

x x and ωT
y y. Given joint observations X = [x1x2...xN ]T

and Y = [y1y2...yN ]T , where xi co-occurs with yi, CCA is equivalent



to finding projection vectors ωx and ωy that maximize

ρ(X,Y;ωx,ωy) =
ωT

x XYT ωy√
ωT

x XXT ωx

√
ωT

y YYT ωy

. (1)

Although this method can find good linear relationships between
sets of data, it is incapable of capturing nonlinear relationships,
which limits its application in many aspects of speech. In order to
overcome this limitation, we employ the “kernel trick” in which a
nonlinear transformation Φ of the data obtains a higher-dimensional
feature space (e.g., X̂ = Φ(X)). The linear solution of CCA within
this higher-dimensional space is equivalent to a non-linear solution
in the original data space [6]. We can avoid the need to explicitly de-
fine Φ, however, since positive definite kernel functions κ(x,y) sat-
isfying Mercer’s condition can implicitly map their input to higher-
dimensional spaces. We specify a set of such kernels in section 3.

Reformulating eq. 1 within a framework of least-squares
regression allows us to minimize 1

2‖Xωx − Yωy‖2 such that
1
2
(
‖Xωx‖+‖Yωy‖

)
= 1. This allows us to solve the following gen-

eralized eigenvalue problem on the transformed data X̂∈RN×m′x and
Ŷ ∈ RN×m′y by the method of Lagrange multipliers:

1
2

[
X̂T X̂ X̂T Ŷ
ŶT X̂ ŶT Ŷ

]
ω̂ = β

[
X̂T X̂ 0

0 ŶT Ŷ

]
ω̂, (2)

where ω̂ = [ω̂xω̂y]T is the concatenation of the transformed direction
vectors. We can now avoid explicit data transformation by applying a
kernel function. Since the kernel matrix describing our transformed
data, Kx = X̂kX̂T

k ∈RN×N , has elements Kx[i, j] = κ(xi,x j) defined
by vectors in our original data space (Ky is defined similarly for Ŷ),

we left-multiply eq. 2 by
[

X̂ 0
0 Ŷ

]
, giving

1
2
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x KxKy
KyKx K2

y

]
α = β

[
K2

x 0
0 K2

y

]
α. (3)

Here, α = [αxαy]T ∈ R2N such that ω̂x = X̂T αx and ω̂y = ŶT αy
[7]. This gives a generalized eigenvalue problem in the higher-
dimensional space where we can minimize

(
Kxαx +Kyαy

)
/2 by

adjusting αx and αy according to our original data space [8].

2.1. KCCA and Hammerstein systems

A nonlinear Hammerstein system is a memoryless nonlinear func-
tion g() followed by a linear dynamic system H() in series, as shown
in Figure 1(a). Our goal is to input acoustic observations, X, of Mel-
frequency cepstral coefficients (MFCC) to such a system and to infer
the associated articulation vectors, Λ. In order to accomplish this ac-
curately, we must learn the parameters of the two components of the
Hammerstein system.

A mechanism for identifying these parameters has recently been
proposed that takes advantage of the cascade structure by inverting
the linear component, as in Figure 1(b), and minimizing the differ-
ence, e[n], between g(X[n]) and H−1(Λ[n]) using KCCA [9]. Since
H() is linear, we can reformulate eq. 3 to

1
2

[
K2

x KxΛ̂

Λ̂T Kx Λ̂T Λ̂

][
αx
ωΛ

]
= β

[
Kx(Kx + cI) 0

0 Λ̂T Λ̂

][
αx
ωΛ

]
,

(4)
where we add a regularizing constant c to prevent overfitting [9].
Here, ωΛ provides the parameters of the linear part of the sys-
tem, H()−1, and αx provides the parameters of the nonlinear part,

g(.)X[n] +H(.)
r[n]

Λ[n]

v[n]
z[n]

(a) Nonlinear Hammerstein system (feedforward).

ĝ(.)X[n] - Ĥ-1(.)
rx[n] Λ[n]

rΛ[n]
e[n]

(b) System for identifying the parameters of the nonlinear
Hammerstein system.

Fig. 1. The feedforward Hammerstein system and its associated
identification system.

g(). Given a combined average of the output of these two systems,
r = (rx +rΛ)/2 = (Kxαx +ΛωΛ)/2, the eigenvalue problem decom-
poses to two coupled least squares problems:

βαx = (Kx + cI)−1r

βωΛ = (ΛT
Λ)−1

Λ
T r

(5)

This representation allows us to minimize a Euclidean error
measurement ‖rx− rΛ‖ by analytically solving for αx and ωΛ. In
order to estimate articulation at run time, we compute rx = Kxαx,
since we can construct the kernel matrix from observed acoustics,
and then solve for Λ≈Kxαxω

−1
Λ

, since ΛωΛ = rΛ ≈ rx = Kxαx.

2.2. Adaptive algorithm

Unfortunately, for problems involving large amounts of data, as is
typical in speech, the sizes of the kernel matrices described above
become prohibitively large. An online algorithm that iteratively ad-
justs the estimates of αx and ωΛ based on subsequent segments of
data is therefore desirable. We assume that we have a sliding context
window covering L aligned frames from each data source, namely,
x(n) = [xn,xn−1, ...,xn−L+1] and Λ(n) = [Λn,Λn−1, ...,Λn−L+1]. As-
suming that we have matrix K(n−1)

reg for the (n− 1)th window of

speech, and K̂(n−1)
reg is the matrix formed by its last n− 1 rows and

columns, then the regularized matrix for the current window is

K(n)
reg =

[
K̂(n−1)

reg kn−1(x(n))
kn−1(x(n))T knn + c

]
, (6)

where kn−1(x(n)) = [κ(x(n−L+1),x(n), ...,κ(x(n−1),x(n)]T and knn =
κ(x(n),x(n)). The inverse of K(n)

reg can also be computed quickly,

given the inverse of K(n−1)
reg [10]. We then iteratively update our

parameter estimates for ωΛ and αx as new data arrives using eq. 5.
This entire process is summarized in algorithm 1 and is based on
work on Wiener systems by Vaerenbergh et al. [7].

3. EXPERIMENTS

Our experiments evaluate the stability of the error-correction method
and the estimation of tract variables from acoustics. We apply four
kernel functions, namely the homogenous polynomial (K(i)

h poly), the



begin
Initialize K(0)

reg = (1+ c)I
Initialize αx and ωΛ with random data
for n = 1..N do

Calculate K(n)
reg from x(n) as in eq. 6

r(n)
x = κ(x(n),x(n−1))α(n−1)

x

r(n)
Λ

= Λ(n)ω
(n−1)
Λ

r(n) = r(n−1)
x +r(n−1)

Λ

2

Calculate
(

K(n)
reg

)−1

Update solutions for αx and ωΛ as in eq. 5
Normalize solutions with β = ‖ωΛ‖

end
end

Algorithm 1: The adaptive KCCA algorithm.

non-homogenous polynomial (K(i)
nh poly), the radial-basis function

(K(σ)
rb f ), and the sigmoid (K(κ,c)

sigmoid) kernels:

K(i)
h poly (x1,x2) = (x1x2)

i

K(i)
nh poly (x1,x2) = (x1x2 +1)i

K(σ)
rb f (x1,x2) = exp

(
−‖x1− x2‖2

2σ2

)
K(κ,c)

sigmoid (x1,x2) = tanh(x1x2 + c) .

Training data consists of midsagittal tract variables (10-
dimensional vectors) and aligned acoustics (42-dimensional
MFCCs) selected from approximately 460 sentences uttered by a
male speaker from Edinburgh’s MOCHA database [11]. The posi-
tions and velocities of the jaw, lips, and tongue, as exemplified in
Figure 2, are recorded with electromagnetic articulography using al-
ternating electromagnetic fields generated by a cube that surrounds
the speaker’s head. These data are then converted to the tract vari-
able space as described in section 1.1. Results reported below are
averages of 10-fold cross validation. Until otherwise indicated, the
window length L = 150.
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Fig. 2. The midsagittal motion of the articulators during the phrase
“This was easy for us”.
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Fig. 3. Normalization error, e[n], for the first-order homogenous
polynomial kernel at window size L = 150.

3.1. Stability and convergence during training

The goal of auto-correction is for the Euclidean error (Kxαx−ΛωΛ)
(i.e., e[n] in Figure 1(b)) to approach zero during training. Figure 3
shows the best, average, and worst mean squared errors in decibels
during training given the homogenous polynomial kernel and 10 ran-
dom initial parameterizations. This example is indicative of all other
kernels whereby a period of fluctuation tends to follow a rapid de-
crease in error. Table 1 shows the total decrease in mean squared
error (dB) between the first 20 and last 20 windows of the adaptive
KCCA training process. As one increases the order of both the ho-
mogenous and non-homogenous kernels, the MSE also increases. In
both the tan-sigmoid and radial-basis function kernels, however, our
choice of parameters seems to have little discernible effect.

Homogenous polynomial Nonhomogenous polynomial
i MSE reduction i MSE reduction
1 421.6 1 441.9
2 403.6 2 413.1
3 394.5 3 382.9

Sigmoid Radial-basis function
(κ , c) MSE reduction σ MSE reduction

(0.2,0.1) 313.2 0.1 406.5
(0.2,0.5) 321.5 0.5 410.4
(0.5,0.1) 309.7 1.0 406.7
(0.5,0.5) 314.3

Table 1. Total reduction in MSE (dB) between Hammerstein com-
ponents during training across kernels and parameterizations.

Vaerenbergh et al. apply a nearly identical approach to learn-
ing Wiener systems on the comparatively simple problem of es-
timating a hyperbolic tangeant function given univariate input [7;
8], reaching MSE between −30dB and −40dB within 1000 to 1500
iterations. Surprisingly, most of the error in our experiments is dis-
pelled much earlier, within 200 iterations, with MSE fluctuating be-
tween −76.9dB and 39.5dB thereafter across all kernels and param-
eterizations. This suggests that adaptive KCCA converges rapidly
during training on acoustic-articulatory data.
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Fig. 4. Example intensity maps of Gaussian mixtures produced by
mixture density networks (MDNs) that estimate tongue tip constric-
tion degree and location. Darker sections represent higher probabil-
ity. The true trajectories are superimposed as black curves.

TV MDN KCCA TV MDN KCCA
µ(σ 2) µ(σ 2) µ(σ 2) µ(σ 2)

VEL −0.28 (0.08) −0.23 (0.07) TTCD −1.60 (0.17) −1.60 (0.17)
LTH −0.18 (0.12) −0.18 (0.14) TTCL −1.62 (0.17) −1.57 (0.16)
LA −0.32 (0.11) −0.28 (0.10) TBCD −0.79 (0.14) −0.80 (0.15)
LP −0.44 (0.12) −0.41 (0.13) TDCL −0.20 (0.11) −0.18 (0.09)
GLO −1.30 (0.16) −1.14 (0.15)

Table 2. Average log likelihoods of true tract variable positions in
test data, under distributions produced by mixture density networks
(MDNs) and the KCCA method, with variances.

3.2. KCCA versus mixture density networks

In order to judge the accuracy of the articulatory estimates produced
by adaptive KCCA against the state-of-the-art, we consider mixture
density neural networks (MDNs) that output parameters of Gaus-
sian mixture probability distributions, as described by Richmond [2].
We train MDNs to estimate the likelihood of tract variable positions
given MFCC input and 2 frames of surrounding acoustic context.
Figure 4 shows the estimated likelihood of tract variable positions
over time produced by trained MDNs as intensity maps superim-
posed with the true trajectories. MDNs are trained on the same
data as KCCA. Articulatory estimates for KCCA are smoothed with
third-order median filters.

We assess the accuracy of the MDN and KCCA methods by
comparing their estimates of the log likelihood of the true articu-
latory trajectories. A more accurate method will assign a higher
probability to the actual trajectory. The likelihood of a frame of
articulation is easily computed by MDNs whose output is a proba-
bility distribution over tract variable positions. We approximate the
likelihood of a frame of articulation in the KCCA approach with the
radial-basis kernel by fitting a Gaussian to the estimates of 10 tri-
als having different initial parameterizations. Test data in each trial
consists of approximately 60 utterances from our male speaker.

The mean and variance of the log likelihoods of true articula-
tory positions across all test frames is summarized in Table 2 for
both methods. According to the t test with 9.6E4 < n1 = n2 < 9.9E4

frames and one degree of freedom, KCCA is significantly more ac-
curate than the MDN method at the 95% confidence level for VEL,
LA, LP, TTCL, and TDCL and at the 99% confidence level for
GLO, and statistically indistinguishable at these levels for the re-
maining tract variables.

4. CONCLUDING REMARKS

Some high-level questions remain. For example, if the eventual aim
is to use estimated articulatory trajectories to constrain hypotheses
in speech recognition, then it is possible that a quantized represen-
tation may be more amenable to training in such systems. A similar
(though non-adaptive) kernel-based system has recently been pro-
posed that inverts acoustic to articulatory data according to discrete
categories [12]. Likewise, a k-means clustering of the tract variable
motion estimated by our adaptive KCCA process might be applica-
ble as conditioning variables in dynamic Bayes networks for speech
classification [13].

Our analysis has demonstrated that adaptive KCCA can effec-
tively learn non-linear relationships between co-occurring variables
in speech, and perform more accurate acoustic-to-articulatory in-
version than the state-of-the-art. This approach combines a semi-
analytical (non-statistical) kernel-based approach with an iterative,
adaptive learning process.
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