
Abstract: There is growing evidence that clinicians are 
becoming more receptive to automated computerized 
tools that assist in treatment decisions and outcomes. 
Automatic speech recognition (ASR), for example, has 
had some degree of success as an assistive technology 
(AT)  tool  for  individuals  with  mild  or  moderate 
dysarthria. Notwithstanding, for a large percentage of 
individuals  with  more  severe  levels  of  the  disorder, 
ASR has yet to achieve acceptable levels.  In this pa-
per, we explore the use of several acoustic measures as 
correlates of ASR performance for dysarthric speak-
ers. By automatically predicting the potential efficacy 
of  ASR  for  a  particular  dysarthric  speaker,  health 
care costs and waiting lists may be reduced as may de-
vice abandonment rates. Experiments with the “Uni-
versal Access” database of dysarthric speech suggest 
that some of the proposed measures achieve correla-
tions as high as 0.86 with ASR accuracy.

I. INTRODUCTION

Speech is an efficient modality of communication in 
human-to-human interaction and can also serve as a high-
capacity medium in human-machine interaction. Howev-
er, millions of individuals have severe motor impairments 
that make speech communication extremely difficult, or 
even  impossible  [3].  These  neuro-motor  impairments, 
collectively known as dysarthria, are characterized by un-
coordinated  and  imprecise  articulation,  and  atypical 
breathing, voicing, and prosody that result in a highly dis-
torted and unintelligible speech.  Dysarthria  is often ac-
companied by other physical handicaps that inhibit other 
forms of physical activity making the use of one’s voice 
highly desirable. Recent advances in the automatic recog-
nition of dysarthric speech have demonstrated that many 
individuals with speech disorders can be reasonably un-
derstood with specialized recognition software [4]. How-
ever,  there remain many individuals with dysarthria for 
whom automatic speech  recognition (ASR) remains in-
sufficient,  and  for  whom alternative  forms  of  assistive 
technology (AT) need to be prescribed. 

Being able to accurately predict the success of ASR 
by  automatically  analyzing  a  patient’s  speech  signal 
would significantly expedite the AT prescription process, 
whilst also reducing device abandonment rates. This pa-
per describes a number of acoustic measures which have 
been used in the past to objectively characterize the quali-
ty  and intelligibility  of  both healthy [1]  and dysarthric 
speech [2]. The goal is to explore the usefulness of each 
parameter as a correlate of ASR performance. It is known 

that dysarthria affects articulation, breathing, voicing, and 
prosody, often resulting in unintelligible speech. There-
fore, we consider acoustic features that characterize the 
atypical vocal tract shape, vocal source excitation, tempo-
ral  dynamics,  and  prosody  characteristics  of  dysarthric 
speakers. More specifically, we explore the use of inter-
nal features computed by the speech quality measurement 
algorithm ITU-T Rec. P.563, standardized by the Interna-
tional  Telecommunications Union (ITU) [1].  While the 
algorithm has not been optimized for dysarthric speech, 
some of its internal features may be useful for this task as 
they measure  parameters  related  to  atypical  vocal  tract 
shapes  as  well  as  atypical  linear  prediction  coefficient 
(LPC) distributions.

Moreover,  we explore the use of novel acoustic pa-
rameters proposed recently for the purpose of objective 
intelligibility prediction of spastic dysarthric speech [2]. 
These new parameters characterize atypical vocal source 
excitation, disordered temporal dynamics, and disrupted 
prosody, factors which are prominent in dysarthria. Here, 
we provide a brief description of the innovative features; 
the interested reader is referred to [2] for further details. 
Experiments  with  a  publicly-available  speech  database 
show the acoustic  measures  investigated here as  strong 
correlates  of  ASR  performance  on  dysarthric  speech. 
Such findings suggest that these measures can be used to 
predict  the  potential  efficacy  of  ASR  for  disordered 
speakers, thus helping clinicians to better prescribe AT.

II. METHODS

A. Data Description
For computing the acoustic measures, we use a subset 

of dysarthric speech from the publicly available Universal 
Access (UA) Speech database from the University of Illi-
nois at Urbana-Champaign.  These data consist of single-
word utterances recorded from 9 speakers (2 female) with 
spastic dysarthria recorded with a seven-channel micro-
phone array, sampled at 16 kHz and digitized with 16-bit 
precision.  Since the ITU-T P.563 standard requires sin-
gle-channel  narrowband  (i.e.,  8  kHz  sampled)  speech 
data,  we further  downsample  the  UA-database  and use 
data from the sixth channel in the microphone array. This 
microphone was selected as it  was placed closer to the 
participant and had a higher signal-to-noise ratio. 

Each participant read 455 unique isolated words with 
some repetition  totaling  765  utterances  per  participant. 
The prompts consisted of repetitions of English digits, the 
26-word international radio alphabet, 19 word-processing 
commands,  and  the  most  common  100  words  in  the 
Brown corpus of written English. Each of these is repeat-
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ed three times by each participant. In addition, 300 un-
common words selected from children's novels digitized 
by Project Gutenberg are also included [5].

B. Automatic Speech Recognition (ASR)
Baseline ASR performance is evaluated using speak-

er-independent (SI) acoustic models trained via the leave-
one-out  method where data from all speakers except the 
test speaker are used for training. The trained model is 
then  evaluated  on  data  from the  test  speaker.  Each  SI 
model is trained on an average of over 8000 dysarthric ut-
terances. The acoustic feature vectors consist of 13 Mel-
frequency cepstral coefficients (MFCCs) including the 0th 

-order cepstral coefficient and their respective Δ and ΔΔ 
coefficients,  giving  39  dimensions  generated  every  10 
ms. Cepstral mean subtraction (CMS) is then applied. 

Acoustic  models  consist  of  40  left-to-right,  tri-state 
monophone  hidden  Markov  models  and  a  single-state 
short-pause model where state observation likelihoods are 
modeled  by  mixtures  of  16  Gaussians.  In  each  case, 
monophones are strung together into word networks ac-
cording to the CMU pronunciation dictionary. A word-
network where every word is preceded and followed by a 
silence model is used as a language model/task grammar. 
During decoding, a modified Viterbi algorithm is used to 
select the most probable word. All ASR accuracy results 
are reported in terms of word accuracy.

   C. Acoustic Measures
A number of salient acoustic measures have been pre-

viously  shown  to  characterize  the  quality  of  natural 
speech [1] and the intelligibility of dysarthric speech [2]. 
Below, a brief description of the measures are given; the 
interested reader is referred to [1,2] for more details.

C.1 ITU-T P.563 Algorithm
The ITU-T P.563 standard algorithm [1]  was devel-

oped for narrowband telephone speech.  As such,  it  de-
tects and characterizes three major classes of telephone 
speech distortions, namely, background noise (both addi-
tive and multiplicative), temporal distortions (mute, clip-
pings, interruptions) and unnaturalness (robotization and 
unnatural  male and female speech).  While the first two 
classes do not directly relate to dysarthric speech, we hy-
pothesize  that  internal  features  computed  by  the  algo-
rithm  and  used  to  detect  and  characterize  “unnatural 
speech distortions” may be useful  for the task at  hand. 
More specifically, the algorithm makes use of speech sta-
tistics for unnatural voice detection, such as higher-order 
statistical evaluation (kurtosis and skewness) of cepstral 
and linear prediction analyses.  These are classical mea-
sures of the degree to which a statistical signal deviates 
from  the  Gaussian  distribution.  Kurtosis  measures  the 
‘peakedness’ of a distribution and skewness measures the 
asymmetry of a distribution. Linear prediction analysis of 
order  21 is performed and kurtosis and skewness  mea-
sures are computed for active speech. 

We also consider  five alternate  acoustic  parameters 
which were recently shown to correlate  with subjective 
intelligibility ratings of spastic dysarthric speakers.  The 
measures  are  based on three so-called intelligibility di-
mensions, namely atypical  vocal  source excitation, per-
turbation in speech temporal dynamics, and prosodic dis-
ruptions, as described below. 

C.2. Vocal source excitation and vocal tract information
Linear  prediction  analysis  has  been  widely  used  in 

speech  applications  to  separate  vocal  source  excitation 
and vocal tract information from the produced speech sig-
nal. Linear  prediction analysis assumes that  the current 
signal sample can be predicted by a linear combination of 
p previous samples. Under this format, the linear predic-
tion error (or LP residual) will correspond to the vocal 
source excitation signal [6]. It is known that for healthy 
voiced speech segments, glottal pulses will appear as im-
pulse-like peaks in the LP-residual signal, thus rendering 
the LP-residual distribution with a higher kurtosis [7]. On 
the other hand, severely dysarthric speech exhibits more 
prominent  noise-like  excitation  signals  (due  to  vocal 
harshness, for example), thus lowering the kurtosis value 
of the LP-residual distribution [2]. For mild to moderate 
dysarthric speech, it is expected that the kurtosis of the 
LP-residual distribution will lie between that of a Gauss-
ian and that  of  healthy natural  speech.  For the sake of 
completeness, the LP-residual kurtosis metric  κ is com-
puted according to:

κ LP=

N ∑
n=1

N

 r n −r 
4

∑
n=1

N

 r n −r 
2 2

−3  ,             

where r indicates the sample average of the LP-residual 
signal r(n) and N is the number of active speech frames. 

C.3 Disturbances in temporal dynamics
Both short-  and long-term temporal  dynamics mea-

sures are explored to investigate the effects of temporal 
disturbances of spastic dysarthric speech on ASR perfor-
mance. Speech temporal disturbances are mainly due to 
improper  placement  of  the  articulators,  slower  speech 
rate,  and rhythmic disturbances  [8].  Here,  a  log-energy 
rate of change measure is used to characterize the short-
-term  temporal  dynamics  of  the  speech  signal.  More 
specifically,  the  zeroth-order  cepstral  coefficient  c0 is 
computed as a measure of short-term log-spectral energy 
and the zeroth-order delta coefficient Δc0 is used as a mea-
sure of rate of change of log-energy [9].  In our simula-
tions, c0 is computed over 32 ms frames with 10 ms frame 
shifts and Δc0 is computed using a window of size 7. 

Statistics of the Δc0 distribution are used to character-
ize  disturbances  in  short-term (~100  ms)  temporal  dy-
namics. More specifically, the skewness computed from 



C samples  of  Δc0 distribution (represented  by  xi  in  the 
equation below) is used:

S Δ=

C∑
i= 1

C

 xi−x 
3

∑
i= 1

C

 xi−x 
2 3/2

,

where x indicates the sample average of xi.
     Long-term temporal dynamics information, in turn, is 
characterized by the rate of change of long-term (between 
512 and 1000 ms) speech temporal envelopes. Such rep-
resentation  is  often  termed “modulation spectrum”  and 
characterizes slow energy fluctuations associated with the 
movement of the lips, the jaw, and other speech articula-
tors. Most of the useful linguistic information is in modu-
lation frequency components between 1 and 16 Hz, with 
spectral peaks around 4 Hz [11]. In [2] it was hypothe-
sized that prolonged phonemes, slower speech rates, and 
impaired co-articulation would cause a shift of the modu-
lation frequencies to below 4 Hz. With more intelligible 
speech,  the  modulation  frequency  would  spread  across 
higher modulation frequencies  as observed with natural 
speech [12].  The ratio of modulation spectral  energy at 
modulation frequencies less than 4 Hz to modulation fre-
quencies  greater  than 4 Hz was used to  measure  long-
term temporal dynamics [2]. This parameter, termed low-
to-high  modulation  energy  ratio  (LHMR)  in  [2],  takes 
into account  temporal  disturbances  of  irregular  speech, 
namely  prolonged  phonemes,  slower  speech  rates,  and 
impaired co-articulation of dysarthric speech. In order to 
emulate  psychoacoustic  precepts,  an  auditory-inspired 
modulation spectral  representation  is  used where  a 23-
channel  gammatone filterbank was used to emulate the 
processing of the cochlea and an 8-channel  modulation 
filterbank was used to aggregate modulation frequencies 
into eight bands [12]. A complete detail of the signal pro-
cessing steps involved in the computation of the LHMR 
measure can be found in [2].

C.4 Disordered prosody
Prosodic  disturbances  are  one  of  the  distinguishing 

factors of dysarthria and we explore how these  correlate 
with ASR performance. Here, the range and variance of 
the fundamental frequency (F0) [14] are used as acoustic 
parameters that characterize disordered prosody. Pitch es-
timates  are  computed  using  the  robust  adaptive  pitch 
tracker algorithm [15].

 III. EXPERIMENTAL RESULTS AND DISCUSSION

Table 1 shows the correlation coefficients attained be-
tween the investigated acoustic measures and ASR per-
centage accuracy over all speakers. As can be seen, the 
acoustic features  that  characterize atypical  vocal  source 
excitation and unnaturalness of speech are highly corre-

lated with ASR performance on dysarthric  speech. The 
LP-residual and LPC kurtosis, along with LPC skewness 
show strong positive correlations with ASR performance, 
with coefficients ρ ranging between 0.81 and 0.86. As ex-
pected,  the  LP-residual  of  relatively  intelligible  speech 
has a much higher kurtosis value (e.g., for M14) than se-
verely impaired speech (e.g., for F03). 

By contrast, the short- and long-term temporal pertur-
bation measures, namely SΔ and LHMR, show more mod-
est correlations with ASR performance, achieving a coef-
ficient of 0.62. Moreover,  the  range  and  variance  of 
the fundamental frequency (F0), which are used to mea-
sure prosodic disturbances, are shown to be strongly neg-
atively  correlated  with  ASR  performance.  Dysarthric 
speech is commonly considered monotone and “robotic,” 
thus it would be reasonable to expect lower pitch variabil-
ity and range in more severe cases of dysarthria (and con-
sequently,  lower  ASR accuracy).  The negative  correla-
tions, however,  suggest otherwise. While these findings 
may seem counterintuitive, they corroborate those report-
ed in [14] where the nature of prosodic disturbances was 
shown to vary with the severity of dysarthria. In particu-
lar, monotonicity was reported for mild dysarthric speak-
ers  only and higher  pitch variation/range was observed 
for speakers with severe disorders.

IV. CONCLUSIONS AND FUTURE WORK

This  work has  demonstrated  that  the  investigated 
acoustic measures can be indicative of the performance 
achieved with traditional isolated-word recognition sys-
tems. In particular, acoustic measures related to atypical 
vocal  source  excitation  and  unnaturalness  were  highly 
correlated with ASR performance.  As such, these mea-
sures can be used to assist clinicians in assessing the po-
tential utility of ASR systems for particular dysarthric pa-
tients. For example, if LPC analysis of a patient’s speech 
indicates LP coefficients with a high kurtosis, ASR sys-
tems are more likely to work as intended. In the future, a 
composite measure consisting of a weighted linear com-
bination  of  these  acoustic  measures  might  further  im-
prove the predictive ability of this approach. Moreover, 
we are interested in further analysis of the relationships 
between specific motor disablements, spectral character-
istics, and ASR performance. For example, prior research 
showed Pearson correlation coefficients of up to 0.95 be-
tween tongue motion and F2  formants for sonorants ut-
tered by dysarthric speakers [4]. 
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Table 1. Correlation ρ between investigated acoustic measures and ASR accuracy for 9 dysarthric speakers.

Speaker ID ASR 
% 
Accuracy

LP-
Residual 
Kurtosis

LPC 
Kurtosis

LPC 
Skewness

SΔ LHMR F0-Range F0-
Variance

F03 7.99 0.19 0.47 0.07 0.08 8.60 144.51 38.06

F05 34.80 1.22 4.32 0.48 0.44 5.04 121.23 36.37

M01 7.11 0.56 1.38 0.15 0.59 6.81 148.04 32.18

M04 3.39 0.36 1.21 0.18 0.31 6.86 122.96 30.56

M05 35.91 0.77 1.93 0.35 0.94 5.07 54.9 11.51

M07 21.41 0.38 1.30 0.14 0.44 9.20 116.79 28.96

M08 61.94 0.98 4.51 0.81 0.93 5.91 73.97 18.81

M14 50.49 1.29 5.49 0.93 0.57 4.80 27.29 6.43

M16 33.39 0.80 1.73 0.14 0.23 6.46 129.55 30.34

ρ coefficient 0.81 0.84 0.86 0.62 -0.62 -0.76 -0.67


